A simplified lower bound on intuitionistic implicational proofs

Emil Jeřábek

Institute of Mathematics
Czech Academy of Sciences
jerabek@math.cas.cz
https://users.math.cas.cz/~jerabek/

Computer Science Seminar
Univerzita Palackého, Olomouc, 2 Nov 2023

Outline

(1) Classical proof complexity

2 Non-classical proof complexity
(3) Lower bound for implicational logic

Classical proof complexity

(1) Classical proof complexity

2 Non-classical proof complexity

(3) Lower bound for implicational logic

Propositional proof systems

Proof system (pps): relation $P \subseteq$ Form $\times \Sigma^{*}$ s.t.

- P is decidable in polynomial time
- φ is a tautology $\Longleftrightarrow \exists \pi P(\varphi, \pi)$

Main measure: length (=size) of proofs

- P polynomially bounded if all tautologies φ have P-proofs of size $\leq|\varphi|^{c}$
- P p-simulates $Q\left(P \geq_{p} Q\right)$: polynomial-time translation of Q-proofs to P-proofs
- P and Q are p-equivalent $\left(P \equiv_{p} Q\right): P \geq_{p} Q \& Q \geq_{p} P$

Theorem (Cook \& Reckhow '79):
$\mathbf{N P}=\mathbf{c o N P} \Longleftrightarrow \exists$ polynomially bounded pps

Frege (aka Hilbert-style) systems

R : finite set of schematic Frege rules $\alpha_{1}, \ldots, \alpha_{k} \vdash \alpha_{0}$
R-derivation of φ from $\Gamma: \varphi_{0}, \ldots, \varphi_{t}=\varphi$ where each φ_{i} derived from $\varphi_{j}, j<i$ by an instance of an R-rule, or $\varphi_{i} \in \Gamma$

If $\Gamma \vdash_{R} \varphi \Longleftrightarrow \Gamma \vDash \varphi$: Frege system F_{R}

- typically: modus ponens + axiom schemata
- all Frege systems p-equivalent (Reckhow '76)
\Longrightarrow write $\mathrm{F}=\mathrm{F}_{R}$
- p-equivalent to tree-like Frege F* (Krajíček '94)
- p-equivalent to sequent calculus and natural deduction (Reckhow '76)
- known lower bounds: number of lines $\Omega(n)$, size $\Omega\left(n^{2}\right)$ (Krajíček '95)

Boolean circuits

Formulas: trees
Circuits: directed acyclic graphs (dag)

- finite dag labelled with variables and connectives
- each node appropriate number of incoming edges
- one node designated as output

As a model of computation:

- $L \subseteq\{0,1\}^{*}$ is in $\mathbf{P} /$ poly if for each n,
$L_{n}=L \cap\{0,1\}^{n}$ is computable by circuits $C_{n},\left|C_{n}\right| \leq n^{c}$
- nonuniform version of \mathbf{P}

Monotone circuits:

- only connectives \wedge, \vee (possibly 0,1$)$

Feasible interpolation

General lower bound method for weak pps (Krajiček '97): P has feasible interpolation if for every P-proof Π of

$$
\beta(\vec{p}, \vec{r}) \rightarrow \alpha(\vec{p}, \vec{q})
$$

there exists a Boolean circuit $C(\vec{p}),|C| \leq|\Pi|^{c}$, s.t.

$$
\vDash \beta(\vec{p}, \vec{r}) \rightarrow C(\vec{p}), \quad \vDash C(\vec{p}) \rightarrow \alpha(\vec{p}, \vec{q})
$$

Feasible interpolation

General lower bound method for weak pps (Krajíček '97): P has feasible interpolation if for every P-proof Π of

$$
\alpha(\vec{p}, \vec{q}) \vee \beta(\vec{p}, \vec{r})
$$

there exists a Boolean circuit $C(\vec{p}),|C| \leq|\Pi|^{c}$, s.t.

$$
C(\vec{p}) \vDash \alpha(\vec{p}, \vec{q}), \quad \neg C(\vec{p}) \vDash \beta(\vec{p}, \vec{r})
$$

Feasible interpolation

General lower bound method for weak pps (Krajíček '97):
P has feasible interpolation if for every P-proof Π of

$$
\alpha(\vec{p}, \vec{q}) \vee \beta(\vec{p}, \vec{r})
$$

there exists a Boolean circuit $C(\vec{p}),|C| \leq|\Pi|^{c}$, s.t.

$$
C(\vec{p}) \vDash \alpha(\vec{p}, \vec{q}), \quad \neg C(\vec{p}) \vDash \beta(\vec{p}, \vec{r})
$$

Theorem: If P has f.i., and \exists a disjoint NP-pair $\langle A, B\rangle$ not separable in $\mathbf{P} /$ poly, then P is not polynomially bounded

Proof idea: express A_{n} by $\exists \vec{q} \neg \alpha_{n}(\vec{p}, \vec{q})$ and B_{n} by $\exists \vec{r} \neg \beta_{n}(\vec{p}, \vec{r})$

Circuit lower bounds

Lower bounds on the size of general circuits:

- random functions $\{0,1\}^{n} \rightarrow\{0,1\}:$ size $\gtrsim 2^{n} / n$ whp
- explicit functions: size ≥ 5 n or so
\Longrightarrow f.i. only yields conditional lower bounds
Monotone circuits:
- Razborov '85: superpolynomial lower bound for Clique
- Alon \& Boppana '87: improved to exponential lower bound
- also applies to the Clique-Colouring NP-pair (Tardos '87)
- variant: Colouring-Cocolouring (Hrubeš \& Pudlák '17)

Monotone feasible interpolation

P has monotone feasible interpolation if for every P-proof Π of

$$
\alpha(\vec{p}, \vec{q}) \vee \beta(\vec{p}, \vec{r})
$$

where \vec{p} only occur positively in α, there exists a monotone circuit $C(\vec{p}),|C| \leq|\Pi|^{c}$, s.t.

$$
C(\vec{p}) \vDash \alpha(\vec{p}, \vec{q}), \quad \neg C(\vec{p}) \vDash \beta(\vec{p}, \vec{r})
$$

Theorem: If P has m.f.i. then P is not polynomially bounded

Example:
Resolution has f.i. and m.f.i.
Frege likely does not

Non-classical proof complexity

1 Classical proof complexity

(2) Non-classical proof complexity
(3) Lower bound for implicational logic

Non-classical Frege systems

L finitely axiomatizable propositional logic \Longrightarrow Frege system L-F
Unconditional exponential lower bounds for many logics L :

- Hrubeš '07,'09: some modal logics, intuitionistic logic (Frege, Extended Frege)
- J. '09: extensions of K4 or IPC with unbounded branching
- Jalali '21: extensions of FL included in ...

Further strengthening:

- exponential separation between Extended Frege and Substitution Frege (J. '09)
- purely implicational tautologies (J. '17)

Feasible disjunction property

P proof system for $L \supseteq$ IPC:
P has the feasible disjunction property if given a P-proof of $\varphi_{0} \vee \varphi_{1}$, we can compute in polynomial time $i \in\{0,1\}$ such that $\vdash_{L} \varphi_{i}$

Modal logics: the same with $\square \varphi_{0} \vee \square \varphi_{1}$
Example: IPC-F has f.d.p. (Buss \& Mints '99, ...)
(Pudlák '99) f.d.p. can serve the role of f.i.
\Longrightarrow conditional lower bounds
(Hrubeš '07) analogue of monotone f.i.
\Longrightarrow unconditional lower bounds

f.d.p. serving as f.i.

$P \geq_{p}$ IPC-F closed under substitution of 0,1 :

- $\alpha(\vec{p}, \vec{q}) \vee \beta(\vec{p}, \vec{r})$ classical tautology \Longrightarrow IPC proves

$$
(*) \quad \bigwedge_{i<n}\left(p_{i} \vee \neg p_{i}\right) \rightarrow \neg \neg \alpha(\vec{p}, \vec{q}) \vee \neg \neg \beta(\vec{p}, \vec{r})
$$

- if P has f.d.p. and $(*)$ has a short P-proof: small circuit C such that for all $\vec{a} \in\{0,1\}^{n}$,

$$
\begin{aligned}
& C(\vec{a})=1 \Longrightarrow \vdash \neg \neg \alpha(\vec{a}, \vec{q}) \\
& C(\vec{a})=0 \Longrightarrow \vdash \neg \neg(\vec{a}, \vec{r})
\end{aligned}
$$

f.d.p. serving as f.i.

$P \geq_{p}$ IPC-F closed under substitution of 0,1 :

- $\alpha(\vec{p}, \vec{q}) \vee \beta(\vec{p}, \vec{r})$ classical tautology \Longrightarrow IPC proves

$$
(*) \quad \bigwedge_{i<n}\left(p_{i} \vee \neg p_{i}\right) \rightarrow \neg \neg \alpha(\vec{p}, \vec{q}) \vee \neg \neg \beta(\vec{p}, \vec{r})
$$

- if P has f.d.p. and $(*)$ has a short P-proof: small circuit C such that

$$
C(\vec{p}) \vDash \alpha(\vec{p}, \vec{q}), \quad \neg C(\vec{p}) \vDash \beta(\vec{p}, \vec{r})
$$

In a galaxy far, far away

Persistent claims (2016-) by L. Gordeev and E. H. Haeusler:

- implicational IPC tautologies have polynomial-size proofs in dag-like natural deduction
- NP = PSPACE
- published ('19,'20), some people seem to take it seriously

Flatly contradicts known lower bounds, but this requires a complex argument, hard to track down by non-specialists:

- IPC-F lower bounds (Hrubeš '07)
- monotone circuit lower bounds (Alon-Boppana '87, ...)
- reduction to implicational logic (J. '17)
- simulation of natural deduction by Frege (idea Reckhow '76, Cook-Reckhow '79, but for a different system)
\Longrightarrow desire for something simpler/more direct

Lower bound for implicational logic

1. Classical proof complexity

2 Non-classical proof complexity
(3) Lower bound for implicational logic

Intuitionistic/minimal implicational logic

Language: \rightarrow, atoms $p_{0}, p_{1}, p_{2}, \ldots$
the set of formulas: Form
Notation: $\varphi \rightarrow \psi \rightarrow \chi \rightarrow \omega=(\varphi \rightarrow(\psi \rightarrow(\chi \rightarrow \omega)))$
Frege system F_{\rightarrow} :

$$
\begin{aligned}
& \vdash(\varphi \rightarrow \psi \rightarrow \chi) \rightarrow(\varphi \rightarrow \psi) \rightarrow(\varphi \rightarrow \chi) \\
& \vdash \varphi \rightarrow \psi \rightarrow \varphi
\end{aligned}
$$

$\varphi, \varphi \rightarrow \psi \vdash \psi$
Sequent calculus $L J_{\rightarrow}$: structural rules (incl. cut) +

$$
\overline{\varphi \Longrightarrow \varphi} \quad \frac{\Gamma \Longrightarrow \varphi \quad \Gamma, \psi \Longrightarrow \alpha}{\Gamma, \varphi \rightarrow \psi \Longrightarrow \alpha} \quad \frac{\Gamma, \varphi \Longrightarrow \psi}{\Gamma \Longrightarrow \varphi \rightarrow \psi}
$$

Natural deduction

Prawitz-style tree-like natural deduction: $[\varphi] \longleftarrow$ discharged

$$
(\rightarrow \mathrm{E}) \frac{\varphi \quad \varphi \rightarrow \psi}{\psi} \quad(\rightarrow 1) \frac{\psi}{\varphi \rightarrow \psi}
$$

- every leaf of the proof tree must be discharged

Gordeev \& Haeusler dag-like natural deduction $\mathrm{NM}_{\rightarrow}$:

- every leaf of the proof dag must be discharged on every path to the root
- checkable in polynomial-time: inductively compute for each node $v \in V$ the set

$$
A_{v}=\left\{\gamma_{u}: u \text { leaf, undischarged on some path to } v\right\}
$$

Notation: $\langle V, E\rangle$ underlying dag, $\gamma_{v}=$ formula label of node v

Efficient Kleene's slash

For $P \subseteq$ Form: a P-slash is a unary predicate $\mid \varphi$ on Form s.t.

$$
\mid(\varphi \rightarrow \psi) \Longleftrightarrow(\underbrace{\mid \varphi \text { and } \varphi \in P}_{\| \varphi} \Longrightarrow \mid \psi)
$$

- free to choose $\mid p$ for atoms p
- Kleene's original $\Gamma \mid \varphi$ has $P=\{\varphi: \Gamma \vdash \varphi\}$, we take for P an efficiently computable finite set
$\mathrm{NM}_{\rightarrow-\text {-proof } \Pi: P \text { is } \Pi \text {-closed if } \forall v\left(A_{v} \subseteq P \Longrightarrow \gamma_{v} \in P\right), ~(1)}$
Lemma: Π proof of φ, P is Π-closed, \mid is a P-slash $\Longrightarrow \mid \varphi$
- by induction on the length of the proof

Constructibility of П-closure

$\mathrm{cl}_{\Pi}(X)=$ smallest Π-closed set $P \supseteq X$
Observation: $\varphi \in \operatorname{cl}_{\Pi}(X) \Longrightarrow X \vdash \varphi$
$\mathrm{cl}_{n}(X)$ is computable in polynomial time, moreover:
Lemma: $П \mathrm{NM}_{\rightarrow-\text {-proof, }}\left\{\varphi_{i}: i<n\right\} \subseteq$ Form, $\varphi \in$ Form $\Longrightarrow \exists$ monotone circuit C of size $|\Pi|^{3}$ s.t.

$$
C\left(x_{0}, \ldots, x_{n-1}\right)=1 \Longleftrightarrow \varphi \in \operatorname{cln}\left(\left\{\varphi_{i}: x_{i}=1\right\}\right)
$$

- describe inductive construction of closure
- only involves formulas from \square
- terminates in $|\Pi|$ steps

Feasible disjunction property

Theorem: Given a $\mathrm{NM}_{\rightarrow-\text { proof } \Pi \text { of }}$

$$
\varphi=\left(\alpha_{0}(\vec{p}) \rightarrow u\right) \rightarrow\left(\alpha_{1}(\vec{p}) \rightarrow u\right) \rightarrow u
$$

we can compute in polynomial time $i \in\{0,1\}$ s.t. $\vdash \alpha_{i}$
Proof: $P=\operatorname{cl}_{\Pi}\left(\alpha_{0} \rightarrow u, \alpha_{1} \rightarrow u\right)$, let \mid be P-slash s.t. $\nmid u$
We have $\mid \varphi$, thus $\nVdash\left(\alpha_{0} \rightarrow u\right)$ or $\nVdash\left(\alpha_{1} \rightarrow u\right)$
$\nVdash\left(\alpha_{i} \rightarrow u\right) \Longrightarrow \nmid\left(\alpha_{i} \rightarrow u\right) \Longrightarrow \| \alpha_{i} \Longrightarrow \alpha_{i} \in P$
We can compute i s.t. $\alpha_{i} \in P$
Then: $\alpha_{0} \rightarrow \boldsymbol{u}, \alpha_{1} \rightarrow \boldsymbol{u} \vdash \alpha_{i}$
Substitute \top for $u \Longrightarrow$ get $\vdash \alpha_{i}$

Monotone feasible interpolation

Theorem: Given a $\mathrm{NM}_{\rightarrow-\text {-proof } \Pi \text { of }}$

$$
\begin{aligned}
& \left(\left(p_{0} \rightarrow u\right) \rightarrow\left(p_{0}^{\prime} \rightarrow u\right) \rightarrow u\right) \\
& \rightarrow\left(\left(p_{1} \rightarrow u\right) \rightarrow\left(p_{1}^{\prime} \rightarrow u\right) \rightarrow u\right) \\
& \rightarrow\left(\left(p_{2} \rightarrow u\right) \rightarrow\left(p_{2}^{\prime} \rightarrow u\right) \rightarrow u\right) \\
& \rightarrow\left(\left(p_{n-1} \rightarrow u\right) \rightarrow\left(p_{n-1}^{\prime} \rightarrow u\right) \rightarrow u\right) \\
& \rightarrow\left(\alpha_{0}(\vec{p}, \vec{q}) \rightarrow u\right) \rightarrow\left(\alpha_{1}\left(\vec{p}^{\prime}, \vec{r}\right) \rightarrow u\right) \rightarrow u,
\end{aligned}
$$

there is a monotone circuit C of size $|\Pi|^{3}$ such that

$$
C(\vec{p}) \vDash \alpha_{0}(\vec{p}, \vec{q}), \quad \neg C(\vec{p}) \vDash \alpha_{1}(\neg \vec{p}, \vec{r})
$$

Monotone feasible interpolation

Notation: $\left\langle\varphi_{i}\right\rangle_{i<n} \rightarrow \psi=\varphi_{n-1} \rightarrow \cdots \rightarrow \varphi_{1} \rightarrow \varphi_{0} \rightarrow \psi$
Theorem: Given a $\mathrm{NM}_{\rightarrow-\text {-proof }} \Pi$ of

$$
\begin{aligned}
\left\langle(p _ { i } \rightarrow u) \rightarrow \left(p_{i}^{\prime}\right.\right. & \rightarrow u) \rightarrow u\rangle_{i<n} \\
& \rightarrow\left(\alpha_{0}(\vec{p}, \vec{q}) \rightarrow u\right) \rightarrow\left(\alpha_{1}\left(\vec{p}^{\prime}, \vec{r}\right) \rightarrow u\right) \rightarrow u
\end{aligned}
$$

there is a monotone circuit C of size $|\Pi|^{3}$ such that

$$
C(\vec{p}) \vDash \alpha_{0}(\vec{p}, \vec{q}), \quad \neg C(\vec{p}) \vDash \alpha_{1}(\neg \vec{p}, \vec{r})
$$

Colouring-Cocolouring disjoint NP pair

Observation: Any graph $G=\langle V, E\rangle$ with $V=[n]$ satisfies

$$
\chi(G) \chi(\bar{G}) \geq n
$$

$c: V \rightarrow[k]$ colouring of G,
$c^{\prime}: V \rightarrow\left[k^{\prime}\right]$ colouring of \bar{G}
$\Longrightarrow c \times c^{\prime}: V \rightarrow[k] \times\left[k^{\prime}\right]$ is injective

Colouring-Cocolouring disjoint NP pair

Observation: Any graph $G=\langle V, E\rangle$ with $V=[n]$ satisfies

$$
\chi(G) \chi(\bar{G}) \geq n
$$

Colouring-Cocolouring disjoint NP pair: distinguish

- graphs G s.t. G is k-colourable from
- graphs G s.t. \bar{G} is k-colourable
where $k=\lceil\sqrt{n}\rceil-1$
Represent E by an $\binom{n}{2}$-tuple of Boolean variables
Theorem (Hrubeš \& Pudlák '17):
Any monotone circuits separating the Colouring-Cocolouring pair must have size $2^{\Omega\left(n^{1 / 8}\right)}$

Colouring-Cocolouring tautologies

$p_{i j} \quad(i<j<n):$ represent E
$q_{i l}, r_{i l}(i<n, l<k)$: k-colouring of G and \bar{G} (respectively)

Classical tautologies:

$$
\begin{aligned}
& \neg\left[\left(\bigwedge_{i<n \mid<k} \bigvee_{i l} q_{\substack{i<j<n \\
l<k}} \neg\left(q_{i l} \wedge q_{j l} \wedge p_{i j}\right)\right)\right. \\
& \left.\wedge\left(\bigwedge_{i<n \mid<k} \bigvee_{i l} r_{\substack{i<j<n \\
l<k}} \neg\left(r_{i l} \wedge r_{j l} \wedge \neg p_{i j}\right)\right)\right]
\end{aligned}
$$

Colouring-Cocolouring tautologies

$p_{i j} \quad(i<j<n):$ represent E
$q_{i l}, r_{i l}(i<n, l<k)$: k-colouring of G and \bar{G} (respectively)

Classical tautologies:

$$
\begin{aligned}
&\left(\bigwedge_{i<n \mid<k} \bigvee_{i l} \rightarrow\right. \\
& q_{i}\left.\bigvee_{\substack{i<j<n \\
l<k}}\left(q_{i l} \wedge q_{j l} \wedge p_{i j}\right)\right) \\
& \vee\left(\bigwedge_{i<n \mid<k} \bigvee_{i l} \rightarrow\right. \\
&\left.\bigvee_{\substack{i<j<n \\
l<k}}\left(r_{i l} \wedge r_{j l} \wedge \neg p_{i j}\right)\right)
\end{aligned}
$$

Colouring-Cocolouring tautologies

$p_{i j}, p_{i j}^{\prime}(i<j<n)$: represent E and its complement $q_{i,}, r_{i l}(i<n, l<k)$: k-colouring of G and \bar{G} (respectively)

Classical tautologies:

$$
\begin{aligned}
\bigwedge_{i<j<n}\left(p_{i j} \vee p_{i j}^{\prime}\right) \rightarrow & {\left[\left(\bigwedge_{i<n \mid<k}^{\bigvee} q_{i l} \rightarrow \bigvee_{\substack{i<j<n \\
l<k}}\left(q_{i l} \wedge q_{j l} \wedge p_{i j}\right)\right)\right.} \\
& \left.\vee\left(\bigwedge_{i<n \mid<k}^{\bigvee} r_{i l} \rightarrow \bigvee_{\substack{i<j<n \\
1<k}}\left(r_{i l} \wedge r_{j l} \wedge p_{i j}^{\prime}\right)\right)\right]
\end{aligned}
$$

Colouring-Cocolouring tautologies

$p_{i j}, p_{i j}^{\prime}(i<j<n)$: represent E and its complement $q_{i l}, r_{i l}(i<n, l<k)$: k-colouring of G and \bar{G} (respectively)

Intuitionistic tautologies:

$$
\begin{aligned}
\bigwedge_{i<j<n}\left(p_{i j} \vee p_{i j}^{\prime}\right) \rightarrow & {\left[\left(\bigwedge_{i<n \mid<k} \bigvee_{i l} \rightarrow \bigvee_{\substack{i<j<n \\
l<k}}\left(q_{i l} \wedge q_{j i} \wedge p_{i j}\right)\right)\right.} \\
& \left.\vee\left(\bigwedge_{i<n} \bigvee_{l<k} r_{i l} \rightarrow \bigvee_{\substack{i<j<n \\
1<k}}\left(r_{i l} \wedge r_{j l} \wedge p_{i j}^{\prime}\right)\right)\right]
\end{aligned}
$$

Colouring-Cocolouring tautologies

$p_{i j}, p_{i j}^{\prime}(i<j<n)$: represent E and its complement $q_{i l}, r_{i l}(i<n, l<k)$: k-colouring of G and \bar{G} (respectively) u : auxiliary

Intuitionistic tautologies:

$$
\begin{aligned}
& {\left[\left(\bigwedge_{i<n \mid<k} \bigvee_{i l} \rightarrow \bigvee_{\substack{i<j<n \\
l<k}}\left(q_{i l} \wedge q_{j l} \wedge p_{i j}\right)\right) \rightarrow u\right]} \\
& \rightarrow\left[\left(\bigwedge_{i<n \mid<k} \bigvee_{i l} \rightarrow \bigvee_{\substack{i<j<n \\
l<k}}\left(r_{i l} \wedge r_{j l} \wedge p_{i j}^{\prime}\right)\right) \rightarrow u\right] \\
& \quad \rightarrow \bigwedge_{i<j<n}\left(p_{i j} \vee p_{i j}^{\prime}\right) \rightarrow u
\end{aligned}
$$

Colouring-Cocolouring tautologies

$p_{i j}, p_{i j}^{\prime}(i<j<n)$: represent E and its complement $q_{i l}, r_{i l}(i<n, l<k)$: k-colouring of G and \bar{G} (respectively) u, v, w : auxiliary

Intuitionistic tautologies:

$$
\begin{aligned}
& {\left[\left(\left(\bigvee_{\substack{i<j<n \\
\mid<k}}\left(q_{i l} \wedge q_{j i} \wedge p_{i j}\right) \rightarrow v\right) \rightarrow \bigwedge_{i<n} \bigvee_{l<k} q_{i l} \rightarrow v\right) \rightarrow u\right]} \\
& \rightarrow\left[\left(\left(\bigvee_{\substack{i \lll n \\
l<k}}\left(r_{i l} \wedge r_{j l} \wedge p_{i j}^{\prime}\right) \rightarrow w\right) \rightarrow \bigwedge_{i<n \mid<k} r_{i l} \rightarrow w\right) \rightarrow u\right] \\
& \quad \rightarrow \bigwedge_{i<j<n}\left(p_{i j} \vee p_{i j}^{\prime}\right) \rightarrow u
\end{aligned}
$$

Colouring-Cocolouring tautologies

$p_{i j}, p_{i j}^{\prime}(i<j<n)$: represent E and its complement $q_{i l}, r_{i l}(i<n, l<k)$: k-colouring of G and \bar{G} (respectively) u, v, w : auxiliary

Intuitionistic implicational tautologies τ_{n} :
$\left\langle\left(p_{i j} \rightarrow u\right) \rightarrow\left(p_{i j}^{\prime} \rightarrow u\right) \rightarrow u\right\rangle_{i<j<n} \rightarrow\left(\alpha_{n} \rightarrow u\right) \rightarrow\left(\alpha_{n}^{\prime} \rightarrow u\right) \rightarrow u$
where

$$
\begin{aligned}
& \alpha_{n}=\left\langle\left\langle q_{i l} \rightarrow v\right\rangle_{I<k} \rightarrow v\right\rangle_{i<n} \rightarrow\left\langle q_{i l} \rightarrow q_{j l} \rightarrow p_{i j} \rightarrow v\right\rangle_{\substack{i<j<n \\
l<k}} \rightarrow v \\
& \alpha_{n}^{\prime}=\left\langle\left\langle r_{i l} \rightarrow w\right\rangle_{I<k} \rightarrow w\right\rangle_{i<n} \rightarrow\left\langle r_{i l} \rightarrow r_{j l} \rightarrow p_{i j}^{\prime} \rightarrow w\right\rangle_{\substack{i<j<n \\
l<k}} \rightarrow w
\end{aligned}
$$

The lower bound

$\tau_{n}:$ IPC $_{\rightarrow}$ tautologies of size $O\left(n^{2} k\right)=O\left(n^{2.5}\right)$
Monotone feasible interpolation \Longrightarrow

Lemma: If τ_{n} has a proof of size s, then there is a monotone circuit of size s^{3} separating the Colouring-Cocolouring NP pair

Hrubeš-Pudlák bound \Longrightarrow

Corollary: There are infinitely many intuitionistic implicational tautologies φ that require $\mathrm{NM}_{\rightarrow-\text { proofs of size } 2^{\Omega\left(|\varphi|^{1 / 20}\right)}}$
(Clique-Colouring tautologies with $k \approx n^{2 / 3}: 2^{\Omega\left(|\varphi|^{1 / 10-\varepsilon}\right)}$)

Other calculi

The argument adapts to F_{\rightarrow} or $\mathrm{LJ} \mathrm{J}_{\rightarrow}$:

- adjust the definition of $П$-closed sets

Actually: $\mathrm{F}_{\rightarrow} \equiv_{p} \mathrm{LJ}_{\rightarrow} \equiv_{p} \mathrm{NM}_{\rightarrow} \equiv{ }_{p} \underbrace{\mathrm{~F}_{\rightarrow}^{*} \equiv_{p} \mathrm{LJ}_{\rightarrow}^{*} \equiv_{p} \mathrm{NM}_{\rightarrow}^{*}}_{\text {tree-like versions }}$

- $\mathrm{F}_{\rightarrow} \equiv_{p} \mathrm{LJ} \mathrm{J}_{\rightarrow} \equiv_{p} \mathrm{NM}_{\rightarrow}$ go back to Reckhow '76
- $\mathrm{F}_{\rightarrow} \equiv{ }_{p} \mathrm{~F}_{\rightarrow}^{*}$ due to Krajíček '94, implicational version J. '17

Further extensions of the lower bound (as in J. '09, J. '17):

- full language of IPC
- superintuitionistic logics IPC $\subseteq L \subseteq \mathrm{BD}_{2}$
- exponential separation between Extended Frege and Substitution Frege

References $(1 / 2)$

- N. Alon, R. B. Boppana: The monotone circuit complexity of Boolean functions, Combinatorica 7 (1987), 1-22
- S.R. Buss, G. Mints: The complexity of the disjunction and existential properties in intuitionistic logic, APAL 99 (1999), 93-104
- S.A. Cook, R.A. Reckhow: The relative efficiency of propositional proof systems, JSL 44 (1979), 36-50
- L. Gordeev, E. H. Haeusler: Proof compression and NP versus PSPACE, Studia Logica 107 (2019), 53-83
- \qquad : Proof compression and NP versus PSPACE II, Bull. Sect. Logic Univ. Łódź 49 (2020), 213-230
\qquad : Proof compression and NP versus PSPACE II: addendum, Bull. Sect. Logic Univ. Łódź 51 (2022), 197-205
- P. Hrubeš: Lower bounds for modal logics, JSL 72 (2007), 941-958
\qquad : A lower bound for intuitionistic logic, APAL 146 (2007), 72-90
\qquad : On lengths of proofs in non-classical logics, APAL 157 (2009), 194-205
- P. Hrubeš, P. Pudlák: Random formulas, monotone circuits, and interpolation, Proc. 58th FOCS, 2017, 121-131

References (2/2)

- R. Jalali: Proof complexity of substructural logics, APAL 172 (2021), art. 102972, 31 pp
- E. J.: Substitution Frege and extended Frege proof systems in non-classical logics, APAL 159 (2009), 1-48
\rightarrow : Proof complexity of intuitionistic implicational formulas, APAL 168 (2017), 150-190
\qquad : A simplified lower bound for implicational logic, 2023, 31 pp , arXiv:2303.15090 [cs.LO]
- S. Jukna: Boolean function complexity: Advances and frontiers, Springer, 2012, $\times v i+620 \mathrm{pp}$
- J. Krajíček: Bounded arithmetic, propositional logic, and complexity theory, Cambridge Univ. Press, 1995, xiv+343 pp
- J. Krajíček: Interpolation theorems, lower bounds for proof systems, and independence results for bounded arithmetic, JSL 62 (1997), 457-486
- A.A. Razborov: Lower bounds on the monotone complexity of some Boolean functions, Math. USSR, Doklady 31 (1985), 354-357
- R.A. Reckhow: On the lengths of proofs in the propositional calculus, Ph.D. thesis, Univ. Toronto, 1976
- É. Tardos: The gap between monotone and non-monotone circuit complexity is exponential, Combinatorica 7 (1987), 141-142

