Mathematics in VTC⁰

Emil Jeřábek

Institute of Mathematics Czech Academy of Sciences jerabek@math.cas.cz https://users.math.cas.cz/~jerabek/

Journées sur les Arithmétiques Faibles 44 Institute of Mathematics, Prague, September 2025

Outline

- 1 TC⁰ and VTC⁰
- 2 Sums
- 3 Products
- 4 Polynomial roots
- 5 Analytic functions

TC⁰ and VTC⁰

- 1 TC⁰ and VTC⁰
- 2 Sums
- 3 Products
- 4 Polynomial roots
- **5** Analytic functions

Arithmetic and complexity

Correspondence of theories of bounded arithmetic T and computational complexity classes C:

- provably total computable functions of T are C-functions
- ➤ T can reason using C-predicates (comprehension, induction, minimization, . . .)
- ⇒ "feasible reasoning", "bounded reverse mathematics"
 - ▶ What can we prove using only concepts computable in *C*?

Correspondence to propositional proof systems *P*: (not in this talk)

- P operates with "C-formulas"
- ▶ universal theorems of *T* uniformly translate to short *P*-proofs

This talk:
$$C = \mathbf{TC}^0$$
, $T = VTC^0$ ($P = \mathbf{TC}^0$ -Frege)

Some small complexity classes

$$AC^0 \subseteq AC^0[m] \subseteq TC^0 \subseteq NC^1 \subseteq L \subseteq NL \subseteq AC^1 \subseteq \cdots \subseteq P$$

- ▶ AC^0 : DLOGTIME-uniform constant-depth poly-size formulas with unbounded fan-in \land, \lor, \neg gates
 - = **FO**-definable
 - = log time, O(1) alternations on an alternating TM
- ▶ $AC^0[m]$: + MOD_m gates (constant m)
- ► TC⁰: + Majority or threshold gates
- ▶ NC¹: uniform poly-size formulas = alternating log time
- ▶ L: logarithmic space on a deterministic TM
- ▶ NL: logarithmic space on a nondeterministic TM
- P: polynomial time on a deterministic TM

The class TC⁰

- ${\bf TC}^0={\sf DLOGTIME}$ -uniform O(1)-depth $n^{O(1)}$ -size unbounded fan-in formulas with threshold gates
 - FOM-definable on finite structuresrepresenting strings(first-order logic with majority quantifiers)
 - $= O(\log n)$ time, O(1) thresholds on a threshold Turing machine
- **TC**⁰-functions (**FTC**⁰): **TC**⁰ bit-graph, polynomially bounded
 - = Constable's \mathcal{K} : closure of $+,-,\times,/$ under superposition and polynomially bounded \sum , \prod [HAB'02]
 - = closure of $+, -, \times, /, \#, \wedge$ under superposition [Vol'07]

The power of TC^0

For integers given in binary:

- \blacktriangleright +, -, \leq are in $AC^0 \subseteq TC^0$
- \triangleright x is in TC^0 (TC^0 -complete under AC^0 reductions)

TC⁰ can also do:

- ▶ iterated addition $\sum_{i < n} X_i$
- ▶ integer division and iterated multiplication $\prod_{i < n} X_i$ [BCH'86,CDL'01,HAB'02]
- ▶ the corresponding operations on \mathbb{Q} , $\mathbb{Q}(i)$, $\mathbb{Q}(\alpha)$, . . .
- \blacktriangleright arithmetic on polynomials: \sum , \prod , composition, interpolation
- approximate functions given by nice power series:
 - ightharpoonup sin, arctan, (bounded) exp, log, $\sqrt[k]{X}$, ...
- sorting, tree contraction/balancing, . . .

Why TC⁰?

Very weak/efficient . . .

▶ no sequential computation

... yet surprisingly powerful!

- computation with polynomials, power series, etc. (previous slide)
- no unconditional separation from polynomial hierarchy

Relevance for arithmetic:

The complexity class of basic integer arithmetic operations

One-sorted bounded arithmetic

- ▶ language $0, 1, +, \cdot, \leq, \lfloor x/2 \rfloor, |x|, \#$
- $ightharpoonup \Sigma_0^b$ formulas: sharply bounded q'fiers $\exists x \leq |t|$, $\forall x \leq |t|$
- $\hat{\Sigma}_{i}^{b}$ formulas: i alternating blocks of bounded quantifiers (first block \exists) followed by a Σ_{0}^{b} formula
- ► $\mathsf{T}_2^i = \mathsf{BASIC} + \hat{\Sigma}_i^b$ -IND, $\mathsf{S}_2^i = \mathsf{BASIC} + \hat{\Sigma}_i^b$ -LIND
- ightharpoonup $T_2 = \bigcup_i T_2^i = \bigcup_i S_2^i \cong I\Delta_0 + \Omega_1$

Johannsen and Pollett's theories for **TC**⁰:

- ▶ language with $\dot{-}$, $\lfloor x/2^y \rfloor$
- $ightharpoonup \Delta_1^b$ -CR: open LIND, Δ_1^b bit-comprehension rule [JP'00]
- ► C_2^0 : + BB Σ_0^b [JP'98]
- $ightharpoonup C_2^0[div]$: language incl. $\lfloor x/y \rfloor$ [Joh'99]

Two-sorted bounded arithmetic

- ▶ unary (auxiliary) integers with $0, 1, +, \cdot, \le$
- ▶ finite sets = binary integers = binary strings $x \in X$, $|X| = \sup\{x + 1 : x \in X\}$
- ▶ bounded quantifiers: $\exists x \leq t, \ \forall x \leq t, \ \exists X \leq t, \ \forall X \leq t$ where $X \leq t$ is short for $|X| \leq t$
- $ightharpoonup \Sigma_0^B$ formulas: bounded FO, no SO quantifiers
- ▶ Σ_i^B formulas: *i* alternating blocks of bounded quantifiers (first block \exists) followed by a Σ_0^B formula
- ▶ $V^i = 2$ -BASIC + Σ_i^B -COMP (implies Σ_i^B -IND)

Theory VTC⁰ corresponding to **TC**⁰: [NC'06,CN'10]

▶ V^0 + every set X has a counting function $\{\langle i, \operatorname{card}(X \cap [0, i)) \rangle : i \leq |X| \}$

RSUV translation

two-sorted arithmetic	one-sorted arithmetic
sets	numbers
numbers	logarithmic numbers
bounded SO quantifiers	bounded quantifiers
bounded FO quantifiers	sharply bounded quantifiers
Σ_i^B	$\hat{\Sigma}_{i}^{b}$
V^i	S_2^i
TV^i	T_2^i
VTC ⁰	Δ_1^{b} -CR
$VTC^0 + \Sigma_0^B$ -AC	C ₂ ⁰
($VTC^0 + IMUL + \Sigma^B_0\text{-AC}$	$C_2^0[div]$)

 $(i \ge 1)$

The power of VTC⁰

Correspondence of VTC⁰ to **TC**⁰:

- ightharpoonup provably total computable $(\exists \Sigma_0^B)$ functions $= \mathbf{TC}^0$ functions
- proves TC⁰ induction, comprehension, minimization, ...

More formally [CN'10]:

- lackbox VTC⁰ has a universal extension $\overline{
 m VTC}^0$ in a language $\mathcal{L}_{\overline{
 m VTC}^0}$
 - $ightharpoonup \mathcal{L}_{V^0}$, card(X), bounded comprehension and minimization functions for $\Sigma_0^B(\mathcal{L}_{\overline{VTC}^0})$ formulas
- \triangleright \mathcal{L}_{VTC^0} -func. Δ_1^B -bit-definable in VTC⁰ \Longrightarrow conservative
- \triangleright $\mathcal{L}_{\overline{VTC}^0}$ -functions in $\mathbb{N} = \mathbf{TC}^0$ -functions
- witnessing/Herbrand theorem: $\forall \exists \Sigma_0^B (\mathcal{L}_{\overline{VTC}^0})$ theorems of \overline{VTC}^0 witnessed by $\mathcal{L}_{\overline{VTC}^0}$ functions

Sums

- 1 TC⁰ and VTC⁰
- 2 Sums
- 3 Products
- 4 Polynomial roots
- **5** Analytic functions

Binary \leq , +, -

$$\leq_{i}$$
 +, - are in $\mathbf{AC}^{0} \implies \Sigma_{0}^{B}$ -definable:
$$X < Y \iff \exists i \in Y \ (i \notin X \land \forall j \in X \ (i < j \to j \in Y))$$

$$X \leq Y \iff \forall i \in X \ (\forall j \in Y \ (i < j \to j \in X) \to i \in Y)$$

$$X + Y = \left\{ i : i \in X \oplus i \in Y \oplus \operatorname{carry}(X, Y, i) \right\}$$

$$\operatorname{carry}(X, Y, i) \iff \exists j < i \ (j \in X \land j \in Y \land Y)$$

$$\forall k < i \ (j < k \to k \in Y \lor k \in Y)$$

Straightforward formalization \Longrightarrow

Proposition: V^0 proves that binary natural numbers with $+,\leq$ form the nonnegative part of a discretely ordered abelian group

Introduce binary integers (e.g., using a sign bit)

Coding of sequences

Unary pairing function: e.g., $\langle x, y \rangle := (x + y)^2 + x$

Sequences of binary numbers:

$$\langle X_i : i < n \rangle$$
 coded by $\{\langle i, u \rangle : u \in X_i\}$

I.O.W.: the ith element of the sequence coded by X is

$$X^{[i]} := \{u : \langle i, u \rangle \in X\}$$

Sequences of unary numbers:

$$\langle x_i : i < n \rangle$$
 coded by $\{\langle i, u \rangle : u < x_i\}$

$$X^{(i)} := |X^{[i]}|$$

Many other possibilities

$$[CN'10]: (X)^i := \min(X^{[i]} \cup \{|X|\})$$

Iterated addition

Goal: **TC**⁰-function $n, X = \langle X_i : i < n \rangle \longmapsto \sum_{i < n} X_i$ s.t.

$$\mathsf{VTC}^0 \vdash \quad \sum_{i < 0} X_i = 0, \quad \sum_{i < n+1} X_i = \sum_{i < n} X_i + X_n$$

Easy cases:

0–1 sequences
$$\langle x_i : i < n \rangle$$
: represent by $X = \{i < n : x_i = 1\} \implies \sum_{i < n} x_i := \operatorname{card}(X)$

Unary sequences
$$\langle x_i : i < n \rangle$$
:
represent by $X = \{\langle i, n \rangle : n < x_i\} \implies \sum_{i < n} x_i := \operatorname{card}(X)$

\sum of binary numbers

Straightforward to formalize in VTC⁰ [CN'10]

Products

- 1 TC⁰ and VTC⁰
- 2 Sums
- **3** Products
- 4 Polynomial roots
- **5** Analytic functions

Binary multiplication

Schoolbook multiplication reduces to iterated addition:

$$Y = \sum_{i \in Y} 2^i \implies X \cdot Y := \sum_{i \in Y} 2^i X$$

where $2^i X = \{i + j : j \in X\}$

Proposition:

VTC⁰ proves that binary natural numbers with $0,1,+,\cdot,\leq$ form the nonnegative part of a discretely ordered ring (PA⁻)

Division and iterated multiplication

[BCH'86,CDL'01,HAB'02] Integer division with remainder and iterated multiplication are **TC**⁰-computable

Question: Can VTC⁰ prove the existence of $\lfloor X/Y \rfloor$ and $\prod_{i < n} X_i$ satisfying the defining axioms

$$Y>0
ightarrow Y \cdot \lfloor X/Y
floor \leq X < Y \cdot \left(\lfloor X/Y
floor +1
ight) \hspace{0.5cm} ext{(DIV)} \ \prod_{i<0} X_i = 1, \hspace{0.5cm} \prod_{i< n+1} X_i = \prod_{i< n} X_i \cdot X_n \ ? \hspace{0.5cm} ext{(IMUL)}$$

NB: Reducible to each other

$$n \ge |X|, m = |Y| \implies \lfloor X/Y \rfloor = \lfloor 2^{-mn}ZX \rfloor \text{ where}$$

$$Z := \sum_{i \le n} (2^m - Y)^i 2^{m(n-1-i)} = \frac{2^{mn} - (2^m - Y)^n}{Y} \approx \frac{2^{mn}}{Y}$$

Structure of the [HAB'02] algorithm

- (1) $\prod_{u < t} X_u$ is in $TC^0[pow]$
 - ightharpoonup pick a sufficiently long list of small primes \vec{m}
 - convert each X_u to Chinese remainder representation $CRR_{\vec{m}}(X_u) = \langle X_u \mod m_i : i < k \rangle$
 - \triangleright multiply the residues modulo each m_i
 - ▶ hard part: reconstruct the result from $CRR_{\vec{m}}$ to binary
- (2) $\prod_{u < t} X_u$ is in AC^0 if $\sum_{u < t} |X_u| = (\log n)^{O(1)}$
 - scale (1) down
- (3) pow is in AC^0
 - ightharpoonup express exponents in $CRR_{\vec{d}}$

pow: $a^r \mod m$ (a, r unary, m unary prime)

Structure of the [HAB'02] algorithm

- (0) imul is in $TC^0[pow]$
 - ▶ sum of discrete logarithms modulo *m*
- (1) $\prod_{u < t} X_u$ is in TC^0 [imul]
 - ightharpoonup pick a sufficiently long list of small primes \vec{m}
 - ightharpoonup convert each X_u to $CRR_{\vec{m}}$
 - multiply the residues modulo each m_i
 - ▶ hard part: reconstruct the result from $CRR_{\vec{m}}$ to binary
- (2) $\prod_{u < t} X_u$ is in AC^0 if $\sum_{u < t} |X_u| = (\log n)^{O(1)}$
 - scale (1) down
- (3) pow is in AC^0
 - ightharpoonup express exponents in $CRR_{\vec{d}}$

imul: $\prod_{i < n} a_i \mod m$ $(n, a_i \text{ unary, } m \text{ unary prime})$

Obstacles to formalization

Complex structure with interdependent parts

Which came first: the chicken or the egg?

- ightharpoonup CRR_{\vec{m}} reconstruction:
 - ▶ analysis heavily uses iterated products and divisions: $\prod_{i < k} m_i$, . . .
 - ▶ need $CRR_{\vec{m}}$ reconstruction to define iterated products and divisions in the first place
- ► computation of pow:
 - ▶ analysis of the pow algorithm heavily uses pow
 - relies on Fermat's little theorem
- ightharpoonup cyclicity of $(\mathbb{Z}/p\mathbb{Z})^{\times}$:
 - ▶ needed to compute imul in **TC**⁰[pow]
 - notoriously difficult in bounded arithmetic
 - ightharpoonup provable in VTC⁰ + IMUL, but what good is that?

Formalization of IMUL and DIV

Theorem [J'22]

VTC⁰ proves IMUL, and consequently DIV

$$\mathsf{C}_2^0[\mathit{div}] \equiv \mathsf{C}_2^0$$

Side effect:

Theorem [J'22]

 $\exists \Delta_0$ definition of $a^r \mod m$ s.t. $I\Delta_0 + WPHP(\Delta_0)$ proves

$$a^0 \equiv 1 \pmod{m}, \qquad a^{r+1} \equiv a^r a \pmod{m}$$

Outline of the argument

- preparatory results
 - ► VTC⁰ ⊢ there are enough primes
 - $ightharpoonup VTC^0(pow)$ can do division |X/m| by small primes
- (1) VTC⁰(imul) ⊢ IMUL
 - ▶ hard part: CRR reconstruction
 - ▶ teach VTC⁰(imul) to compute in CRR from scratch
- (2) $V^0 \vdash IMUL[|w|^c]$
 - ▶ the polylogarithmic cut in V⁰ is a model of VNL
- (3) $V^0 + WPHP \vdash totality of pow$
 - reorganize the [HAB'02] algorithm to avoid circularity
 - ► can't do (0) directly!
 - structure theorem for finite abelian groups (partially)
 - each turn around the vicious circle
 IMUL → cyclicity → imul → IMUL makes progress
 ⇒ proof by induction

Polynomial roots

- 1 TC⁰ and VTC⁰
- 2 Sums
- 3 Products
- 4 Polynomial roots
- **5** Analytic functions

Open induction

So far: VTC^0 proves $\mathbb Z$ forms a discretely ordered ring (DOR) with Euclidean division

Question: Can VTC⁰ prove nontrivial instances of induction over binary integers?

Simplest case:

Does VTC⁰ prove (the RSUV translation of) open induction?

 ${\sf IOpen} = {\sf PA}^- + {\sf induction \ for \ open \ (= quantifier\text{-}free) \ formulas}$

10pen algebraized

Theorem [Shep'64]: For any DOR D, TFAE:

- ► D ⊨ IOpen
- ▶ D is an integer part of a real-closed field (RCF)
- $f \in D[X], u < v \in D, f(u) \le 0 < f(v)$ $\implies \exists x \in D \text{ s.t. } u \le x < v \text{ and } f(x) \le 0 < f(x+1)$

Corollary: TFAE:

- ▶ VTC⁰ proves IOpen
- VTC⁰ can formalize **TC**⁰ root approximation algorithms (real or complex) for constant-degree polynomials

NB: Such TC^0 algorithms exist [J'12] but heavily rely on complex analysis \implies not suitable for direct formalization

we'll use a mixed model-theoretic argument instead

Reals over models of VTC⁰

```
\mathfrak{M} \vDash \mathsf{VTC}^0 \leadsto \mathsf{DOR} \ \mathbf{Z}^{\mathfrak{M}}
\leadsto \mathsf{fraction} \ \mathsf{field} \ \mathbf{Q}^{\mathfrak{M}}
\leadsto \mathsf{completion} \ \mathbf{R}^{\mathfrak{M}}
\leadsto \mathsf{complex} \ \mathsf{numbers} \ \mathbf{C}^{\mathfrak{M}} = \mathbf{R}^{\mathfrak{M}}(i)
```

Equivalent descriptions of $\mathbf{R}^{\mathfrak{M}}$ as a completion of $\mathbf{Q}^{\mathfrak{M}}$:

- ▶ topological completion (uniform space/topological field)
- ordered field (Scott) completion (Dedekind-like cuts)
- ightharpoonup valued field completion (natural valuation induced by \leq)

Fact: K valued field with value group Γ and residue field $k \implies K$ is RCF $\iff \Gamma$ is divisible & k is RCF & K is henselian

Open induction in VTC⁰

Theorem [J'15]: VTC⁰ proves the RSUV translation of IOpen Δ_1^b -CR and C_2^0 prove IOpen

- ▶ direct proof of a form of the Lagrange inversion formula
 - polynomials can be locally inverted by power series
 - ⇒ compute roots of polynomials with small constant coefficient
- model-theoretic argument using valued fields
 - $ightharpoonup \mathfrak{M} \models \mathsf{VTC}^0 \vdash \mathsf{DIV} \implies \mathbf{Z}^{\mathfrak{M}} \text{ integer part of } \mathbf{Q}^{\mathfrak{M}} \text{ and } \mathbf{R}^{\mathfrak{M}}$
 - ▶ $\mathbf{R}^{\mathfrak{M}}$ is henselian by the first part (LIF) value group divisible (easy) residue field is \mathbb{R} if \mathfrak{M} is ω -saturated (wlog)
 - ightharpoonup
 igh

In fact: $\mathfrak{M} \models \mathsf{VTC}^0 \implies \mathbf{R}^{\mathfrak{M}}$ is RCF and $\mathbf{C}^{\mathfrak{M}}$ is ACF regardless of saturation

Sharply bounded minimization

Formalization a structural description of Σ_0^b formulas [Man'91] \implies considerable generalization:

Theorem [J'15]

- ▶ VTC⁰ proves the RSUV-translations of Σ_0^b -IND (= T_2^0) and Σ_0^b -MIN
- $ightharpoonup \Delta_1^b$ -CR and C_2^0 prove Σ_0^b -IND, Σ_0^b -MIN

NB: this is for Buss's original language

- ▶ also works with $\dot{-}$, $2^{\min\{x,|y|\}}$, $\lfloor x/||y||\rfloor$, $\lfloor x/2^{||y||}\rfloor$ included
- with $\lfloor x/2^y \rfloor$, T_2^0 becomes PV_1 and $\Sigma_0^b\text{-MIN}$ becomes T_2^1 \Longrightarrow likely much stronger than VTC^0

Analytic functions

- 1 TC⁰ and VTC⁰
- 2 Sums
- 3 Products
- 4 Polynomial roots
- 5 Analytic functions

TC⁰ analytic functions

 \mathbf{TC}^0 can compute approximations of analytic functions whose power series have \mathbf{TC}^0 -computable coefficients

Question: Can VTC⁰ prove their basic properties?

For a start: elementary analytic functions (\mathbb{R} or \mathbb{C})

- ► exp, log
- trigonometric, inverse trig., hyperbolic, inverse hyp.

(all definable in terms of complex exp and log)

Working with rational approximations only is quite tiresome

Recall:
$$\mathfrak{M} \models VTC^0 \rightsquigarrow \mathbf{Z}^{\mathfrak{M}} \rightsquigarrow \mathbf{Q}^{\mathfrak{M}} \rightsquigarrow \mathbf{R}^{\mathfrak{M}} \rightsquigarrow \mathbf{C}^{\mathfrak{M}}$$

 \implies we treat the functions as $f: \mathbb{C}^{\mathfrak{M}} \to \mathbb{C}^{\mathfrak{M}}$ (or on a subset)

Results on exp and log

[J'23a] We can define
$$\pi \in \mathbf{R}^{\mathfrak{M}}$$
, exp: $\mathbf{R}^{\mathfrak{M}}_{\mathbf{L}} + i\mathbf{R}^{\mathfrak{M}} \to \mathbf{C}^{\mathfrak{M}}_{\neq 0}$, $\log : \mathbf{C}^{\mathfrak{M}}_{\neq 0} \to \mathbf{R}^{\mathfrak{M}}_{\mathbf{L}} + i(-\pi, \pi]$, s.t.

- \triangleright exp is $2\pi i$ -periodic
- ightharpoonup exp $\log z = z$
- log exp z = z for $z \in \mathbf{R}^{\mathfrak{M}}_{\mathbf{L}} + i(-\pi, \pi]$
- ightharpoonup exp vert $\mathbf{R}^{\mathfrak{M}}_{\mathbf{L}}$ increasing bijection $\mathbf{R}^{\mathfrak{M}}_{\mathbf{L}} o \mathbf{R}^{\mathfrak{M}}_{>0}$, convex
- for small z: $\exp z = 1 + z + O(z^2)$, $\log(1+z) = z + O(z^2)$

Notation: unary integers embed in binary as $\mathbf{L}^{\mathfrak{M}} \subseteq \mathbf{Z}^{\mathfrak{M}}$

$$\mathbf{C}_{\mathsf{L}}^{\mathfrak{M}} = \left\{ z \in \mathbf{C}^{\mathfrak{M}} : \exists n \in \mathbf{L}^{\mathfrak{M}} |z| \leq n \right\}, \ \mathbf{R}_{\mathsf{L}}^{\mathfrak{M}} = \mathbf{R}^{\mathfrak{M}} \cap \mathbf{C}_{\mathsf{L}}^{\mathfrak{M}}, \ldots$$

Outline of the construction

- ▶ Define exp: $\mathbf{C}_{L}^{\mathfrak{M}} \to \mathbf{C}^{\mathfrak{M}}$ using $\sum_{n} \frac{z^{n}}{n!}$ show exp $(z_{0} + z_{1}) = \exp z_{0} \exp z_{1}$
- ▶ Define log on a nbh of 1 using $-\sum_{n} \frac{(1-z)^n}{n}$ show $\log(z_0 z_1) = \log z_0 + \log z_1$ for z_i close enough to 1
- ► Extend log
 - ▶ to $\mathbf{R}_{>0}^{\mathfrak{M}}$ using $2^n \colon \mathbf{L}^{\mathfrak{M}} \to \mathbf{Z}^{\mathfrak{M}}$
 - to an angular sector by combining the two
 - ► to $\mathbf{C}_{\neq 0}^{\mathfrak{M}}$ using $8 \log \sqrt[8]{z}$
- ▶ $\log \exp(z_0 + z_1) = \log \exp z_0 + \log \exp z_1$ when $|\operatorname{Im} z_j|$ small ⇒ $\log \exp z = z$ when $|\operatorname{Im} z|$ small ⇒ $\exp \log z = z$ using injectivity of \log
- exp is $2\pi i$ -periodic for $\pi := \operatorname{Im} \log(-1)$ \implies extend exp to $\mathbf{R}^{\mathfrak{M}}_{\mathbf{L}} + i\mathbf{R}^{\mathfrak{M}}$

Applications

[J'23a] Define

- $z^w = \exp(w \log z), \sqrt[n]{z} = z^{1/n}$
- $ightharpoonup \prod_{i \le n} z_i$ for a sequence of $z_i \in \mathbf{Q}^{\mathfrak{M}}(i)$ coded in \mathfrak{M}
- trigonometric, inverse trigonometric, hyperbolic, inverse hyperbolic functions

[J'23b] Model-theoretic consequence:

Every countable model of VTC⁰ is an exponential integer part of a real-closed exponential field (even though exp is not total on R^m!)

Limitations

The construction of $\mathbf{R}^{\mathfrak{M}}$, $\mathbf{C}^{\mathfrak{M}}$ is external to the theory

- cannot directly speak of reals, analytic functions, . . .
 - → only expressible using rational approximations
 - ▶ also needed in induction arguments, ...
- cannot quantify over reals, analytic functions, . . .
 - ⇒ no general theory of analytic functions

Need a more robust set-up:

- version of VTC⁰ where infinite sets, sequences, functions are bona fide objects
- develop basic complex analysis

NB: Theories for real analysis [F'94,FF'08,F'09,FFF'17]

— too strong in several respects

VTC⁰ with infinite sets

VTC⁰: two-sorted bounded arithmetic

- unary (index/auxiliary) integers: $0, 1, +, \cdot, \leq$
- ▶ finite sets \approx binary integers \approx binary strings: \in , |X|

 VTC_{∞}^{0} : two-sorted arithmetic with infinite sets

- ▶ unary (index/auxiliary) integers: $0, 1, +, \cdot, \le$
- ightharpoonup sets of unary integers: \in (no =)
- ▶ Q, induction, comprehension for $\Sigma_0^B = \Delta_0^0$ formulas: $\exists X \, \forall n \, (n \in X \leftrightarrow \varphi)$
- ▶ ∃ counting functions for sets
- \blacktriangleright finite sets encoded as a set X + a bound n

 VTC_{∞}^{0} is fully conservative over VTC^{0}

 $\forall \exists$ theorems of VTC $_{\infty}^{0}$ witnessed by "infinitary **TC** 0 functions"

NB: [Buss'86] variants of V_1^i , U_1^i with infinite sets

Objects encodable in VTC^0_{∞}

- ▶ sequences of binary objects: $\{X_n\}_{n\in L}$, $X_n\subseteq [0,n^c)$ (L = unary/logarithmic integers, $c\in \mathbb{N}$ standard constant) encoded as $X_n=\{j< n^c: \langle n,j\rangle \in X\}$
- real numbers: sequence of integers $a = \{A[n]\}_{n \in L}$ s.t. $|A[n] 2^{-m}A[n+m]| \le 1$ represents $a = \lim_n 2^{-n}A[n]$ \Longrightarrow complex numbers z = x + iy
- ▶ double sequences $\{X_{n,m}\}_{n,m\in L}$ ⇒ real/complex sequences $\{a_n\}_{n\in L}$ ⇒ power series $f(z) = \sum_{n} a_n (z - w)^n$
- ▶ analytic functions: $\{w_k, r_k, a_{k,n}\}_{k,n \in L}$ s.t. (roughly)
 - $f_k(z) = \sum_n a_{k,n}(z w_k)$ radius of convergence $\geq r_k$
 - \blacktriangleright domain covered by $\bigcup_k B(w_k, r_k/3)$
 - $|w_k w_l| < r_k \implies f_l$ is f_k shifted to w_l

Convergence and power series

Sequence with a polynomial modulus of Cauchyness has a limit

- ▶ arithmetical operations +, · more generally: $\{a_n\}_{n\in L} \mapsto \{\sum_{n< N} a_n\}_{N\in L}, \{\prod_{n< N} a_n\}_{N\in L}$
- ► $f(z) = \sum_{n} a_n z^n$ converges for $|z| <^* r$ if $a_n = O(r^{-n})$ $x <^* y \iff x \le y(1 - m^{-1})$ for some $m \in \mathbf{L}$
- ▶ adapting [J'15,J'23a]: constant-degree polynomial roots, elementary analytic functions (exp, log, ...)

Operations on power series:

- ▶ derivatives and primitive functions $f^{(n)}(z)$, $n \in \mathbf{Z_L}$
- ▶ shift: $f(z) = \sum_n a_n(z u)^n \mapsto f(z) \equiv \sum_n b_n(z v)^n$
- $ightharpoonup \sum_{n < N} f_n, \prod_{n < N} f_n, f(g(z))$
 - ▶ polynomials: evaluate at $\{e^{2\pi ij/m}\}_{j < m}$, interpolate (DFT)
 - power series: apply to partial sums

Contour integration

Analytic function
$$f = \bigcup_k f_k$$
 as above, $f_k(z) = \sum_n a_{k,n} (z - w_k)^n$ radius $\geq r_k$

 γ piecewise linear path with endpoints $\{z_j : j \leq \ell\}$

Define
$$\int_{\gamma} f(z) dz := \sum_{j < ilde{\ell}} ig(F_{k_j}(ilde{z}_j) - F_{k_j}(ilde{z}_{j+1}) ig)$$
 if

- $\check{\gamma} \equiv \{ \tilde{z}_j : j \leq \tilde{\ell} \}$ subdivision of γ
- $\mathbf{\tilde{z}}_{j}, \tilde{z}_{j+1} \in B^{*}(w_{k_{j}}, r_{k_{j}}/3)$ for each $j < \tilde{\ell}$
- $ightharpoonup F_k$ = the primitive function of f_k

VTC^0_{∞} proves

- uniqueness
- existence if γ covered by $\bigcup_{k > \kappa} B^*(w_k, r_k/3)$

What's next?

Work in progress

Some goals to pursue:

- ► Cauchy's residue theorem and calculus of residues
- root counting (argument principle, Rouché's theorem)
- analytic continuation, monodromy
- maximum modulus principle
- ...

Potential applications:

- generating functions in enumerative combinatorics
- analytic number theory
- eigenvalues and eigenvectors
- ...

References (1/4)

- ► S. R. Buss: Bounded arithmetic, Bibliopolis, Naples, 1986
- P. Beame, S. Cook, H. Hoover: Log depth circuits for division and related problems, SIAM J. Comp. 15 (1986), 994–1003
- ► A. Chiu, G. Davida, B. Litow: Division in logspace-uniform **NC**¹, RAIRO Theoret. Inf. Appl. 35 (2001), 259–275
- R. Constable: Type two computational complexity, STOC, 1973, 108–121
- S. Cook, P. Nguyen: Logical foundations of proof complexity, Cambridge Univ. Press, 2010
- A. M. Fernandes, F. Ferreira, G. Ferreira: Analysis in weak systems, in Logic and computation: Essays in honour of Amílcar Sernadas, College Publication, 2017, 231–262
- ► F. Ferreira: A feasible theory for analysis, J. Symb. Logic 59 (1994), 1001–1011

References (2/4)

- ► F. Ferreira, G. Ferreira: The Riemann integral in weak systems of analysis, J. Univ. Computer Sci. 14 (2008), 908–937
- ► G. Ferreira: The counting hierarchy in binary notation, Portugaliae Mathematica 66 (2009), 81–94
- A. Hajnal, W. Maass, P. Pudlák, M. Szegedy, G. Turán: Threshold circuits of bounded depth, J. Comp. System Sci. 46 (1993), 129–154
- W. Hesse, E. Allender, D. M. Barrington: Uniform constant-depth threshold circuits for division and iterated multiplication, J. Comp. System Sci. 65 (2002), 695–716
- ► E. Jeřábek: Root finding with threshold circuits, Theoret. Computer Sci. 462 (2012), 59–69
- ► E. Jeřábek: Open induction in a bounded arithmetic for **TC**⁰, Arch. Math. Logic 54 (2015), 359–394
- ► E. Jeřábek: Iterated multiplication in VTC⁰, Arch. Math. Logic 61 (2022), 705–767

References (3/4)

- ► E. Jeřábek: Elementary analytic functions in VTC⁰, Ann. Pure Appl. Logic 174 (2023), 103269
- ► E. Jeřábek: Models of VTC⁰ as exponential integer parts, Math. Logic Quarterly 69 (2023), 244–260
- ▶ J. Johannsen, C. Pollett: On proofs about threshold circuits and counting hierarchies (extended abstract), LICS, 1998, 444–452
- ▶ J. Johannsen: Weak bounded arithmetic, the Diffie-Hellman problem, and Constable's class *K*, LICS, 1999, 268–274
- J. Johannsen, C. Pollett: On the Δ₁^b-bit-comprehension rule, Logic Colloquium '98 (Proceedings), ASL, 2000, 262–280
- ► S.-G. Mantzivis: Circuits in bounded arithmetic part I, Ann. Math. Artif. Intel. 6 (1991), 127–156
- P. Nguyen, S. Cook: Theories for TC⁰ and other small complexity classes, Log. Methods Comput. Sci. 2 (2006), art. 3

References (4/4)

- ▶ J.-P. Ressayre: Integer parts of real closed exponential fields, in: Arithmetic, proof theory, and computational complexity, Oxford Univ. Press, 1993, 278–288
- ▶ J. Shepherdson: A nonstandard model for a free variable fragment of number theory, Bull. Acad. Polon. Sci. 12 (1964), 79–86
- S. Volkov: An exponential expansion of the Skolem-elementary functions, and bounded superpositions of simple arithmetic functions, Mathematical Problems of Cybernetics vol. 16, 2007, 163–190 (Russian)
- S. Volkov: Generating some classes of recursive functions by superpositions of simple arithmetic functions, Dokl. Math. 76 (2007), 566–567
- D. Zambella: End extensions of models of linearly bounded arithmetic, Ann. Pure Appl. Logic 88 (1997), 263–277