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Arithmetic and complexity

Correspondence of theories of bounded arithmetic T and
computational complexity classes C :

▶ provably total computable functions of T are C -functions

▶ T can reason using C -predicates
(comprehension, induction, minimization, . . . )

=⇒ “feasible reasoning”, “bounded reverse mathematics”

▶ What can we prove using only concepts computable in C?

Correspondence to propositional proof systems P : (not in this talk)

▶ P operates with “C -formulas”

▶ universal theorems of T uniformly translate to short P-proofs

This talk: C = TC0, T = VTC0 (P = TC0-Frege)
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Some small complexity classes

AC0 ⊆ AC0[m] ⊆ TC0 ⊆ NC1 ⊆ L ⊆ NL ⊆ AC1 ⊆ · · · ⊆ P

▶ AC0: DLOGTIME-uniform constant-depth poly-size
formulas with unbounded fan-in ∧,∨,¬ gates
= FO-definable
= log time, O(1) alternations on an alternating TM

▶ AC0[m]: + MODm gates (constant m)

▶ TC0: + Majority or threshold gates

▶ NC1: uniform poly-size formulas = alternating log time

▶ L: logarithmic space on a deterministic TM

▶ NL: logarithmic space on a nondeterministic TM

▶ P: polynomial time on a deterministic TM
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The class TC0

TC0 = DLOGTIME-uniform O(1)-depth nO(1)-size

unbounded fan-in formulas with threshold gates

= FOM-definable on finite structures

representing strings

(first-order logic with majority quantifiers)

= O(log n) time, O(1) thresholds

on a threshold Turing machine

TC0-functions (FTC0): TC0 bit-graph, polynomially bounded

= Constable’s K: closure of +,−,×, / under superposition

and polynomially bounded
∑

,
∏

[HAB’02]

= closure of +,−,×, /,#,∧ under superposition [Vol’07]
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The power of TC0

For integers given in binary:

▶ +, −, ≤ are in AC0 ⊆ TC0

▶ × is in TC0 (TC0-complete under AC0 reductions)

TC0 can also do:

▶ iterated addition
∑

i<n Xi

▶ integer division and iterated multiplication
∏

i<n Xi

[BCH’86,CDL’01,HAB’02]

▶ the corresponding operations on Q, Q(i), Q(α), . . .

▶ arithmetic on polynomials:
∑

,
∏
, composition, interpolation

▶ approximate functions given by nice power series:
▶ sin, arctan, (bounded) exp, log, k

√
X , . . .

▶ sorting, tree contraction/balancing, . . .
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Why TC0?

Very weak/efficient . . .

▶ no sequential computation

. . . yet surprisingly powerful !

▶ computation with polynomials, power series, etc.
(previous slide)

▶ no unconditional separation from polynomial hierarchy

Relevance for arithmetic:

The complexity class of basic integer arithmetic operations
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One-sorted bounded arithmetic

▶ language 0, 1,+, ·,≤, ⌊x/2⌋, |x |,#
▶ Σb

0 formulas: sharply bounded q’fiers ∃x ≤ |t|, ∀x ≤ |t|
▶ Σ̂b

i formulas: i alternating blocks of bounded quantifiers
(first block ∃) followed by a Σb

0 formula

▶ Ti
2 = BASIC + Σ̂b

i -IND, S
i
2 = BASIC + Σ̂b

i -LIND

▶ T2 =
⋃

i T
i
2 =

⋃
i S

i
2
∼= I∆0 + Ω1

Johannsen and Pollett’s theories for TC0:

▶ language with −̇, ⌊x/2y⌋
▶ ∆b

1-CR: open LIND, ∆b
1 bit-comprehension rule [JP’00]

▶ C0
2: + BBΣb

0 [JP’98]

▶ C0
2[div ]: language incl. ⌊x/y⌋ [Joh’99]
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Two-sorted bounded arithmetic

▶ unary (auxiliary) integers with 0, 1,+, ·,≤
▶ finite sets = binary integers = binary strings

x ∈ X , |X | = sup{x + 1 : x ∈ X}
▶ bounded quantifiers: ∃x ≤ t, ∀x ≤ t, ∃X ≤ t, ∀X ≤ t

where X ≤ t is short for |X | ≤ t

▶ ΣB
0 formulas: bounded FO, no SO quantifiers

▶ ΣB
i formulas: i alternating blocks of bounded quantifiers

(first block ∃) followed by a ΣB
0 formula

▶ Vi = 2-BASIC + ΣB
i -COMP (implies ΣB

i -IND)

Theory VTC0 corresponding to TC0: [NC’06,CN’10]

▶ V0 + every set X has a counting function{〈
i , card

(
X ∩ [0, i)

)〉
: i ≤ |X |

}
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RSUV translation

two-sorted arithmetic one-sorted arithmetic

sets numbers

numbers logarithmic numbers

bounded SO quantifiers bounded quantifiers

bounded FO quantifiers sharply bounded quantifiers

ΣB
i Σ̂b

i

Vi Si
2

TVi Ti
2

VTC0 ∆b
1-CR

VTC0 + ΣB
0 -AC C0

2

( VTC0 + IMUL + ΣB
0 -AC C0

2[div ] )

(i ≥ 1)
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The power of VTC0

Correspondence of VTC0 to TC0:

▶ provably total computable (∃ΣB
0 ) functions = TC0 functions

▶ proves TC0 induction, comprehension, minimization, . . .

More formally [CN’10]:

▶ VTC0 has a universal extension VTC0 in a language LVTC0

▶ LV0 , card(X ), bounded comprehension and minimization
functions for ΣB

0 (LVTC0) formulas

▶ LVTC0-func. ∆B
1 -bit-definable in VTC0 =⇒ conservative

▶ LVTC0-functions in N = TC0-functions

▶ witnessing/Herbrand theorem: ∀∃ΣB
0 (LVTC0) theorems

of VTC0 witnessed by LVTC0 functions
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Binary ≤, +, −
≤, +, − are in AC0 =⇒ ΣB

0 -definable:

X < Y ⇐⇒ ∃i ∈ Y
(
i /∈ X ∧ ∀j ∈ X (i < j → j ∈ Y )

)
X ≤ Y ⇐⇒ ∀i ∈ X

(
∀j ∈ Y (i < j → j ∈ X ) → i ∈ Y

)
X + Y =

{
i : i ∈ X ⊕ i ∈ Y ⊕ carry(X ,Y , i)

}
carry(X ,Y , i) ⇐⇒ ∃j < i

(
j ∈ X ∧ j ∈ Y ∧
∀k < i (j < k → k ∈ Y ∨ k ∈ Y )

)
Straightforward formalization =⇒

Proposition: V0 proves that binary natural numbers with +,≤
form the nonnegative part of a discretely ordered abelian group

Introduce binary integers (e.g., using a sign bit)
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Coding of sequences

Unary pairing function: e.g., ⟨x , y⟩ := (x + y)2 + x

Sequences of binary numbers:
⟨Xi : i < n⟩ coded by {⟨i , u⟩ : u ∈ Xi}

I.O.W.: the ith element of the sequence coded by X is
X [i ] := {u : ⟨i , u⟩ ∈ X}

Sequences of unary numbers:
⟨xi : i < n⟩ coded by {⟨i , u⟩ : u < xi}

X (i) :=
∣∣X [i ]

∣∣
Many other possibilities
[CN’10]: (X )i := min

(
X [i ] ∪ {|X |}

)
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Iterated addition

Goal: TC0-function n,X = ⟨Xi : i < n⟩ 7−→
∑

i<n Xi s.t.

VTC0 ⊢
∑
i<0

Xi = 0,
∑
i<n+1

Xi =
∑
i<n

Xi + Xn

Easy cases:

0–1 sequences ⟨xi : i < n⟩:
represent by X = {i < n : xi = 1} =⇒

∑
i<n xi := card(X )

Unary sequences ⟨xi : i < n⟩:
represent by X = {⟨i , n⟩ : n < xi} =⇒

∑
i<n xi := card(X )
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∑
of binary numbers

ℓ ≈ log n︷ ︸︸ ︷
X0 1 1 0 1 1 0 1 1 1 1 0 1 0 0 0 0 1
X1 1 0 0 0 1 1 0 1 1 0 1 0 0 1
X2 1 0 1 1 0 1 1 0 1 0 0 1 0 0 1 0 1 0 0
...

...
...

...
...

...
Xn−1 1 0 0 1 1 0 0 1 0 0 1 1 0 1 0 1 1 1y

y
y

y
y∑

1 0 0 1 0 1 1 0 0 1 0 1 0 1 1 1 0 1

1 1 0 1 1 1 0 1 0 0 1 1 0

Straightforward to formalize in VTC0 [CN’10]
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Binary multiplication

Schoolbook multiplication reduces to iterated addition:

Y =
∑
i∈Y

2i =⇒ X · Y :=
∑
i∈Y

2iX

where 2iX = {i + j : j ∈ X}

Proposition:
VTC0 proves that binary natural numbers with 0, 1,+, ·,≤
form the nonnegative part of a discretely ordered ring (PA−)
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Division and iterated multiplication

[BCH’86,CDL’01,HAB’02] Integer division with remainder and
iterated multiplication are TC0-computable

Question: Can VTC0 prove the existence of ⌊X/Y ⌋ and∏
i<n Xi satisfying the defining axioms

Y > 0 → Y · ⌊X/Y ⌋ ≤ X < Y ·
(
⌊X/Y ⌋+ 1

)
(DIV)∏

i<0

Xi = 1,
∏

i<n+1

Xi =
∏
i<n

Xi · Xn ? (IMUL)

NB: Reducible to each other

n ≥ |X |, m = |Y | =⇒ ⌊X/Y ⌋ = ⌊2−mnZX ⌋ where

Z :=
∑
i<n

(2m − Y )i2m(n−1−i) =
2mn − (2m − Y )n

Y
≈ 2mn

Y
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Structure of the [HAB’02] algorithm

(0) imul is in TC0[pow]

(1)
∏

u<t Xu is in TC0[pow]

▶ pick a sufficiently long list of small primes m⃗
▶ convert each Xu to Chinese remainder representation

CRRm⃗(Xu) = ⟨Xu mod mi : i < k⟩
▶ multiply the residues modulo each mi

▶ hard part: reconstruct the result from CRRm⃗ to binary

(2)
∏

u<t Xu is in AC0 if
∑

u<t |Xu| = (log n)O(1)

▶ scale (1) down

(3) pow is in AC0

▶ express exponents in CRR
d⃗

pow: ar mod m (a, r unary, m unary prime)
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Structure of the [HAB’02] algorithm

(0) imul is in TC0[pow]

▶ sum of discrete logarithms modulo m

(1)
∏

u<t Xu is in TC0[imul]

▶ pick a sufficiently long list of small primes m⃗
▶ convert each Xu to CRRm⃗
▶ multiply the residues modulo each mi

▶ hard part: reconstruct the result from CRRm⃗ to binary

(2)
∏

u<t Xu is in AC0 if
∑

u<t |Xu| = (log n)O(1)

▶ scale (1) down

(3) pow is in AC0

▶ express exponents in CRR
d⃗

imul:
∏

i<n ai mod m (n, ai unary, m unary prime)
Emil Jěrábek Mathematics in VTC0 JAF 44, Prague 16:34



Obstacles to formalization

Complex structure with interdependent parts

Which came first: the chicken or the egg?

▶ CRRm⃗ reconstruction:
▶ analysis heavily uses iterated products and divisions:∏

i<k mi , . . .
▶ need CRRm⃗ reconstruction to define iterated products

and divisions in the first place

▶ computation of pow:
▶ analysis of the pow algorithm heavily uses pow
▶ relies on Fermat’s little theorem

▶ cyclicity of (Z/pZ)×:
▶ needed to compute imul in TC0[pow]
▶ notoriously difficult in bounded arithmetic
▶ provable in VTC0 + IMUL, but what good is that?

Emil Jěrábek Mathematics in VTC0 JAF 44, Prague 17:34



Formalization of IMUL and DIV

Theorem [J’22]
VTC0 proves IMUL, and consequently DIV

C0
2[div ] ≡ C0

2

Side effect:

Theorem [J’22]
∃ ∆0 definition of ar mod m s.t. I∆0 +WPHP(∆0) proves

a0 ≡ 1 (mod m), ar+1 ≡ ara (mod m)
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Outline of the argument
▶ preparatory results

▶ VTC0 ⊢ there are enough primes
▶ VTC0(pow) can do division ⌊X/m⌋ by small primes

(1) VTC0(imul) ⊢ IMUL
▶ hard part: CRR reconstruction
▶ teach VTC0(imul) to compute in CRR from scratch

(2) V0 ⊢ IMUL
[
|w |c

]
▶ the polylogarithmic cut in V0 is a model of VNL

(3) V0 +WPHP ⊢ totality of pow
▶ reorganize the [HAB’02] algorithm to avoid circularity

▶ can’t do (0) directly!
▶ structure theorem for finite abelian groups (partially)
▶ each turn around the vicious circle

IMUL → cyclicity → imul → IMUL makes progress
=⇒ proof by induction
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Open induction

So far: VTC0 proves Z forms a discretely ordered ring (DOR)
with Euclidean division

Question: Can VTC0 prove nontrivial instances of induction
over binary integers?

Simplest case:
Does VTC0 prove (the RSUV translation of) open induction?

IOpen = PA− + induction for open (= quantifier-free) formulas
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IOpen algebraized

Theorem [Shep’64]: For any DOR D, TFAE:

▶ D ⊨ IOpen
▶ D is an integer part of a real-closed field (RCF)
▶ f ∈ D[X ], u < v ∈ D, f (u) ≤ 0 < f (v)

=⇒ ∃x ∈ D s.t. u ≤ x < v and f (x) ≤ 0 < f (x + 1)

Corollary: TFAE:

▶ VTC0 proves IOpen
▶ VTC0 can formalize TC0 root approximation algorithms

(real or complex) for constant-degree polynomials

NB: Such TC0 algorithms exist [J’12] but heavily rely on
complex analysis =⇒ not suitable for direct formalization

▶ we’ll use a mixed model-theoretic argument instead
Emil Jěrábek Mathematics in VTC0 JAF 44, Prague 21:34



Reals over models of VTC0

M ⊨ VTC0 ; DOR ZM

; fraction field QM

; completion RM

; complex numbers CM = RM(i)

Equivalent descriptions of RM as a completion of QM:

▶ topological completion (uniform space/topological field)

▶ ordered field (Scott) completion (Dedekind-like cuts)

▶ valued field completion (natural valuation induced by ≤)

Fact: K valued field with value group Γ and residue field k =⇒

K is RCF ⇐⇒ Γ is divisible & k is RCF & K is henselian
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Open induction in VTC0

Theorem [J’15]: VTC0 proves the RSUV translation of IOpen
∆b

1-CR and C0
2 prove IOpen

▶ direct proof of a form of the Lagrange inversion formula
▶ polynomials can be locally inverted by power series
▶ =⇒ compute roots of polynomials with

small constant coefficient

▶ model-theoretic argument using valued fields
▶ M ⊨ VTC0 ⊢ DIV =⇒ ZM integer part of QM and RM

▶ RM is henselian by the first part (LIF)
value group divisible (easy)
residue field is R if M is ω-saturated (wlog)

▶ =⇒ RM is RCF, M ⊨ IOpen by Shepherdson’s criterion

In fact: M ⊨ VTC0 =⇒ RM is RCF and CM is ACF
regardless of saturation
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Sharply bounded minimization

Formalization a structural description of Σb
0 formulas [Man’91]

=⇒ considerable generalization:

Theorem [J’15]

▶ VTC0 proves the RSUV-translations of
Σb

0-IND (= T0
2) and Σb

0-MIN

▶ ∆b
1-CR and C0

2 prove Σb
0-IND, Σ

b
0-MIN

NB: this is for Buss’s original language

▶ also works with −̇, 2min{x ,|y |}, ⌊x/||y ||⌋, ⌊x/2||y ||⌋ included

▶ with ⌊x/2y⌋, T0
2 becomes PV1 and Σb

0-MIN becomes T1
2

=⇒ likely much stronger than VTC0
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TC0 analytic functions

TC0 can compute approximations of analytic functions whose
power series have TC0-computable coefficients

Question: Can VTC0 prove their basic properties?

For a start: elementary analytic functions (R or C)
▶ exp, log

▶ trigonometric, inverse trig., hyperbolic, inverse hyp.

(all definable in terms of complex exp and log)

Working with rational approximations only is quite tiresome

Recall: M ⊨ VTC0 ; ZM ; QM ; RM ; CM

=⇒ we treat the functions as f : CM → CM (or on a subset)
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Results on exp and log

[J’23a] We can define π ∈ RM, exp : RM
L + iRM → CM

̸=0,

log : CM
̸=0 → RM

L + i(−π, π], s.t.

▶ exp(z0 + z1) = exp z0 exp z1
▶ exp is 2πi -periodic

▶ exp log z = z

▶ log exp z = z for z ∈ RM
L + i(−π, π]

▶ exp ↾ RM
L increasing bijection RM

L → RM
>0, convex

▶ for small z : exp z = 1+ z +O(z2), log(1+ z) = z +O(z2)

Notation: unary integers embed in binary as LM ⊆ ZM

CM
L =

{
z ∈ CM : ∃n ∈ LM |z | ≤ n

}
, RM

L = RM ∩ CM
L , . . .
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Outline of the construction

▶ Define exp: CM
L → CM using

∑
n

zn

n!

show exp(z0 + z1) = exp z0 exp z1

▶ Define log on a nbh of 1 using −
∑

n
(1−z)n

n

show log(z0z1) = log z0 + log z1 for zj close enough to 1

▶ Extend log
▶ to RM

>0 using 2n : LM → ZM

▶ to an angular sector by combining the two
▶ to CM

̸=0 using 8 log 8
√
z

▶ log exp(z0+ z1) = log exp z0+log exp z1 when |Im zj | small
=⇒ log exp z = z when |Im z | small
=⇒ exp log z = z using injectivity of log

▶ exp is 2πi -periodic for π := Im log(−1)
=⇒ extend exp to RM

L + iRM
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Applications

[J’23a] Define

▶ zw = exp(w log z), n
√
z = z1/n

▶
∏

j<n zj for a sequence of zj ∈ QM(i) coded in M

▶ trigonometric, inverse trigonometric,
hyperbolic, inverse hyperbolic functions

[J’23b] Model-theoretic consequence:

▶ Every countable model of VTC0 is an exponential integer
part of a real-closed exponential field
(even though exp is not total on RM !)
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Limitations

The construction of RM, CM is external to the theory

▶ cannot directly speak of reals, analytic functions, . . .
=⇒ only expressible using rational approximations
▶ also needed in induction arguments, . . .

▶ cannot quantify over reals, analytic functions, . . .
=⇒ no general theory of analytic functions

Need a more robust set-up:

▶ version of VTC0 where infinite sets, sequences, functions
are bona fide objects

▶ develop basic complex analysis

NB: Theories for real analysis [F’94,FF’08,F’09,FFF’17]
— too strong in several respects
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VTC0 with infinite sets

VTC0: two-sorted bounded arithmetic

▶ unary (index/auxiliary) integers: 0, 1,+, ·,≤
▶ finite sets ≈ binary integers ≈ binary strings: ∈, |X |

VTC0
∞: two-sorted arithmetic with infinite sets

▶ unary (index/auxiliary) integers: 0, 1,+, ·,≤
▶ sets of unary integers: ∈ (no =)
▶ Q, induction, comprehension for ΣB

0 = ∆0
0 formulas:

∃X ∀n (n ∈ X ↔ φ)
▶ ∃ counting functions for sets
▶ finite sets encoded as a set X + a bound n

VTC0
∞ is fully conservative over VTC0

∀∃ theorems of VTC0
∞ witnessed by “infinitary TC0 functions”

NB: [Buss’86] variants of Vi
1, U

i
1 with infinite sets
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Objects encodable in VTC0
∞

▶ sequences of binary objects: {Xn}n∈L, Xn ⊆ [0, nc)
(L = unary/logarithmic integers, c ∈ N standard constant)

encoded as Xn = {j < nc : ⟨n, j⟩ ∈ X}
▶ real numbers: sequence of integers a = {A[n]}n∈L s.t.

|A[n]− 2−mA[n +m]| ≤ 1 represents a = limn 2
−nA[n]

=⇒ complex numbers z = x + iy

▶ double sequences {Xn,m}n,m∈L
=⇒ real/complex sequences {an}n∈L
=⇒ power series f (z) =

∑
n an(z − w)n

▶ analytic functions: {wk , rk , ak,n}k,n∈L s.t. (roughly)
▶ fk(z) =

∑
n ak,n(z − wk) radius of convergence ≥ rk

▶ domain covered by
⋃

k B(wk , rk/3)
▶ |wk − wl | < rk =⇒ fl is fk shifted to wl
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Convergence and power series

Sequence with a polynomial modulus of Cauchyness has a limit

▶ arithmetical operations +, ·
more generally: {an}n∈L 7→

{∑
n<N an

}
N∈L,

{∏
n<N an

}
N∈L

▶ f (z) =
∑

n anz
n converges for |z | <∗ r if an = O(r−n)

x <∗ y ⇐⇒ x ≤ y(1−m−1) for some m ∈ L

▶ adapting [J’15,J’23a]: constant-degree polynomial roots,
elementary analytic functions (exp, log, . . . )

Operations on power series:

▶ derivatives and primitive functions f (n)(z), n ∈ ZL

▶ shift: f (z) =
∑

n an(z − u)n 7→ f (z) ≡
∑

n bn(z − v)n

▶
∑

n<N fn,
∏

n<N fn, f (g(z))
▶ polynomials: evaluate at {e2πij/m}j<m, interpolate (DFT)
▶ power series: apply to partial sums
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Contour integration

Analytic function f =
⋃

k fk as above,
fk(z) =

∑
n ak,n(z − wk)

n radius ≥ rk

γ piecewise linear path with endpoints {zj : j ≤ ℓ}

Define

∫
γ

f (z) dz :=
∑
j<ℓ̃

(
Fkj (z̃j)− Fkj (z̃j+1)

)
if

▶ γ̃ ≡ {z̃j : j ≤ ℓ̃} subdivision of γ

▶ z̃j , z̃j+1 ∈ B∗(wkj , rkj/3) for each j < ℓ̃

▶ Fk = the primitive function of fk

VTC0
∞ proves

▶ uniqueness

▶ existence if γ covered by
⋃

k<K B∗(wk , rk/3)
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What’s next?

Work in progress

Some goals to pursue:

▶ Cauchy’s residue theorem and calculus of residues
▶ root counting (argument principle, Rouché’s theorem)
▶ analytic continuation, monodromy
▶ maximum modulus principle
▶ . . .

Potential applications:

▶ generating functions in enumerative combinatorics
▶ analytic number theory
▶ eigenvalues and eigenvectors
▶ . . .
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Emil Jěrábek Mathematics in VTC0 JAF 44, Prague



References (4/4)

▶ J.-P. Ressayre: Integer parts of real closed exponential fields, in:
Arithmetic, proof theory, and computational complexity, Oxford
Univ. Press, 1993, 278–288

▶ J. Shepherdson: A nonstandard model for a free variable fragment
of number theory, Bull. Acad. Polon. Sci. 12 (1964), 79–86

▶ S. Volkov: An exponential expansion of the Skolem-elementary
functions, and bounded superpositions of simple arithmetic
functions, Mathematical Problems of Cybernetics vol. 16, 2007,
163–190 (Russian)

▶ S. Volkov: Generating some classes of recursive functions by
superpositions of simple arithmetic functions, Dokl. Math. 76
(2007), 566–567

▶ D. Zambella: End extensions of models of linearly bounded
arithmetic, Ann. Pure Appl. Logic 88 (1997), 263–277
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