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Theories vs. complexity classes

Correspondence of theories of bounded arithmetic T and
computational complexity classes C:

Provably total computable functions of T are C-functions

T can do reasoning using C-predicates
(comprehension, induction, . . . )

Feasible reasoning:

Given a natural concept X ∈ C, what can we prove about
X using only concepts from C?

That is: what does T prove about X?

This talk:
X = elementary integer arithmetic operations +, ·,≤
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Small complexity classes

AC
0 ⊆ ACC

0 ⊆ TC
0 ⊆ NC

1 ⊆ L ⊆ NL ⊆ AC
1 ⊆ · · · ⊆ P

All circuit classes are assumed uniform.

AC
0: constant-depth poly-size unbounded fan-in circuits

with ∧,∨,¬ gates
= FO = log time, O(1) alternations on an alternating TM

ACC
0: + MODm gates, constant m

TC
0: + majority gates

NC
1: log-depth bounded fan-in circuits

= poly-size formulas = alternating log time

L: log space on a deterministic TM
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The classTC
0

TC
0 = DLOGTIME-uniform O(1)-depth nO(1)-size

unbounded fan-in circuits with threshold gates

= O(log n) time, O(1) thresholds

on a threshold Turing machine

= FOM-definable on finite structures

representing strings

(first-order logic with majority quantifiers)
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TC
0 and arithmetic operations

For integers given in binary:

+ and ≤ are in AC
0 ⊆ TC

0

× is in TC
0 (TC

0-complete under Turing reductions)

TC
0 can also do:

iterated addition
∑

i<n xi

integer division and iterated multiplication [HAB’02]

the corresponding operations on Q, Q(i)

approximate functions given by nice power series:
sin x, log x, k

√
x

sorting, . . .

=⇒ TC
0 is the right class for basic arithmetic operations
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The theory VTC 0

The most common theory corresponding to TC
0 is VTC 0:

Zambella-style two-sorted bounded arithmetic
unary (auxiliary) integers with 0, 1,+, ·,≤
finite sets = binary integers = binary strings

Noteworthy axioms:
ΣB

0 -comprehension (ΣB
0 = bounded, w/o SO q’fiers)

every set has a counting function

Σ1
1-definable functions are exactly FTC

0

Has induction, minimization, . . . for TC
0-predicates
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Binary arithmetic in VTC 0

VTC 0

can define +, ·,≤ on binary integers

proves integers form a discretely ordered ring (DOR)

Basic question:
What other properties of +, ·,≤ for binary integers are
provable in VTC 0?

In particular: Does it prove some nontrivial instances of
induction?
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VTC 0
+ IMUL

Annoying trouble: Unknown if VTC 0 can formalize the
[HAB’02] algorithms for iterated multiplication and division

VTC 0
?
⊢ ∀X∀Y > 0∃Q∃R < Y (X = Y · Q + R)

︸ ︷︷ ︸

DIV

=⇒ Consider iterated multiplication as an additional axiom:

(IMUL) ∀X,n∃Y ∀i ≤ j < n
(
Y [〈i,i〉] = 1∧Y [〈i,j+1〉] = Y [〈i,j〉]·X [j]

)

Think Y [〈i,j〉] =
∏j−1

k=i X [k]
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Iterated multiplication and division

VTC 0 + IMUL corresponds to TC
0, just like VTC 0

VTC 0 + IMUL ⊢ DIV

We need IMUL rather than DIV for technical reasons.
A “reasonable theory”:

provably total computable functions closed under
parallel repetition
closed under the ΣB

0 -choice rule

VTC 0 + IMUL is the smallest “reasonable theory”
containing VTC 0 + DIV (using [JP’98])

VTC 0 ⊢ DIV iff VTC 0 ⊢ IMUL
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Open induction

The weakest arithmetic theory with a nontrivial fragment of
the induction schema:

IOpen = DOR + induction for open formulas ϕ in 〈+, ·,≤〉

ϕ(0) ∧ ∀x (ϕ(x) → ϕ(x + 1)) → ∀x ≥ 0ϕ(x)

[Shep’64]

Main question: Does VTC 0 prove IOpen for binary integers?
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Notes onIOpen

IOpen proves DIV

IOpen is ∀∃-axiomatized

Its universal fragment is included in the theory of Z-rings
DOR + ∀x∃⌊x/n⌋ for each standard n > 0

= DOR + Presburger arithmetic

provable in VTC 0

=⇒ we are mostly concerned about witnesses to ∃ in
axioms of IOpen
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Ordered fields

Ordered field = field with a compatible total order

Real-closed field = an OF R satisfying one of the following
equivalent conditions:

every positive a ∈ R has a square root, and every
f ∈ R[x] of odd degree has a root

R has no proper ordered algebraic extension

R(
√
−1) is algebraically closed

R ≡ R

Every OF F has a unique real closure rcl(F )

= real-closed algebraic ordered extension R ⊇ F
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IOpen algebraized

Integer part of an OF F = discretely ordered subring D ⊆ F

such that every α ∈ F is within distance 1 from a z ∈ D

Theorem [Shep’64]:
For a DOR D, the following are equivalent:

D � IOpen

D � LOpen

D is an integer part of a real-closed field R ⊇ D

If u < v ∈ D and f ∈ D[x] is such that f(u) ≤ 0 < f(v),
there is u ≤ z < v in D such that f(z) ≤ 0 < f(z + 1)
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Witnessing for VTC 0

Witnessing theorem:
If VTC 0 ± IMUL ⊢ ∀X ∃Y ϕ(X,Y ), where ϕ is Σ1

1(= ∃ΣB
0 )

=⇒ ∃ a TC
0 function F s.t. VTC 0 ± IMUL ⊢ ∀X ϕ(X,F (X)).

Corollary: The following are equivalent:

VTC 0 ± IMUL proves IOpen

For every constant d > 0, VTC 0 ± IMUL can formalize a
TC

0 (real or complex) root approximation algorithm for
degree d polynomials
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TC
0 root finding

Theorem [J’12]:
TC

0 root approximation algorithms exist for any constant d.

works naturally for complex polynomials and roots

make f square-free, get roots of f ′ by induction on d

f(a) = b =⇒ f has an inverse function ga s.t. ga(b) = a in
a nbh of b, given by a power series ga(w) =

∑

n cn(w − b)n

cn TC
0-computable (Lagrange inversion formula)

image of ga includes a nbh of a with radius proportional
to the distance from a to the nearest root of f ′

=⇒ construct a poly-size set of sample points a s.t. all
roots of f have the form ga(0)
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Formalization in VTC 0
+ IMUL?

Corollary: VTC 0 + Th∀ΣB
0

(N) ⊢ IOpen

Bad news:
The argument heavily relies on complex analysis
(Cauchy integral formula, . . . )
=⇒ unsuitable for formalization in bounded arithmetic

Nevertheless, we can prove

Main theorem: VTC 0 + IMUL ⊢ IOpen

but we need a different strategy
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Proof outline

Direct proof of a form of the Lagrange inversion formula
polynomials can be locally inverted by power series
use this to compute roots of polynomials with small
constant coefficient

Model-theoretic argument using valued fields
the fraction field F of a DOR D carries a natural
valuation induced by ≤
D � DIV =⇒ D is an integer part of the completion F̂

D comes from M � VTC 0 + IMUL

=⇒ F̂ is henselian by LIF
=⇒ F̂ is a real-closed field if M is ω-saturated
=⇒ D � IOpen by Shepherdson’s criterion

Emil Je řábek | Open induction in a TC
0 arithmetic | Prague Gathering of Logicians, February 2014 17:37



Lagrange inversion formula

Let f(z) =
∑d

j=1 ajz
j, a1 = 1, and consider g(w) =

∑∞
n=1 bnwn,

bn =
∑

P

j
(j−1)mj=n−1

Cm2,...,md

d∏

j=2

(−aj)
mi

Cm2,...,md
=

(∑d
j=2 jmj

)
!

(∑d
j=2(j − 1)mj + 1

)
!
∏d

j=2 mj !

(aj , bn, C~m are binary rationals, n,m2, . . . ,md unary integers)

Lagrange inversion formula (LIF):
f(g(w)) = w as formal power series
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LIF in VTC 0
+ IMUL

Theorem 1: VTC 0 + IMUL proves LIF for any constant d

Proof: By a convoluted but down-to-earth induction on
~m = 〈m2, . . . ,md〉, show the identity

C~m =

d∑

k=2

∑

~m1+···+~mk=~m−δk

C~m1 · · ·C~mk (~m 6= ~0) (∗)

VTC 0 + IMUL also proves a bound on the coefficients bn:

Lemma: |bn| ≤ (4a)n−1, where a = max
{
1,

∑d
j=2|aj |

}
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Aside: combinatorial interpretation of LIF

C~m = # of unary terms with mj occurrences of a single j-ary
connective for each j = 2, . . . , d

= # of ordered rooted trees with mj nodes of in-degree
j = 2, . . . , d and no other inner nodes

LIF (∗) ⇐⇒ a term is a variable or c(t1, . . . , tk), where c is
k-ary and tj are terms

(counting of exponentially many objects
=⇒ can’t be used in VTC 0 + IMUL)
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Root approximation with LIF

Theorem 2: VTC 0 + IMUL proves for any constant d:
Let h(z) =

∑d
j=0 ajz

j, a1 = 1. Put f(z) = h(z) − a0, and let
g, bn, a be as above.

If |a0| < 1/(4a), the partial sums zN =
∑N

n=1 bn(−a0)
n satisfy

|zN | ≤ c :=
|a0|

1 − 4a|a0|
, |zN − zM | ≤ c

(
4a|a0|)N−1,

|h(zN )| ≤ |a0|Nd
(
4a|a0|

)N
.

That is, they converge fast to a (bounded) root of h.
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Shepherdson’s criterion revisited

For any DOR D with fraction field F , TFAE:

D � IOpen

D � DIV , and F is a dense subfield of a RCF R

(Assume D � DIV from now on.) Canonical choice of R:

R = the least RCF extending F = its real closure rcl(F )

D � IOpen iff F ⊆ rcl(F ) is dense

Try the other way round:

R = the largest ordered extension of F where it is dense
= its (Scott) completion F̂

D � IOpen iff F̂ is a RCF
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Completion of ordered fields

OF F is complete if it is not dense in any proper extension

Fact: (Scott/folklore)
Every OF F has a unique completion F̂ , i.e., a complete OF
such that F ⊆ F̂ is dense.

If F ⊆ K is dense, then K ⊆ F̂ .

F̂ can be constructed using a kind of Dedekind cuts

Alternative description: completion of valued fields
≈ construction of R with Cauchy sequences
advantage: can apply general results from valuation
theory
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In models of arithmetic

Let D be a DOR coming from a model of arithmetic

Basic intuition:

D = “integers” of the model

fraction field F = “rationals” of the model

completion F̂ = “reals” of the model
virtual elements that can be arbitrarily closely
approximated by “rationals”
not interpretable in D (too large)
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Valued fields

Valuation v : K ։ Γ ∪ {∞} on a field K:

value group Γ: totally ordered abelian group

v(x) = ∞ iff x = 0

v(xy) = v(x) + v(y)

v(x + y) ≥ min{v(x), v(y)}

Induces additional data:

valuation ring O = {x ∈ K : v(x) ≥ 0}
maximal ideal I = {x ∈ K : v(x) > 0} = O r O∗

residue field k = O/I
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Valuation rings

Valuation rings in K = subrings O ⊆ K s.t.
a ∈ O or a−1 ∈ O for all a ∈ K∗

Abstractly: valuation ring = integral domain O s.t.
a | b or b | a for all a, b ∈ O

=⇒ such O is a valuation ring in its fraction field K

Valuation is defined by the valuation ring up to
equivalence: Γ ≃ K∗/O∗, v : K∗ → K∗/O∗ quotient map
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Example 1

Let k be a field. The field K = k((x)) of formal Laurent series

a =
∞∑

n=N

anxn, N ∈ Z, an ∈ k

carries a valuation

v(a) = min{n ∈ Z : an 6= 0}

Valuation ring = k[[x]] (formal power series)

Value group = Z

Residue field = k
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Example 2

Let p be a prime. The field K = Qp of p-adic numbers

. . . a3a2a1a0.a−1 . . . a−N , an ∈ {0, . . . , p − 1}

carries the p-adic valuation

vp(a) = min{n ∈ Z : an 6= 0}

Valuation ring = Zp (p-adic integers)

Value group = Z

Residue field = Fp (p-element field)

Also induces the p-adic valuation on Q ⊆ Qp:
vp(p

epe1

1 · · · pek

k ) = e
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Topology and completeness

Valuation induces a topology on the field:
basic (cl)open sets = ultrametric balls

B(a, γ) = {u ∈ K : v(a − u) > γ}, a ∈ K, γ ∈ Γ

〈K, v〉 is complete if every transfinite Cauchy sequence
converges

Theorem: Every valued field 〈K, v〉 has a unique completion,
i.e., a complete extension 〈K̂, v̂〉 of 〈K, v〉 s.t. K ⊆ K̂ is
(topologically) dense

Examples: Qp is the completion of 〈Q, vp〉
k((x)) is the completion of k(x)

Emil Je řábek | Open induction in a TC
0 arithmetic | Prague Gathering of Logicians, February 2014 29:37



Valuations on ordered fields

〈K,≤〉 ordered field =⇒ natural valuation v with

O = {x ∈ K : ∃n ∈ N |x| ≤ n}
I = {x ∈ K : ∀n ∈ N |x| ≤ 1/n}

residue field: archimedean OF =⇒ k ⊆ R

valued field completion K̂ = ordered field completion

More generally: valuations with convex valuation ring
residue field canonically ordered
valuation topology = interval topology

Need yet: how to recognize RCF?
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Discrete valuation rings

Discrete valuation ring (DVR): valuation ring with Γ = Z

Examples: k[[x]], Zp

Nice properties: noetherian, PID, . . .
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Henselian valuations

Hensel’s lemma:
O complete DVR, f ∈ O[x], v(f(a)) > 0, v(f ′(a)) = 0

=⇒ f has a root α ∈ O with v(α − a) > 0

Generally: valuation rings or valued fields satisfying
Hensel’s lemma are called henselian

first-order property

share nice model-theoretic properties of complete DVRs

Warning: Complete valuation rings are not henselian in
general (Γ = Z makes a difference)
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AKE principle

Theorem (Cohen):
Complete DVR of residue characteristic 0 are uniquely
determined by the residue field (i.e., isomorphic to k[[x]]).

Vast generalization to henselian VF:

Ax–Kochen–Ershov principle:
Two henselian valued fields of res.char. 0 (more generally:
unramified) are elementarily equivalent iff their residue fields
and value groups are elementarily equivalent.
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Characterization of RCF

A (much easier) special case of AKE:

Theorem: K ordered field, O convex valuation ring of K

=⇒ K is a RCF iff

henselian

residue field k is a RCF

value group Γ is divisible
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Example

Puiseux series: K = k〈〈x〉〉 :=
⋃

m k((x1/m))

∞∑

n=N

anxn/m, N ∈ Z, an ∈ k,m ∈ N+

value group Q

henselian (∵ each k[[x1/m]] is a complete DVR)

Corollary: k RCF =⇒ k〈〈x〉〉 RCF

By the way: k = rcl(Q) =⇒ k〈〈x〉〉 has an integer part of
Puiseux polynomials with integer constant coefficient
=⇒ IOpen has a nonstandard recursive model [Shep’64]
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Open induction and valued fields

Corollary: Let D DOR, D � DIV , F fraction field with natural
valuation, F̂ its completion.

Then D � IOpen iff F̂ henselian, residue field k RCF, value
group Γ divisible.

Note: F and F̂ have the same residue field and value group

Our case: M � VTC 0 + IMUL induces DOR D � DIV

Γ is divisible—easy

if M is ω-saturated, then k = R

F̂ henselian: follows from Theorem 2 (LIF)

This gives the Main theorem: VTC 0 + IMUL ⊢ IOpen
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What about VTC 0?

Question: Does VTC 0 prove IOpen?

The Main theorem and [JP’98] imply that TFAE:

VTC 0 ⊢ IOpen

VTC 0 ⊢ IMUL

VTC 0 ⊢ DIV

=⇒ the problem is whether VTC 0 can formalize the division
algorithm of [HAB’02]
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Thank you for attention!
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