Reflection principles in weak and strong arithmetics

Emil Jeřábek

jerabek@math.cas.cz

http://math.cas.cz/~jerabek/

Institute of Mathematics of the Czech Academy of Sciences, Prague

Logic Colloquium Prague, August 2019

Strong fragments of arithmetic

$$EA = ext{basic theory of Kalmár elementary functions} \ \sim I\Delta_0 + EXP$$
 $I\Sigma_i = EA + ext{induction schema}$
 $\varphi(0) \land \forall x \left(\varphi(x) \rightarrow \varphi(x+1) \right) \rightarrow \forall x \, \varphi(x) \qquad (\varphi\text{-IND})$
for $\varphi \in \Sigma_i$: $\exists x_1 \, \forall x_2 \, \dots \, Qx_i \, \underbrace{\theta(x_1, \dots, x_i, \dots)}_{\text{bounded quantifiers}}$

Strict hierarchy: $EA \subsetneq I\Sigma_1 \subsetneq I\Sigma_2 \subsetneq \cdots \subsetneq PA$ non-conservative even for universal sentences

General reference: [Bek05]

Weak fragments of arithmetic

```
PV_1 = 	ext{basic theory of polynomial-time functions} T_2^i = PV_1 + \Sigma_i^b-IND S_2^i = PV_1 + 	ext{polynomial induction schema} \varphi(0) \land \forall x \left( \varphi(\lfloor x/2 \rfloor) \to \varphi(x) \right) \to \forall x \, \varphi(x) \qquad \left( \varphi - PIND \right) for \varphi \in \Sigma_i^b: \exists x_1 \leq t_1 \, \forall x_2 \leq t_2 \, \dots \, Qx_i \leq t_i \, \underbrace{\theta(x_1, \dots, x_i, \dots)}_{\text{sharply bounded quantifiers}} \exists u \leq |t|, \, \forall u \leq |t|
```

Hierarchy? $PV_1 \subseteq S_2^1 \subseteq T_2^1 \subseteq S_2^2 \subseteq \cdots \subseteq T_2 = I\Delta_0 + \Omega_1$ $S_2^i \subseteq T_2^i$: conjectured non-conservative for universal sentences $T_2^i \subseteq S_2^{i+1}$: $\forall \Sigma_{i+1}^b$ -conservative, still conjectured strict

General reference: [Kra95], [CN10], [J18]

Gödel for the win

What makes the difference?

Strong fragments

$$I\Sigma_{i+1} \vdash \operatorname{Con}(I\Sigma_i)$$

Weak fragments

- $ightharpoonup T_2^{i+1} \not\vdash \operatorname{Con}(T_2^i)$, in fact:
- ▶ [PW87] $EA \nvdash Con(Q)!$
- ▶ [Pud90] $T_2 \nvdash \operatorname{BdCon}(PV_1)$

Can bounded arithmetic prove the consistency of anything?

Propositional proof systems

pps = sound and complete proof system for **CPC** with poly-time recognizable proofs [CR74]

- Frege: textbook system with finitely many axiom schemata and rules p-equivalent: sequent calculus, natural deduction
- ► Extended Frege (*EF*): may introduce shorthand variables p-equivalent: substitution Frege, circuit Frege
- Quantified propositional sequent calculus G: introduction rules for propositional quantifiers
 - $ightharpoonup G_i$: only $\sum_{i=1}^{q}$ cut formulas

$$\exists \vec{x_1} \ \forall \vec{x_2} \ \dots \ Q\vec{x_i} \ \underbrace{\theta(\vec{x_1}, \dots, \vec{x_i}, \dots)}_{\text{quantifier-free}}$$

 $ightharpoonup G^*$, G_i^* : proofs tree-like

Propositional consistency statements

- ightharpoonup [Cook75] PV_1 proves Con(EF)
- ▶ [KP90] T_2^i (and S_2^{i+1}) proves $Con(G_i)$ and $Con(G_{i+1}^*)$

NB:
$$G_i \geq_{p} G_{i+1}^*$$
, $G_i \equiv_{p}^{\prod_{i=1}^{q}} G_{i+1}^*$

Consistency statements = universal sentences (not just Π_1)

Tight correspondence [KP90]

- $ightharpoonup PV_1 + \operatorname{Con}(G_i) \equiv \operatorname{Th}_{\forall}(T_2^i)$
- $ightharpoonup T_2^i \vdash \operatorname{Con}(P) \implies G_i \text{ p-simulates } P \text{ (more or less)}$
- ▶ translation of T_2^i to G_i : see next slide

 $\operatorname{Con}(G_i) = \operatorname{strongest}$ consistency statement provable in T_2^i Similarly for S_2^i and G_i^* (NB: $\operatorname{Th}_{\forall}(S_2^i) = \operatorname{Th}_{\forall}(T_2^{i-1})$)

Propositional translation

[Cook75], [KP90]

- ► true universal sentence $\forall x \, \theta(x)$ \mapsto sequence of propositional tautologies $\llbracket \theta \rrbracket_n, n \in \mathbb{N}$
- ► true $\forall \Sigma_i^b$ sentence $\forall x \, \theta(x)$ \mapsto sequence of Σ_i^q tautologies $\llbracket \theta \rrbracket_n$
 - ▶ if $a_{n-1} \dots a_1 a_0$ binary representation of $a \in \mathbb{N}$:

$$\mathbb{N} \vDash \theta(a) \iff \llbracket \theta \rrbracket_n(a_0, \dots, a_{n-1}) \text{ is true}$$

- ► $T_2^i \vdash \forall x \, \theta(x) \implies \llbracket \theta \rrbracket_n$ have poly-size G_i -proofs
- ► $S_2^i \vdash \forall x \, \theta(x) \implies \llbracket \theta \rrbracket_n \text{ have poly-size } G_i^*\text{-proofs}$

Con(T) vs. Con(P)

Con(T) same outside as inside:

- $ightharpoonup T \overset{?}{\vdash} \operatorname{Con}(T)$ can be diagonalized (\Longrightarrow Gödel's theorem)
 - ▶ no obvious way to diagonalize $T \stackrel{?}{\vdash} \operatorname{Con}(P)$
- $ightharpoonup \operatorname{Con}(T)$ can be iterated \implies transfinite hierarchy
 - ► Con(P) cannot be directly iterated
 - ▶ $\mathsf{Th}_{\forall}(T_2^i)$ finitely axiomatizable while $\mathsf{Th}_{\forall}(I\Sigma_i)$ reflexive

Possible twist: use $[Con(P)]_n$ inside P?

- ▶ usually P has poly-size proofs of $[Con(P)]_n!$ \Longrightarrow no point in iterating it
- diagonalization prevented by a fixed length-bound

Reflection principles

Relativize consistency statements:

► "X + all true Π_i formulas" consistent \iff all Σ_i consequences of X are true

First-order reflection principles

- ▶ Local: $\operatorname{Rfn}_{\Gamma}(T) = \{\Box_T \varphi \to \varphi : \varphi \in \Gamma\}$, $\Gamma = \Sigma_i, \Pi_i$
- ► Uniform: RFN_{Σ_i}(T) = ∀φ ∈ Σ_i (□_Tφ → Tr_{Σ_i}(φ)) = {∀x (□_Tφ(x) → φ(x)) : φ ∈ Σ_i}

Propositional reflection principles

- $\blacktriangleright \operatorname{RFN}_{i}(P) = \forall \phi \in \Sigma_{i}^{q} \left(\Box_{P}(\phi) \to \forall e \left(e \vDash_{\Sigma_{i}^{q}} \phi \right) \right)$
- ► analogue of local reflection?

Characterizing theories by RFN

Strong fragments [Lei83]

 $\blacktriangleright \ I\Sigma_i \equiv EA + RFN_{\Sigma_{i+1}}(EA)$

Weak fragments [KP90]

- \triangleright j < i: $\equiv PV_1 + RFN_j(G_{i-1})$
- $T_2^{i-1} \equiv \mathsf{Th}_{\forall \Sigma_i^b}(S_2^i) \equiv PV_1 + \mathrm{RFN}_i(G_i^*)$

NB: propositional translation \implies G_i^* and G_{i-1} have poly-size proofs of $[\![\operatorname{RFN}_{i+1}(G_i^*)]\!]_n$ and $[\![\operatorname{RFN}_{i-1}(G_{i-1})]\!]_n$

Finite axiomatizability

Consequences of characterization by RFN:

Strong fragments

- \triangleright $I\Sigma_i$ itself is finitely axiomatizable
- ▶ $j \le i \implies \mathsf{Th}_{\Pi_{i+1}}(I\Sigma_i)$ is reflexive

Weak fragments

- \triangleright S_2^i , T_2^i are finitely axiomatizable
- ► Th_{$\forall \Sigma_{j}^{b}$} (S_{2}^{i}), Th_{$\forall \Sigma_{j}^{b}$} (T_{2}^{i}) finitely axiomatizable for all j

Induction rules

Induction in the form of deduction rules

$$T+R=$$
 closure of theory T under rule R $[T,R]=$ closure of T under unnested applications of R $[T,R]_0=T$, $[T,R]_{n+1}=[[T,R]_n,R]$: $T+R=\bigcup_n [T,R]_n$ $R\equiv R'$ if $[T,R]=[T,R']$ for every T

Reflection rules

Strong fragments [Bek97]

- $\qquad \qquad \blacksquare \ \, \Pi_{i}\text{-}\mathit{IND}^{R} \equiv \frac{\varphi}{\mathrm{RFN}_{\Sigma_{i-1}}(\mathit{EA} + \varphi)}, \, \varphi \in \Pi_{i+1}$

Weak fragments [J18]

$$G_i + \forall x \, \theta(x) = G_i$$
 with axioms $[\![\theta]\!]_n(\vec{A})$, \vec{A} quantifier-free

Parameter-free induction

Consider the induction axiom

$$\varphi(0) \land \forall x (\varphi(x) \rightarrow \varphi(x+1)) \rightarrow \forall x \varphi(x)$$

- standard induction schemata:
 φ may have arbitrary free variables (parameters)
- ightharpoonup parameter-free induction: only x is free in φ

```
Notation: I\Gamma^-, \Gamma-IND^-, \Gamma-PIND^-
For \Gamma = \Sigma_i, \Pi_i, \Sigma_i^b, \Pi_i^b:
```

- ► Γ-induction rules equivalent to parameter-free versions
- $ightharpoonup \Gamma_-(P)/ND^-$ = least theory whose all extensions are closed under Γ-(P)/ND^R

Parameter-free reflection

Strong fragments [Bek99]

Weak fragments [J18]

- $\qquad \qquad \blacksquare \quad \Pi_{i}^{b}\text{-}\mathit{IND}^{-} \equiv \mathit{PV}_{1} + \left\{ \varphi \to \operatorname{RFN}_{i-1}(\mathit{G}_{i} + \varphi) : \varphi \in \forall \Sigma_{i}^{b} \right\}$
- ▶ the same for $PIND^-$ and G_i^*

Relativized local reflection

Interpret RFN_{Σ_n} as a consistency operator:

- ▶ $\square \approx$ provability operator for $T + \mathsf{Th}_{\Pi_n}(\mathbb{N})$ Hilbert–Bernays–Löb provability conditions

Restate the previous slide:

Strong fragments [Bek99]

- $\triangleright I\Sigma_i^- \equiv EA + Rfn_{\Sigma_{i+1}}^i(EA)$
- $ightharpoonup I\Pi_{i}^{-} \equiv EA + \operatorname{Rfn}_{\Sigma_{i+1}}^{i-1}(EA)$

Is there a meaningful way to do this for bounded arithmetic?

Finite axiomatizability

Strong fragments [Bek97,99]

For $T \subseteq \Pi_{i+1}$ finite, $\Gamma = \Sigma_i$ or Π_i :

- $[T, \Gamma IND^R]_k \subsetneq [T, \Gamma IND^R]_{k+1}$
- $ightharpoonup T + \Gamma IND^R$ reflexive; $I\Sigma_i^-$, $I\Pi_i^-$ reflexive

Weak fragments [J18]

For $T \subseteq \forall \Sigma_i^b$ finite, $\Gamma = \Sigma_i^b$ or Π_i^b :

 $ightharpoonup T + \Gamma - (P)IND^R = [T, \Gamma - (P)IND^R]$ finitely axiom'ble

Problem

Are Σ_{i}^{b} - $(P)IND^{-}$, Π_{i}^{b} - $(P)IND^{-}$ finitely axiomatizable?

Thank you for attention!

References

- L. D. Beklemishev: Induction rules, reflection principles, and provably recursive functions, Ann. Pure Appl. Logic 85 (1997), 193–242
- Parameter-free induction and provably total computable functions, Theoret. Comput. Sci. 224 (1999), 13–33
- ► _____: Reflection principles and provability algebras in formal arithmetic, Russian Math. Surveys 60 (2005), 197–268
- S. A. Cook: Feasibly constructive proofs and the propositional calculus, Proc. 7th STOC, 1975, 83–97
- P. Nguyen: Logical foundations of proof complexity, Cambridge University Press, 2010
- R. Reckhow: The relative efficiency of propositional proof systems,
 J. Symb. Log. 44 (1979), 36–50
- ► E. Jeřábek: Induction rules in bounded arithmetic, arXiv:1809.10718 [math.LO]
- J. Krajíček: Bounded arithmetic, propositional logic, and complexity theory, Cambridge University Press, 1995
- _______, P. Pudlák: Quantified propositional calculi and fragments of bounded arithmetic, Z. math. Logik Grund. Math. 36 (1990), 29–46
- D. Leivant: The optimality of induction as an axiomatization of arithmetic,
 J. Symb. Log. 48 (1983), 182–184
- J. B. Paris, A. J. Wilkie: On the scheme of induction for bounded arithmetic formulas, Ann. Pure Appl. Logic 35 (1987), 261–302
- P. Pudlák: A note on bounded arithmetic, Fund. Math. 136 (1990), 86–89