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Strong fragments of arithmetic

EA = basic theory of Kalmar elementary functions
~ IAg + EXP

I>; = EA + induction schema
©(0) A Vx (ap(x) — o(x + 1)) — Vx p(x) (p-IND)

for o € ¥;: Ix Vxo oo Qx; O(xy, ..., Xy - )

TV
bounded quantifiers

Strict hierarchy: EAC IX; C I, C--- C PA

non-conservative even for universal sentences

General reference: [Bek05]
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Weak fragments of arithmetic

PV, = basic theory of polynomial-time functions
T, = PVy + Xb-IND
S} = PV; + polynomial induction schema

2(0) AVx ((1x/2]) = ¢(x)) = Vxp(x)  (-PIND)

fOI’(.,DGZ?Z ElX]_Sf]_VXQSQ QX,‘SI',‘ \Q(X]_,...,X,',...Z

~
sharply bounded quantifiers
Ju<|t|, Yu<|t|

Hierarchy? PVi C S C Th CS3C---C T =100+
S} C Ti: conjectured non-conservative for universal sentences

Ti C Syt Vb, -conservative, still conjectured strict

General reference: [Kra95], [CN10], [J18]
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What makes the difference?

/Z,’+1 F COH(/Z,’)

> T, ¥ Con(T)), in fact:
> [PW8T7] EA¥ Con(Q)!
» [Pud90] T, ¥ BdCon(PV;)

Can bounded arithmetic prove the consistency of anything?



Propositional proof systems

pps = sound and complete proof system for CPC with
poly-time recognizable proofs [CR74]

» Frege: textbook system with finitely many
axiom schemata and rules
p-equivalent: sequent calculus, natural deduction

» Extended Frege (EF): may introduce shorthand variables
p-equivalent: substitution Frege, circuit Frege

» Quantified propositional sequent calculus G:
introduction rules for propositional quantifiers

> G;: only X7 cut formulas
TR e QF Oy R
—_—

quantifier-free

> G*, G/ proofs tree-like
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Propositional consistency statements

» [Cook75] PV, proves Con(EF)
> [KP90] Ti (and S;™*) proves Con(G;) and Con(G; ;)

NB: G; >, G\, G =p" G}

i+1 i+1
Consistency statements = universal sentences (not just ;)

Tight correspondence [KP90]

> PV, + Con(G;) = Thy(TJ)
> T2’ I— COH(P) — G,' p—SimulateS P (more or less)

> translation of TJ to G;: see next slide

Con(G;) = strongest consistency statement provable in T2’
Similarly for S; and G (NB: Thy(S}) = Thy(T5 1))
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Propositional translation

[Cook75], [KP90]

» true universal sentence Vx 0(x)
> sequence of propositional tautologies [0],, n € N
> true VI’ sentence Vx 0(x)
+ sequence of L] tautologies [0],
» if a,_1...a1a0 binary representation of a € N:

NEO(a) < [0]n(a0,...,an_1) is true

v

TiFVx0(x) = [0], have poly-size G;-proofs
> SikVx0(x) = [0], have poly-size G*-proofs
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Con(T) vs. Con(P)

Con(T) same outside as inside:

?
» T Con(T) can be diagonalized ( = Godel's theorem)

?
> no obvious way to diagonalize T = Con(P)

» Con(T) can be iterated = transfinite hierarchy

> Con(P) cannot be directly iterated
> Thy(T}) finitely axiomatizable while Thy(/Z;) reflexive

Possible twist: use [Con(P)], inside P?

» usually P has poly-size proofs of [Con(P)],!
= no point in iterating it
» diagonalization prevented by a fixed length-bound
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Relativize consistency statements:

> “X + all true I1; formulas” consistent
<= all ¥; consequences of X are true

» Local: Rfnr(T) = {IZITgo —pipeE F}, F=2%;TM;
> Uniform: RFNg,(T) = V¢ € ; (076 — Try,(¢))
= {Vx (Orp(x) = ¢(x)) : ¢ € L;}

> REN;(P)=V¢ € &7 (Dp(gb) — Ve (e Fx gb))
» analogue of local reflection?




> IZ, = EA + RFN):H_I(EA)

» Si= PV, +RFN,,(cfG*) = PV; + RFN;,1(G)
> j < it Thyse (S)) = PVi + REN,(G)

> < = PVi + RFN;(G;1)

> T, = Thyss (S)) = PVi + RFN;(G?)

NB: propositional translation = G/ and G;_; have
poly-size proofs of [REN;.1(G/)], and [REN;_1(G;_1)].



Consequences of characterization by RFN:

> /3 ; itself is finitely axiomatizable
» j<i = Thp,, (/%) is reflexive

» Si, Ti are finitely axiomatizable
» Thyss (Si), Thyss (T3) finitely axiomatizable for all j
J J




Induction rules

Induction in the form of deduction rules

s o PO Yx(e(x) = p(x +1))
' Vx o(x)
> ok O Yx (p(1x/2]) = @(x)
Vx p(x)

T + R = closure of theory T under rule R

[T, R] = closure of T under unnested applications of R
[T,Rlo=T,[T,Rlpa=I[T.R]o,Rl: T+R=U,IT,R]x
R=Rif [T,R] =[T,R] for every T
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> -INDF = n, 5,
RFNy, (EA+ o) ¥ € Hlimoveriiz

> M-INDR = i n;
RFNy, (EA+g) 75

¥ b
P)IND Lo € V5!
=-(P) = REN (G + )
Mb-(P)INDR = Ld L pEVTh

RFN; 1(G + ¢)

G+ V¥x0(x) = G; with axioms [0],(A), A quantifier-free
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Parameter-free induction

Consider the induction axiom

©(0) AVx (¢(x) = @(x + 1)) = Vx¢o(x)
» standard induction schemata:
¢ may have arbitrary free variables (parameters)
» parameter-free induction: only x is free in ¢
Notation: IT~, I-IND~, T-PIND~
For [ =X, M;, ¥° ne:
» [-induction rules equivalent to parameter-free versions

» [-(P)IND~ = least theory whose all extensions are closed
under I-(P)INDR
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> /Y7 = EA+ {¢ — RFNy,(EA+ ) : p € My}
> IM; =EA+{¢ > RFNsx, (EA+¢) ¢ €M1}

> S2-IND~ = PVi+ {¢ = RFN(G; + ¢) : p € VI?}
> M2-IND~ = PVi+ {p = RFEN;_1(G; + ¢) : ¢ € VEP}
» the same for PIND~ and G/




Interpret RENy as a consistency operator:

> @79 =RFNg, (T +¢), Orp = =@ 7p
> [ ~ provability operator for T + Thp, (N)
Hilbert—Bernays—Lob provability conditions

> Rin(T) = {Tgp —pip€E F}

Restate the previous slide:

> /Y, = EA+Ring _ (EA)
> IM; = EA+Ring ! (EA)

Is there a meaningful way to do this for bounded arithmetic?



For T Q I'I,-+1 finite, = Z,‘ or I'I,-:

» [T,[-INDR], C [T,T-INDR]i i1
» T +T-INDR reflexive: I, ITT; reflexive

For T C VX’ finite, I = X% or MN%:
» T +T-(P)INDR = [T, T-(P)INDF] finitely axiom’ble

Problem

Are 3P-(P)IND~, N’-(P)IND~ finitely axiomatizable?
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