Iterated multiplication in VTC^0

Emil Jeřábek

jerabek@math.cas.cz
http://math.cas.cz/~jerabek/

Institute of Mathematics, Czech Academy of Sciences, Prague

Logic seminar, Institute of Mathematics, 26 October 2020

Outline

- **1** TC^0 , VTC^0 , and IMUL
- 2 Hesse-Allender-Barrington algorithm
- 3 Minutiae
- 4 Working with CRR
- 5 Polylogarithmic cut
- 6 Modular exponentiation
- 7 The grand scheme

TC^0 , VTC^0 , and IMUL

- **1** TC^0 , VTC^0 , and IMUL
- 2 Hesse-Allender-Barrington algorithm
- 3 Minutiae
- 4 Working with CRR
- 5 Polylogarithmic cut
- 6 Modular exponentiation
- 7 The grand scheme

Correspondence

The "big picture" in proof complexity:

Theories vs. complexity classes

Correspondence of theories of bounded arithmetic T and computational complexity classes C:

- ▶ Provably total computable functions of *T* are *C*-functions
- T can do reasoning using C-predicates (comprehension, induction, ...)

Feasible reasoning:

- ▶ Given a natural concept $X \in C$, what can we prove about X using only concepts from C?
- ▶ That is: what does *T* prove about *X*?

This talk:

X = elementary integer arithmetic operations $+, \cdot, \leq$

The class TC⁰

$$\textbf{AC}^0 \subset \textbf{ACC}^0 \subset \textbf{TC}^0 \subset \textbf{NC}^1 \subset \textbf{L} \subset \textbf{NL} \subset \textbf{AC}^1 \subset \cdots \subset \textbf{P}$$

- ${\sf TC}^0 = {\sf dlogtime}$ -uniform O(1)-depth $n^{O(1)}$ -size unbounded fan-in circuits with threshold gates
 - FOM-definable on finite structures
 representing strings
 (first-order logic with majority quantifiers)
 - $O(\log n)$ time, O(1) thresholds on a threshold Turing machine

TC⁰ and arithmetic operations

For integers given in binary:

- ► + and \leq are in $AC^0 \subseteq TC^0$
- \triangleright x is in TC^0 (TC^0 -complete under AC^0 reductions)

TC⁰ can also do:

- \blacktriangleright iterated addition $\sum_{i < n} X_i$
- integer division and iterated multiplication [BCH'86,CDL'01,HAB'02]
- ▶ the corresponding operations on \mathbb{Q} , $\mathbb{Q}(i)$
- approximate functions given by nice power series:
 - $ightharpoonup \sin X$, $\log X$, $\sqrt[k]{X}$, ...
- sorting, . . .
- \implies **TC**⁰ is the right class for basic arithmetic operations

Zambella-style bounded arithmetic

Two-sorted arithmetic:

- ▶ unary (auxiliary) integers with $0, 1, +, \cdot, \le$
- ▶ finite sets = binary integers = binary strings $x \in X$, $|X| = \sup\{x + 1 : x \in X\}$
- ▶ bounded quantifiers: $\exists x \leq t, \ \forall x \leq t, \ \exists X \leq t, \ \forall X \leq t$ where $X \leq t$ is short for $|X| \leq t$
- \triangleright Σ_0^B formulas: bounded FO, no SO quantifiers
- ▶ Σ_i^B formulas: *i* alternating blocks of bounded quantifiers (first block \exists) followed by a Σ_0^B formula
- $ightharpoonup \Sigma_1^1$ formulas: $\exists X \, \theta(X, \dots), \; \theta \in \Sigma_0^B$
- $V^i = 2$ -BASIC + Σ_i^B -COMP (implies Σ_i^B -IND)

The theory VTC⁰

The theory corresponding to \mathbf{TC}^0 is VTC^0 :

- $ightharpoonup V^0 + \text{every set has a counting function}$
- ▶ provably total computable (i.e., Σ_1^1 -definable) functions are exactly the \mathbf{TC}^0 -functions
- ▶ has induction, comprehension, minimization, . . . for TC⁰-predicates

Binary arithmetic in VTC⁰:

- ightharpoonup can define $+,\cdot,\leq$ on binary integers
- proves integers form a discretely ordered ring

Basic question

What other properties of $+,\cdot,\leq$ are provable in VTC^0 ?

The iterated multiplication axiom

Iterated multiplication algorithm [HAB'02] challenging to formalize \implies divide and conquer: make it an axiom!

IMUL

$$\forall X, n \exists Y \ \forall i \leq j < n \ (Y_{i,i} = 1 \land Y_{i,j+1} = Y_{i,j} \cdot X_j)$$

think
$$Y_{i,j} = \prod_{k=i}^{j-1} X_k$$

Basic questions

- ▶ What properties of $+, \cdot, \le$ are provable in $VTC^0 + IMUL$?
- ► Does *VTC*⁰ prove *IMUL*?

Arithmetic in $VTC^0 + IMUL$

Theorem [J'15]

 $VTC^0 + IMUL$ can do:

- ▶ Division: $\forall X \forall Y > 0 \exists Q \exists R < Y (X = Y \cdot Q + R)$
- ▶ Root approximation: $p(X) = \sum_{i \le d} A_i X^i$, d constant

$$X < Y \land p(X) \le 0 < p(Y) \rightarrow$$

$$\exists Z (X \le Z < Y \land p(Z) \le 0 < p(Z+1))$$

▶ Open induction (*IOpen*): second-order induction

$$\varphi(0) \wedge \forall X \ (\varphi(X) \rightarrow \varphi(X+1)) \rightarrow \forall X \ \varphi(X)$$

for quantifier-free $\langle +, \cdot, \leq \rangle$ -formulas $\varphi(X, \vec{Y})$

Buss-style bounded arithmetic

One-sorted theories of bounded arithmetic:

- ▶ (binary) integers, language $(0, 1, +, \cdot, \leq, \lfloor x/2 \rfloor, |x|, \#)$
- ▶ Σ_0^b formulas: sharply bounded q'fiers $\exists x \leq |t|$, $\forall x \leq |t|$
- $\hat{\Sigma}_{i}^{b}$ formulas: i alternating blocks of bounded quantifiers (first block \exists) followed by a Σ_{0}^{b} formula
- $ightharpoonup T_2^i = BASIC + \hat{\Sigma}_i^b$ -IND, $S_2^i = BASIC + \hat{\Sigma}_i^b$ -PIND

Johannsen and Pollett's theories for **TC**⁰:

- ▶ language with $\dot{-}$, $\lfloor x/2^y \rfloor$
- ► all theories include open *LIND*
- $ightharpoonup C_2^0$: $BB\Sigma_0^b$ [JP'98]
- $ightharpoonup C_2^0[div]$: language incl. $\lfloor x/y \rfloor$ [Joh'99]
- $ightharpoonup \Delta_1^b$ -CR: Δ_1^b bit-comprehension rule [JP'00]

RSUV isomorphism

two-sorted arithmetic	one-sorted arithmetic
sets	numbers
numbers	logarithmic numbers
bounded SO quantifiers	bounded quantifiers
bounded FO quantifiers	sharply bounded quantifiers
Σ_i^B	$\hat{\Sigma}_i^b$
V^i	S_2^i
TV^i	T_2^i
VTC^0	Δ_1^b -CR C_2^0
$VTC^0 + \Sigma_0^B -AC$	
$VTC^0 + IMUL + \Sigma_0^B - AC$	$C_2^0[div]$
	•

$$(i \ge 1)$$

Sharply bounded minimization

The result above, more precisely:

- ► VTC⁰ + IMUL proves the RSUV-translation of IOpen
- $ightharpoonup
 ightharpoonup C_2^0[div]$ proves IOpen

Structural description of Σ_0^b formulas [Man'91] \implies generalization:

Theorem [J'15]

- ▶ $VTC^0 + IMUL$ proves the RSUV-translations of Σ_0^b -IND (T_2^0) and Σ_0^b -MIN
- $ightharpoonup C_2^0[div]$ proves Σ_0^b -IND, Σ_0^b -MIN

What remains

Question

Does VTC⁰ prove IMUL?

NB: Using results of [Joh'99], the following are equivalent:

- $ightharpoonup VTC^0 \vdash IMUL$
- $ightharpoonup VTC^0 \vdash DIV$

Iterated multiplication and division are **TC**⁰-computable:

Question

Can VTC⁰ formalize the algorithms from [HAB'02]?

Hesse-Allender-Barrington algorithm

- **1** TC^0 , VTC^0 , and IMUL
- 2 Hesse–Allender–Barrington algorithm
- 3 Minutiae
- 4 Working with CRR
- 5 Polylogarithmic cut
- 6 Modular exponentiation
- 7 The grand scheme

History

[BCH'86]

- $ightharpoonup \prod_{i \le n} X_i$, |Y/X|, X^n are TC^0 -reducible to each other
- ► they are in P-uniform TC⁰
- compute the product in Chinese remainder representation:

$$CRR_{\vec{m}}(X) = \langle X \mod m_i : i < k \rangle$$

where $\vec{m} = \langle m_i : i < k \rangle$ small primes

► (NB: predates **TC**⁰)

Improved CRR reconstruction procedures \Longrightarrow

- ► [CDL'01]: logspace-uniform **TC**⁰ (hence **L**)
- ► [HAB'02]: dlogtime-uniform **TC**⁰

Structure of the algorithm

- (1) $\prod_{u < t} X_u$ is in $TC^0[pow]$
 - ightharpoonup pick sufficiently long list of primes \vec{m}
 - ightharpoonup convert each X_{μ} to $CRR_{\vec{m}}$
 - \triangleright multiply the residues modulo each m_i
 - ightharpoonup reconstruct the result from $CRR_{\vec{m}}$ to binary
- (2) $\prod_{u < t} X_u$ is in AC^0 if $\sum_{u < t} |X_u| = (\log n)^{O(1)}$
 - scale (1) down
- (3) pow is in AC^0
 - ightharpoonup express exponents in $CRR_{\vec{d}}$

pow: $a^r \mod m$ (a, r unary, m unary prime)

Structure of the algorithm

- (0) imul is in $TC^0[pow]$
 - ▶ sum discrete logarithms modulo *m*
- (1) $\prod_{u < t} X_u$ is in TC^0 [imul]
 - ightharpoonup pick sufficiently long list of primes \vec{m}
 - ightharpoonup convert each X_u to $CRR_{\vec{m}}$
 - multiply the residues modulo each m_i
 - ightharpoonup reconstruct the result from $CRR_{\vec{m}}$ to binary
- (2) $\prod_{u < t} X_u$ is in AC^0 if $\sum_{u < t} |X_u| = (\log n)^{O(1)}$
 - scale (1) down
- (3) pow is in AC^0
 - ightharpoonup express exponents in $CRR_{\vec{d}}$

imul: $\prod_{i \le n} a_i \mod m$ $(n, a_i \text{ unary, } m \text{ unary prime})$

Obstacles to formalization

Complex structure with interdependent parts

Which came first: the chicken or the egg?

- $ightharpoonup CRR_{\vec{m}}$ reconstruction:
 - ▶ analysis heavily uses iterated products and divisions: $\prod_{i < k} m_i$, . . .
 - ▶ need $CRR_{\vec{m}}$ reconstruction to define iterated products and divisions in the first place
- **computation** of pow:
 - analysis of the pow algorithm heavily uses pow
 - relies on Fermat's little theorem
- ightharpoonup cyclicity of $(\mathbb{Z}/p\mathbb{Z})^{\times}$:
 - ▶ needed to compute imul in **TC**⁰[pow]
 - notoriously difficult in bounded arithmetic
 - \blacktriangleright provable in $VTC^0 + IMUL$, but what good is that?

Results

Theorem

 $VTC^0 \vdash IMUL$

Corollary

- ▶ $VTC^0 \vdash RSUV$ -translation of Σ_0^b -MIN
- $ightharpoonup C_2^0 \equiv C_2^0[div]$, proves Σ_0^b -MIN

Theorem

 $\exists \ \Delta_0 \text{ definition of } a^r \bmod m \text{ s.t. } I\Delta_0 + WPHP(\Delta_0) \vdash a^0 \equiv 1 \pmod m, \qquad a^{r+1} \equiv a^r a \pmod m$

Overview of the formalization

- preparatory results
 - ▶ VTC^0 \vdash there are enough primes
 - ▶ VTC^0 (pow) can do division $\lfloor X/m \rfloor$ by small primes
- (1) $VTC^0(\text{imul}) \vdash IMUL$
 - ► hard part: CRR reconstruction
 - ▶ teach VTC⁰(imul) to compute in CRR from scratch
- (2) $V^0 \vdash IMUL[|w|^c]$
 - the polylogarithmic cut in V^0 is a model of VNL
- (3) $V^0 + WPHP \vdash \text{totality of pow}$
 - reorganize the [HAB'02] algorithm to avoid circularity
 - ► can't do (0) directly!
 - structure theorem for finite abelian groups (partially)
 - each turn around the vicious circle
 IMUL → cyclicity → imul → IMUL makes progress
 ⇒ proof by induction

Minutiae

- **1** TC^0 , VTC^0 , and IMUL
- 2 Hesse-Allender-Barrington algorithm
- 3 Minutiae
- 4 Working with CRR
- 5 Polylogarithmic cut
- 6 Modular exponentiation
- 7 The grand scheme

Primes

CRR requires a steady supply of primes

Consider contribution of various prime factors to $\binom{2n}{n}$:

Theorem (Chebyshev 1848)

$$\sum_{p\leq x}\log p=\Theta(x).$$

Stragithforward formalization:

Lemma

$$VTC^0 \vdash \sum_{p \leq x|x|^{17}} (|p|-1) \geq x \text{ for } x \text{ large enough}$$

Division by small primes

Need $X \mod m$ to define CRR and to manipulate it

Lemma

$$VTC^0(pow) \vdash m \text{ prime } \rightarrow \forall X \exists Q \exists r < mX = mQ + r$$

$$\left\lfloor \frac{2^n}{m} \right\rfloor = \sum_{i \le n} 2^i ((2^{n-i} \bmod m) \bmod 2)$$

Working with CRR

- **1** TC^0 , VTC^0 , and IMUL
- 2 Hesse-Allender-Barrington algorithm
- 3 Minutiae
- 4 Working with CRR
- 5 Polylogarithmic cut
- 6 Modular exponentiation
- 7 The grand scheme

Goal: CRR reconstruction

Theorem

 \exists **TC**⁰(imul)-function Rec s.t. VTC^0 (imul) proves: \vec{m} distinct primes, $|X| < \sum_i (|m_i| - 1)$ $\Longrightarrow \operatorname{Rec}(\vec{m}; \operatorname{CRR}_{\vec{m}}(X)) = X$

Corollary

 $VTC^0(\text{imul}) \vdash IMUL$

Proof: \vec{m} large enough $\implies Y_j := \text{Rec} \left(\vec{m}; \prod_{i < j} \text{CRR}_{\vec{m}}(X_i) \right)$ By induction on j, show $|Y_j| \leq \sum_{i < j} |X_i|$ and $Y_{j+1} = X_j Y_j$

Basic tool

Notation:
$$[\vec{m}] = \prod_{i < k} m_i$$
, $[\vec{m}]_{\neq j} = \prod_{i \neq j} m_i$

CRR rank equation

$$X < [\vec{m}], \vec{x} = CRR_{\vec{m}}(X) \implies$$

$$\sum_{i,j} \frac{x_i h_i}{m_i} = r(\vec{x}) + \frac{X}{[\vec{m}]}$$

where
$$h_i = [\vec{m}]_{\neq i}^{-1} \mod m_i$$

- ightharpoonup rank $r(\vec{x})$: small integer
- ▶ holds in \mathbb{Q} \Longrightarrow approximation $\xi(\vec{m}; \vec{x})$ of $X/[\vec{m}]$
- ▶ holds in $\mathbb{Z}/a\mathbb{Z} \implies \text{base extension } e(\vec{m}; \vec{x}; a) = X \mod a$

Rank and friends formalized

In VTC^0 (imul): for large enough n, consider

$$S_n(\vec{m}; \vec{x}) = \sum_{i < k} \left\lceil \frac{2^n x_i h_i}{m_i} \right\rceil$$

$$r_n(\vec{m}; \vec{x}) = \left\lfloor 2^{-n} S_n(\vec{m}; \vec{x}) \right\rfloor$$

$$\xi_n(\vec{m}; \vec{x}) = 2^{-n} \left(S_n(\vec{m}; \vec{x}) \bmod 2^n \right)$$

$$e_n(\vec{m}; \vec{x}; a) = \sum_{i < k} x_i h_i [\vec{m}]_{\neq i} - r_n(\vec{m}; \vec{x}) [\vec{m}] \mod a$$

The laborious part:

prove lots of properties of r_n, ξ_n, e_n from first principles

Computing with CRR: example (I)

$$\vec{x} = \operatorname{CRR}_{\vec{m}}(X), \ \vec{y} = \operatorname{CRR}_{\vec{m}}(Y) \Longrightarrow \vec{x} + \vec{y} \pmod{\vec{m}} \text{ represents } (X + Y) \mod{\vec{m}}$$

Formalize without reference to X, Y:

Lemma

$$VTC^{0}(\text{imul}) \text{ proves: } n \geq |k|, \ \vec{z} = (\vec{x} + \vec{y}) \text{ mod } \vec{m}$$

$$\implies \exists c \in \{-1, 0, 1\} \text{ s.t.}$$

$$r_{n}(\vec{m}; \vec{z}) = r_{n}(\vec{m}; \vec{x}) + r_{n}(\vec{m}; \vec{y}) + c - \sum_{x_{i} + y_{i} \geq m_{i}} h_{i}$$

$$\xi_{n}(\vec{m}; \vec{z}) = \xi_{n}(\vec{m}; \vec{x}) + \xi_{n}(\vec{m}; \vec{y}) - c \pm 2^{-n}k$$

$$e_{n}(\vec{m}; \vec{z}; a) \equiv e_{n}(\vec{m}; \vec{x}; a) + e_{n}(\vec{m}; \vec{y}; a) - c[\vec{m}] \pmod{a}$$

Computing with CRR: example (II)

 r_n and e_n are discrete quantities \implies approximation better be exact for large enough n

Lemma

$$VTC^{0}$$
 (imul) proves: $n' \geq n \geq |k| + 2 + \sum_{i < k} |m_{i}| \implies$

$$r_{n}(\vec{m}; \vec{x}) = r_{n'}(\vec{m}; \vec{x})$$

$$e_{n}(\vec{m}; \vec{x}; \vec{a}) = e_{n'}(\vec{m}; \vec{x}; \vec{a})$$

$$\xi_{n}(\vec{m}; \vec{x}) = \xi_{n'}(\vec{m}; \vec{x}) \pm 2^{-n}k$$

The reconstruction procedure

Given \vec{m} , \vec{x} :

Fix large enough s, prime sequences \vec{a}_u , u < s, and put

$$\begin{aligned} \vec{w}_t &= \left(2^{-t} \prod_{u < t} \left(1 + [\vec{a}_u]\right)\right) e(\vec{m}; \vec{x}; \vec{m}, \vec{a}_{< t}) \mod \vec{m}, \vec{a}_{< t} \\ \vec{y}_t &= [\vec{a}_{< t}]^{-1} \left(\vec{w}_t \upharpoonright \vec{m} - e(\vec{a}_{< t}; \vec{w}_t \upharpoonright \vec{a}_{< t}; \vec{m})\right) \mod \vec{m} \\ b_t &\in \{-1, 0, 1, 2\} \quad \text{s.t.} \quad \vec{y}_t - 2\vec{y}_{t+1} \equiv \text{CRR}_{\vec{m}}(b_t) \end{aligned}$$

Define
$$\operatorname{Rec}(\vec{m}; \vec{x}) = \sum_{t < s} 2^t b_t$$

Analysis of CRR reconstruction

Let
$$\vec{x} = CRR_{\vec{m}}(X)$$

In the real world:

- $ightharpoonup \vec{w}_t$ represents $X \prod_{u < t} \frac{1 + [\vec{s}_u]}{2}$
- $ightharpoonup ec{y}_t$ represents $\left\lfloor X \prod_{u < t} \frac{1 + \left\lceil ec{a}_u \right\rceil}{2 \left\lceil ec{a}_u \right\rceil} \right\rfloor = \left\lfloor X 2^{-t} \right\rfloor$

In VTC^0 (imul):

Polylogarithmic cut

- 1 TC⁰, VTC⁰, and IMUL
- 2 Hesse-Allender-Barrington algorithm
- 3 Minutiae
- 4 Working with CRR
- 5 Polylogarithmic cut
- 6 Modular exponentiation
- 7 The grand scheme

The polylogarithmic cut

$$\mathcal{M} = \langle M_1, M_2, \in, |\cdot|, 0, 1, +, \cdot, < \rangle \vDash V^0$$

$$\implies \mathcal{M}_{\mathrm{pl}} = \langle M_{\mathrm{pl},1}, M_{\mathrm{pl},2}, \dots \rangle \text{ where}$$

$$M_{\mathrm{pl},1} = \{ x \in M_1 : \exists c \in \omega \ \mathcal{M} \vDash \exists w \ x \leq |w|^c \}$$

$$M_{\mathrm{pl},2} = \{ X \in M_2 : |X| \in M_{\mathrm{pl},1} \}$$

Using the idea of Nepomnjaščij's theorem:

- ► [Zam'97] (implicitly) $\mathcal{M} \models V^0 \implies \mathcal{M}_{pl} \models VL$
- $\qquad \qquad \blacksquare \text{ [M\"{u}l'13] } \mathcal{M} \vDash V^0 \implies \mathcal{M}_{\text{pl}} \vDash VNC^1$

Lemma

$$\mathcal{M} \vDash V^0 \implies \mathcal{M}_{\text{pl}} \vDash VNL$$

Polylogarithmic products

Lemma

$$VTC^0(\mathrm{imul})\subseteq \mathit{VL}$$

Corollary

For any constant c, V^0 can do:

- $ightharpoonup \prod_{i \le n} X_i \text{ if } \sum_i |X_i| \le |w|^c$
- $ightharpoonup |Y/X| \text{ if } |X|, |Y| \leq |w|^c$
- $ightharpoonup \prod_{i < n} a_i \mod m \text{ if } n \le |w|^c$

Modular exponentiation

- **1** TC^0 , VTC^0 , and IMUL
- 2 Hesse-Allender-Barrington algorithm
- 3 Minutiae
- 4 Working with CRR
- 5 Polylogarithmic cut
- 6 Modular exponentiation
- 7 The grand scheme

Main idea of [HAB'02]

To compute a^r for $a \in (\mathbb{Z}/m\mathbb{Z})^{\times}$:

- ▶ fix a large enough prime sequence \vec{d} , $d_i = O(\log n)$, $d_i \nmid n$
- $\triangleright x \mapsto x^{d_i}$ is an automorphism \implies **AC**⁰ inverse $x \mapsto x^{1/d_i}$
- ightharpoonup compute $a_i = a^{\lfloor n/d_i \rfloor} = a^{-(n \mod d_i)/d_i}$ (using $a^n = 1$)
- write $r \equiv u + \sum_{i} u_i \lfloor n/d_i \rfloor \pmod{n}$, $u_i = O(\log n)$, $u = O((\log n)^2)$
- $ightharpoonup a^r = a^u \prod_i a_i^{u_i} \text{ (using } a^n = 1\text{)}$

Analysis requires: modular exponentiation (chicken or egg?), Fermat's little theorem

Simplify the algorithm

Drop $a^{\lfloor n/d_i \rfloor}$, just use a^{1/d_i} directly!

- $ightharpoonup d = \prod_i d_i : n < d < n^{O(1)}$
- ▶ define $a^{x/d}$ for x < 2d using the CRR_d rank equation:

$$\frac{x}{d} = u + \sum_{i} \frac{u_i}{d_i} \implies a^{x/d} := a^u \prod_{i} (a^{1/d_i})^{u_i},$$

where $u_i = x[\vec{d}]_{\neq i}^{-1} \mod d_i = O(\log n), \ u = O(\log n)$

- ► WPHP $\implies a^{x/d}$ is t-periodic for some $t \le 2n$ \implies extend the definition of $a^{x/d}$ to all x with $a^{(x \mod t)/d}$
- ightharpoonup put $a^r = a^{(rd)/d}$

Modular exponentiation formalized

Theorem

 $V^0 + WPHP \subseteq VTC^0$ proves the totality of pow

Also extends to non-prime m & using conservativity, can do it in $I\Delta_0 + WPHP(\Delta_0)$:

Theorem

$$\exists \ \Delta_0 \ \text{definition of} \ a^r \ \text{mod} \ m \ \text{s.t.} \ I\Delta_0 + WPHP(\Delta_0) \vdash a^0 \equiv 1 \pmod{m}, \qquad a^{r+1} \equiv a^r a \pmod{m}$$

The grand scheme

- **1** TC^0 , VTC^0 , and IMUL
- 2 Hesse-Allender-Barrington algorithm
- 3 Minutiae
- 4 Working with CRR
- 5 Polylogarithmic cut
- 6 Modular exponentiation
- 7 The grand scheme

Cyclic generators

Still missing:
$$VTC^0 \stackrel{?}{\vdash} m$$
 prime $\to (\mathbb{Z}/m\mathbb{Z})^{\times}$ is cyclic $\Longrightarrow VTC^0 = VTC^0(\text{pow}) = VTC^0(\text{inul})$

Lemma

The following are equivalent over VTC^0 :

- ► IMUL
- ightharpoonup m prime $ightharpoonup (\mathbb{Z}/m\mathbb{Z})^{\times}$ is cyclic
- ► m, p primes, $a \not\equiv 1 \equiv a^p \equiv b^p \pmod{m}$ $\rightarrow \exists r$

Can we escape this vicious circle?

Fine-tune the parameters

IMUL[w]:

▶ $\exists \prod_{i \le n} X_i$ whenever $\sum_i |X_i| \le w$

imul[w]:

▶ $\exists \prod_{i \le n} a_i \mod m$ whenever $m \le w$ prime

Cyc[z, w]:

▶ $m \le z$ and p < w primes, $a \not\equiv 1 \equiv a^p \equiv b^p \pmod{m}$ $\rightarrow \exists r$

NB:
$$Cyc[z, w] \in \Sigma_0^B$$

$imul \rightarrow IMUL \rightarrow Cyc$

Lemma

 VTC^0 proves $\operatorname{imul}[w^3] \to IMUL[w]$

By inspection of the proof of $VTC^0(imul) \vdash IMUL$

Lemma

 VTC^0 proves $IMUL[w^2|z|] \rightarrow Cyc[z, w]$

Given $a \not\equiv 1 \equiv a^p \equiv b^p \pmod{m}$, construct the polynomial $f(x) \equiv \prod_{i < p} (x - a^i) \pmod{m}$

$$f(x) \equiv f(ax) \implies f(x) \equiv x^p - 1 \implies \prod_{i < p} (b - a^i) \equiv 0$$

$Cyc \rightarrow imul$

Lemma

For any
$$c$$
, $VTC^0 \vdash Cyc[z, w] \rightarrow \operatorname{imul}[\min\{z, w^c|z|^c\}]$

Mimick the proof of the structure theorem for finite abelian groups

```
m \le z prime, Cyc[z, w] \implies (\mathbb{Z}/m\mathbb{Z})^{\times} is a large cyclic group \times p-prime components for p \ge w \implies has a generating set of size O(|m|/|w|) \implies bit-size O(|m|^2/|w|) = O(|z|)
```

Finish the argument

Theorem

VTC⁰ proves IMUL

Proof: VTC⁰ proves

$$(w+1)^6|z|^3 \le z \wedge Cyc[z,w] \to Cyc[z,w+1]$$

 \implies by induction on w:

$$w^6|z|^3 \leq z \rightarrow Cyc[z, w]$$

Summary

- ► VTC⁰ proves IMUL
- ▶ VTC^0 proves RSUV-translation of Σ_0^b -MIN
- $ightharpoonup C_2^0 \equiv C_2^0 [div]$, proves Σ_0^b -MIN
- \blacktriangleright $I\Delta_0 + WPHP(\Delta_0)$ has a well-behaved Δ_0 definition of $a^r \mod m$

References

- P. Beame, S. Cook, H. Hoover: Log depth circuits for division and related problems, SIAM J. Comp. 15 (1986), 994–1003
- ► A. Chiu, G. Davida, B. Litow: Division in logspace-uniform **NC**¹, RAIRO Theoret. Inf. Appl. 35 (2001), 259–275
- S. Cook, P. Nguyen: Logical foundations of proof complexity, Cambridge Univ. Press, 2010
- W. Hesse, E. Allender, D. M. Barrington: Uniform constant-depth threshold circuits for division and iterated multiplication, J. Comp. System Sci. 65 (2002), 695–716
- ► E. Jeřábek: Open induction in a bounded arithmetic for **TC**⁰, Arch. Math. Logic 54 (2015), 359–394
- ► E. Jeřábek: Iterated multiplication in VTC⁰, arXiv:2011.03095 [cs.LO]

References (cont'd)

- ▶ J. Johannsen, C. Pollett: On proofs about threshold circuits and counting hierarchies (extended abstract), LICS, 1998, 444–452
- ▶ J. Johannsen: Weak bounded arithmetic, the Diffie-Hellman problem, and Constable's class *K*, LICS, 1999, 268–274
- J. Johannsen, C. Pollett: On the Δ₁^b-bit-comprehension rule, Logic Colloquium '98 (Proceedings), ASL, 2000, 262–280
- ► S.-G. Mantzivis: Circuits in bounded arithmetic part I, Ann. Math. Artif. Intel. 6 (1991), 127–156
- ▶ S. Müller: Polylogarithmic cuts in models of V⁰, Logical Methods in Comp. Sci. 9 (2013), no. 1
- D. Zambella: End extensions of models of linearly bounded arithmetic, Ann. Pure Appl. Logic 88 (1997), 263–277