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Finite sets and counting

Theories of arithmetic

» official objects: natural numbers

» encode all kinds of stuff: strings, graphs, circuits, ...

We can manipulate finite sets of such objects

The counting problem for a set X:

» Can the theory meaningfully determine the size #X7?
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Why bother?

Potential applications:

» counting arguments in combinatorics
e.g., Ramsey's theorem

» probabilistic arguments

» formalization of randomized algorithms,
randomized (and counting) complexity classes

» translation of arithmetic to propositional proofs
— propositional simulations
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Bounded arithmetic cheat sheet

Base theory PV;:

» objects: natural numbers (“in binary")
» symbols for all poly-time functions and relations

x| = [logy(x + 1)]
» induction for quantifier-free formulas ¢

©(0,.. )AYx(p(x,...) = p(x+1,...)) = Vxo(x,...)
T, = PV; + induction for X% formulas = PV,
W <tuHVe<th...Qx <t 0(X,...,X,Xx,...)
S, = PV + length-induction for ¥¥ formulas
©(0,...)AVx(p(x,...) = w(x+1,...)) = Vxp(|x],...)
T9=PV,;CS; C T;CS2 C T2CS3 C---
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One-sorted vs. two-sorted theories

Two-sorted bounded arithmetic:

» (unary/small/auxiliary) natural numbers
» finite sets (= binary strings = binary/large numbers)

one-sorted | two-sorted
numbers | sets (binary numbers)
logarithmic numbers | numbers (unary)
PV: | VPV
S, Th |V, TV
length induction | induction
induction | string induction

We are talking about finite sets of the “binary objects”
— prefer one-sorted theories to prevent confusion
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Representation of sets

Sets (sequences) X = {x; : i < n} encoded by numbers

» can only have logarithmic size
» straightforward to count by a PV-function

Bounded definable sets X = {x < a: ¢(x,p)}

» X specified inside the theory by a, p (¢ is fixed)

» © low complexity

e.g.: ¢ quantifier-free = P/poly sets

alternatively: given by a circuit C: {0,1}” — {0,1}, a =2"
» how to count them???
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Approximate counting

X ={x <2": C(x) =1} given by a circuit C: {0,1}" — {0,1}

Computing s = #X exactly is #P-complete

» Toda's theorem [T'89]: PH C P#P

» if we could define #X by a £ formula
—> #P C FPH and PH collapses

But we can approximate #X in PH!

» with additive error: S§—e2" < H#X <s+¢e2"
» with multiplicative error: (1 —¢)s < #X < (1+4¢)s

» error parameter ¢ = 1/m, m given in unary (e.g., € = n )

Goal: do that in bounded arithmetic
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PHP and WPHP

Pigeonhole principle:
a pigeonholes cannot accommodate b pigeons, b > a

Formal statement for relations (multifunctions) R:

mPHP®(R) =Vy < b3x < aR(y, x)
—3Jy <y <bIx<a(R(y,x)NR(y x))

mPHP?™! is an exact counting principle
not available in bounded arithmetic

Weak PHP (WPHP): b “much” larger than a
often b = 2%, b = 2a; we take b = a(1 + 1/n), n unary

Theorem [PWW'88, MPW'02]: T2 - mWPHP(X?)
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Variants of (W)PHP

Special cases where R or R™! is a function:
» injective (W)PHP @ _—
iPHP}(g) =Wy < b g(y) < a - 9
— 3y <y <bgly) =gy
» surjective (“dual”) (W)PHP
SPHPE(f) = Ty < b¥x < a f(x) # y
» retraction-pair (W)PHP

rPHP®(f,g) =Vy < bg(y) < a— Jy < bf(g(y)) #y

For some reasons, our preferred variant is sSWPHP (or r'WPHP)
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Counting with WPHP

Basic idea: witness that |X| < a by exhibiting
a surjection f: [a] = X (for sWPHP)

or
an injection f: X < [a] (for IWPHP)

Trouble: Where shall we get these functions from?

Ostensibly, WPHP is a passive counting principle:
it says something is impossible, it does not supply any
counting functions

Ad hoc counting arguments using WPHP:

> [PWW'88]: T3° proves the existence of oo many primes
» [Pud'90]: T$° proves Ramsey's theorem

Can we develop a more general method?
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Two general setups

Approximate counting with additive error

> estimate the size of X C [2"] within error 2" /m
= estimate Pr,,[x € X] within error 1/m

» AP sets can be counted in
APC, == PV, + sWPHP(PV) C T2

» based on pseudorandom generators
Approximate counting with multiplicative error

» estimate the size of X C 2" within error | X|/m

» 3 ° sets can be counted in
APC, := T} + sSWPHP(FPNP) C T3
» based on linear hashing
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Main strategy

Goal: X C [2"] given by a circuit
~> approximate |X| with error £2” (think ¢ = 1/n°)

> estimate Pr,on[x € X] with error £ by drawing O(1/¢)
independent random samples
= randomized poly-time algorithm

» derandomize using the Nisan—Wigderson generator

How does the theory know that the result is not just a
meaningless number?

» analysis of the generator can be carried out in PV,
= explicit “counting functions” for X!
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Hard Boolean functions

Nisan—-Wigderson generator [NW'94]

> NW,: {0,1}c"8" — {0 1}" computable in time n°®)

» “fools” circuits C: {0,1}" — {0,1} of size n°1)
Needs access to a hard Boolean function:

> h:{0,1} — {0,1}, k =dlogn

» h cannot be approximated by 2%/%-size circuits on

> 1 ++ 274 fraction of inputs

APC; proves: (truth tables of) such hard functions exist!

» simple counting argument
(count circuits and error vectors)

» enumerate “easy functions’ by a poly-time function
apply sWPHP
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Size comparison with error

Naive idea: |X| < |Y] iff there is a surjection Y — X
What we get from analysing NW is more complicated:
Definition: X, Y C [2"] definable sets, ¢ > 0
» X <. Y iff there exist v > 0 and a circuit
C:[v] x (YU[2"]) = [v] x X
> X~ Yiff X YAY <X
> notation: n € Log <= Jan=|a| (i.e., 2" exists)

Theorem [J'07]: APCy proves: If X is defined by a circuit and
e~! € Log, there exists s such that X ~. [s].

(we also get injections going the other way)
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Working with <.

Basic toolbox for using approximate counting:

APC; proves

» <. behaves well wrt XU Y, XY, XxY, ...

» averaging principle

("if Prey[A(x,y)] > p, there is x s.t. Pr,[A(x,y)] > p")
Chernoff-Hoeffding inequality

v

» inclusion-exclusion principle
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Complexity of <.

In more involved arguments, we might need to

» use <. inside an induction formula,

» define other sets using <., etc.
— need a bound on the complexity of <.

> as it stands: X <. Y is an unbounded JM5-formula

» ! c Logand X, Y are defined by circuits
= it is X5 by the Theorem

» for parametric families, it is P/ poly:
e~ ! € Log, family {X, | u < a} of subsets of [27]
defined by a circuit C(u, x): [a] x [2"] — [2]
= a circuit S5z: [a] — [2"] s.t. X, ~. [Sz(u)]
= can appear in induction formulas in APC;
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Relativization

Relativized bounded arithmetic:

» new predicate o(x) w/o any specific axioms
represents an arbitrary oracle A

» PV(a)-functions, ¥%(«) formulas
theories PVy(a), Th(a), Sh(a), ...

The approximate counting machinery relativizes:

» APC;(a) can count PV(«)-definable sets (“P#/ poly”)
Specializing o with ©? formulas:

> APC;y; = Th +sWPHP(PV, 1) C TS5

can count PV, ;-definable sets (“ ,+1/ poly”)
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Applications

» formalization of randomized complexity classes
(e.g., TERP, BPP, APP, MA, AM)

» formalization of specific randomized algorithms
(e.g., Rabin—Miller primality testing algorithm,
[LC'12] Edmonds and Mulmuley—Vazirani-Vazirani
perfect matching algorithms)

» as a tool for working with probabilities
(e.g., [Pich'15] formalization of the PCP theorem)
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Overview

Counting X C [2"] with error £|X| rather than £2"

> witness that | X| < s using linear hash functions
(Sipser’s coding lemma)

> equivalent to existence of suitable surjective
“counting functions”

v

asymmetric: no witness for [X| > s |

» can count “sparse” sets
= useful for inductive counting arguments
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Linear hashing

Let X C[2"] =F5, |[X| =s

> A€ Fy*" random matrix —>
E#4{{x,y} € (J) : Ax=Ay} =27(3)

> 2t > s? = random A gives an injection X — [2!] = [F}
=— we can distinguish sets of size < /s from size > s

Smaller gap: Sipser's coding lemma [Sip'83]
> A€ Fy*" separates x from X if Ax # Ay forall y € X ~ {x}
> {A;}i<k isolates X if each x € X sep. from X by some A;
Theorem: t = k = [logs] +1 = random {A;};~« isolates X

» we can distinguish sets of size < %s from size = slogs
» to get s(1 +¢): apply to suitable Cartesian power X¢

Emil Jerabek | Approximate counting in bounded arithmetic | Constructive Complexity Theory 2025, Prague 19:24




Formalization

For X C [2"] a definable set, ¢! € Log, s < 2™

X Zos <= F{Ai}icr € (FS")! that isolates X9 C [2]
where d = 12|5|[e71]2, t = |59| 4+ 1 for some 0 < 5§ < s
(or: s=0and X = 9)

Complexity:

> X Y’-definable (NP/poly) = X <. sis X5
> we can essentially make it 12 (coNP/ poly)
for a parametric family of ¥ sets
= use in induction arguments, ...
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Equivalence with surjections

Key result for manipulating =:
equivalent to existence of PV, (FPNP/ poly) surjections

Theorem [J'09]: APC, proves for 3 ?-definable X:

> X 2. s = 3 PVy-retraction pair [[s(1 +¢)|9] == X
» if 3 PV,-surjection® [rs¢] — [r] x X for r > 0, e € Log,

then X =. s, and
Pr[{A;};<t does not isolate X"} jo’:'f 2/3

where d, t are as in the definition of =

¥b . . . .. .
= '= counting with additive error relativized with a Zf oracle

*with some technical condition
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Properties of approximate counting

APC, proves (for X2 sets):

> <. agrees with exact counting and <. where possible

» <. behaves well wrt XUY, X x Y
(even for logarithmically many terms)

» averaging principles

» approximate increasing enumeration:
There are t,s s.t. s <t < [s(1+¢)|, and non-decreasing
PV,-retraction pairs

f g
[t] < > X y b) [S]
f/ g/
s.t. f, g are almost 1-to-1, and

2] < g(f(x)) < [2x]

Emil Jerabek | Approximate counting in bounded arithmetic | Constructive Complexity Theory 2025, Prague 22:24




Relativization

Again, everything relativizes:
> APCy(a) can count Y?(c)-definable sets (“NP*/ poly”)
Specializing a with ¥2 | formulas (i > 1):

> APC,;H = T’2 + SWPHP(PVH_]_) g Té—i—Z
can count Y "-definable sets (£F/ poly)
» (recall: with additive error, APC;.1 can do Aﬁl/ poly)
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Applications

» formalization of combinatorial counting arguments
(e.g., Ramsey's theorem, tournament principle)
> improved collapse of hierarchies:
if T, =S5 ’lcjhen T4 =T, proves X7, C A, /poly and
[BKT'14] APC, proves the ordering principle
» [BKZ'15] collapse of constant-depth proofs with
modular-counting gates

(formalization of Valiant-Vazirani and Toda's theorem in
APC, %)

\4
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