
Approximate counting
in bounded arithmetic

Emil Jeřábek Institute of Mathematics
Czech Academy of Sciences

jerabek@math.cas.cz
https://users.math.cas.cz/~jerabek/

Constructive Complexity Theory 2025

STOC TheoryFest workshop, Prague, June 2025



Plan for talk

1 Counting in arithmetic

2 Weak pigeonhole principle

3 Counting with additive error

4 Counting with multiplicative error



Counting in arithmetic

1 Counting in arithmetic

2 Weak pigeonhole principle

3 Counting with additive error

4 Counting with multiplicative error



Finite sets and counting

Theories of arithmetic

I official objects: natural numbers
I encode all kinds of stuff: strings, graphs, circuits, . . .

We can manipulate finite sets of such objects

The counting problem for a set X :

I Can the theory meaningfully determine the size #X?
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Why bother?

Potential applications:

I counting arguments in combinatorics
e.g., Ramsey’s theorem

I probabilistic arguments
I formalization of randomized algorithms,

randomized (and counting) complexity classes
I translation of arithmetic to propositional proofs

=⇒ propositional simulations
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Bounded arithmetic cheat sheet

Base theory PV1:

I objects: natural numbers (“in binary”)
I symbols for all poly-time functions and relations
|x | = dlog2(x + 1)e

I induction for quantifier-free formulas ϕ

ϕ(0, . . . )∧∀x (ϕ(x , . . . )→ ϕ(x + 1, . . . ))→ ∀x ϕ(x , . . . )

Ti
2 = PV1 + induction for Σb

i formulas ≡ PVi+1

∃~x1 ≤ t1 ∀~x2 ≤ t2 . . .Q~xi ≤ ti θ(~x1, . . . , ~xi , x , . . . )

Si
2 = PV1 + length-induction for Σb

i formulas

ϕ(0, . . . ) ∧ ∀x (ϕ(x , . . . )→ ϕ(x + 1, . . . ))→ ∀x ϕ(|x |, . . . )

T0
2 ≡ PV1 ⊆ S1

2 ⊆ T1
2 ⊆ S2

2 ⊆ T2
2 ⊆ S3

2 ⊆ · · ·
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One-sorted vs. two-sorted theories

Two-sorted bounded arithmetic:
I (unary/small/auxiliary) natural numbers
I finite sets (= binary strings = binary/large numbers)

one-sorted two-sorted
numbers sets (binary numbers)

logarithmic numbers numbers (unary)
PV1 VPV

Si
2, T

i
2 Vi , TVi

length induction induction
induction string induction

We are talking about finite sets of the “binary objects”
=⇒ prefer one-sorted theories to prevent confusion

Emil Jeřábek Approximate counting in bounded arithmetic Constructive Complexity Theory 2025, Prague 4:24



Representation of sets

Sets (sequences) X = {xi : i < n} encoded by numbers

I can only have logarithmic size
I straightforward to count by a PV-function

Bounded definable sets X = {x < a : ϕ(x , p)}

I X specified inside the theory by a, p (ϕ is fixed)
I ϕ low complexity

e.g.: ϕ quantifier-free =⇒ P/poly sets
alternatively: given by a circuit C : {0, 1}n → {0, 1}, a = 2n

I how to count them???
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Approximate counting

X = {x < 2n : C (x) = 1} given by a circuit C : {0, 1}n → {0, 1}

Computing s = #X exactly is #P-complete

I Toda’s theorem [T’89]: PH ⊆ P#P

I if we could define #X by a Σb
i formula

=⇒ #P ⊆ FPH and PH collapses

But we can approximate #X in PH !

I with additive error: s − ε2n ≤ #X ≤ s + ε2n

I with multiplicative error: (1− ε)s ≤ #X ≤ (1 + ε)s

I error parameter ε = 1/m, m given in unary (e.g., ε = n−c)

Goal: do that in bounded arithmetic
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PHP and WPHP

Pigeonhole principle:
a pigeonholes cannot accommodate b pigeons, b > a

Formal statement for relations (multifunctions) R :

mPHPb
a(R) = ∀y < b ∃x < a R(y , x)

→ ∃y < y ′ < b ∃x < a
(
R(y , x) ∧ R(y ′, x)

)
mPHPa+1

a is an exact counting principle
not available in bounded arithmetic

Weak PHP (WPHP): b “much” larger than a
often b = a2, b = 2a; we take b = a(1 + 1/n), n unary

Theorem [PWW’88, MPW’02]: T 2
2 ` mWPHP(Σb

1)
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Variants of (W)PHP

Special cases where R or R−1 is a function:

a
b

f

g

I injective (W)PHP

iPHPb
a(g) = ∀y < b g(y) < a

→ ∃y < y ′ < b g(y) = g(y ′)

I surjective (“dual”) (W)PHP

sPHPb
a(f ) = ∃y < b ∀x < a f (x) 6= y

I retraction-pair (W)PHP

rPHPb
a(f , g) = ∀y < b g(y) < a→ ∃y < b f (g(y)) 6= y

For some reasons, our preferred variant is sWPHP (or rWPHP)
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Counting with WPHP

Basic idea: witness that |X | ≤ a by exhibiting

a surjection f : [a]� X (for sWPHP)

or
an injection f : X ↪→ [a] (for iWPHP)

Trouble: Where shall we get these functions from?

Ostensibly, WPHP is a passive counting principle:
it says something is impossible, it does not supply any
counting functions

Ad hoc counting arguments using WPHP:
I [PWW’88]: T∞2 proves the existence of ∞ many primes
I [Pud’90]: T∞2 proves Ramsey’s theorem

Can we develop a more general method?
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Two general setups

Approximate counting with additive error

I estimate the size of X ⊆ [2n] within error 2n/m
= estimate Prx<a[x ∈ X ] within error 1/m

I ∆b
1 sets can be counted in

APC1 := PV1 + sWPHP(PV) ⊆ T2
2

I based on pseudorandom generators

Approximate counting with multiplicative error

I estimate the size of X ⊆ 2n within error |X |/m
I Σb

1 sets can be counted in
APC2 := T1

2 + sWPHP(FPNP) ⊆ T3
2

I based on linear hashing
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Main strategy

Goal: X ⊆ [2n] given by a circuit
; approximate |X | with error ε2n (think ε = 1/nc)

I estimate Prx<2n [x ∈ X ] with error ε by drawing O(1/ε)
independent random samples
=⇒ randomized poly-time algorithm

I derandomize using the Nisan–Wigderson generator

How does the theory know that the result is not just a
meaningless number?

I analysis of the generator can be carried out in PV1

=⇒ explicit “counting functions” for X !
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Hard Boolean functions

Nisan–Wigderson generator [NW’94]

I NWh : {0, 1}c log n → {0, 1}n computable in time nO(1)

I “fools” circuits C : {0, 1}n → {0, 1} of size nO(1)

Needs access to a hard Boolean function:

I h : {0, 1}k → {0, 1}, k = d log n
I h cannot be approximated by 2k/4-size circuits on
≥ 1

2 + 2−k/4 fraction of inputs

APC1 proves: (truth tables of) such hard functions exist!

I simple counting argument
(count circuits and error vectors)

I enumerate “easy functions” by a poly-time function
apply sWPHP
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Size comparison with error

Naïve idea: |X | ≤ |Y | iff there is a surjection Y � X

What we get from analysing NW is more complicated:

Definition: X ,Y ⊆ [2n] definable sets, ε ≥ 0

I X �ε Y iff there exist v > 0 and a circuit

C : [v ]× (Y ∪̇ [ε2n])� [v ]× X

I X ≈ε Y iff X �ε Y ∧ Y �ε X

I notation: n ∈ Log ⇐⇒ ∃a n = |a| (i.e., 2n exists)

Theorem [J’07]: APC1 proves: If X is defined by a circuit and
ε−1 ∈ Log, there exists s such that X ≈ε [s].

(we also get injections going the other way)
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Working with �ε
Basic toolbox for using approximate counting:

APC1 proves

I �ε behaves well wrt X ∪ Y , X r Y , X × Y , . . .
I averaging principle

(“if Prx ,y [A(x , y)] ≥ p, there is x s.t. Pry [A(x , y)] ≥ p”)
I Chernoff–Hoeffding inequality
I inclusion-exclusion principle
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Complexity of �ε
In more involved arguments, we might need to

I use �ε inside an induction formula,
I define other sets using �ε, etc.

=⇒ need a bound on the complexity of �ε

I as it stands: X �ε Y is an unbounded ∃Πb
2-formula

I ε−1 ∈ Log and X ,Y are defined by circuits
=⇒ it is Σb

2 by the Theorem
I for parametric families, it is P/ poly:
ε−1 ∈ Log, family {Xu | u < a} of subsets of [2n]
defined by a circuit C (u, x) : [a]× [2n]→ [2]
=⇒ a circuit Sz : [a]→ [2n] s.t. Xu ≈ε [Sz(u)]
=⇒ can appear in induction formulas in APC1
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Relativization

Relativized bounded arithmetic:

I new predicate α(x) w/o any specific axioms
represents an arbitrary oracle A

I PV(α)-functions, Σb
i (α) formulas

theories PV1(α), Ti
2(α), Si

2(α), . . .

The approximate counting machinery relativizes:

I APC1(α) can count PV(α)-definable sets (“PA/ poly”)

Specializing α with Σb
i formulas:

I APCi+1 = Ti
2 + sWPHP(PVi+1) ⊆ Ti+2

2
can count PVi+1-definable sets (“∆P

i+1/ poly”)

Emil Jeřábek Approximate counting in bounded arithmetic Constructive Complexity Theory 2025, Prague 16:24



Applications

I formalization of randomized complexity classes
(e.g., TFRP, BPP, APP, MA, AM)

I formalization of specific randomized algorithms
(e.g., Rabin–Miller primality testing algorithm,
[LC’12] Edmonds and Mulmuley–Vazirani–Vazirani
perfect matching algorithms)

I as a tool for working with probabilities
(e.g., [Pich’15] formalization of the PCP theorem)
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Overview

Counting X ⊆ [2n] with error ε|X | rather than ε2n

I witness that |X | ≤ s using linear hash functions
(Sipser’s coding lemma)

I equivalent to existence of suitable surjective
“counting functions”

I asymmetric: no witness for |X | ≥ s !
I can count “sparse” sets

=⇒ useful for inductive counting arguments
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Linear hashing

Let X ⊆ [2n] = Fn
2, |X | = s

I A ∈ Ft×n
2 random matrix =⇒

E #
{
{x , y} ∈

(
X
2

)
: Ax = Ay

}
= 2−t

(
s
2

)
I 2t ≥ s2 =⇒ random A gives an injection X ↪→ [2t ] = Ft

2
=⇒ we can distinguish sets of size ≤

√
s from size > s

Smaller gap: Sipser’s coding lemma [Sip’83]

I A ∈ Ft×n
2 separates x from X if Ax 6= Ay for all y ∈ X r {x}

I {Ai}i<k isolates X if each x ∈ X sep. from X by some Ai

Theorem: t = k = dlog se+ 1 =⇒ random {Ai}i<k isolates X

I we can distinguish sets of size ≤ 1
4s from size & s log s

I to get s(1± ε): apply to suitable Cartesian power X d
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Formalization

For X ⊆ [2n] a definable set, ε−1 ∈ Log, s ≤ 2n:

X -ε s ⇐⇒ ∃{Ai}i<t ∈ (Ft×n
2 )t that isolates X d ⊆ [2nd ]

where d = 12|s̃|dε−1e2, t = |s̃d |+ 1 for some 0 < s̃ ≤ s
(or: s = 0 and X = ∅)

Complexity:

I X Σb
1-definable (NP/poly) =⇒ X �ε s is Σb

2

I we can essentially make it Πb
1 (coNP/ poly)

for a parametric family of Σb
1 sets

=⇒ use in induction arguments, . . .
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Equivalence with surjections

Key result for manipulating -:
equivalent to existence of PV2 (FPNP/ poly) surjections

Theorem [J’09]: APC2 proves for Σb
1-definable X :

I X -ε s =⇒ ∃ PV2-retraction pair [bs(1 + ε)cd ] −�←−↩ X d

I if ∃ PV2-surjection∗ [r se ]� [r ]× X e for r > 0, e ∈ Log,
then X -ε s, and

Pr
[
{Ai}i<t does not isolate X d

]
�Σb

1
0 2/3

where d , t are as in the definition of -

�Σb
1

0 = counting with additive error relativized with a Σb
1 oracle

∗with some technical condition
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Properties of approximate counting

APC2 proves (for Σb
1 sets):

I -ε agrees with exact counting and �ε where possible
I -ε behaves well wrt X ∪ Y , X × Y

(even for logarithmically many terms)
I averaging principles
I approximate increasing enumeration:

There are t, s s.t. s ≤ t ≤ bs(1 + ε)c, and non-decreasing
PV2-retraction pairs

[t]
f

−−−−−�←−−−−−↩
f ′

X
g

−−−−−�←−−−−−↩
g ′

[s]

s.t. f , g are almost 1-to-1, and⌊
s
t
x
⌋
≤ g(f (x)) ≤

⌈
s
t
x
⌉
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Relativization

Again, everything relativizes:

I APC2(α) can count Σb
1(α)-definable sets (“NPA/ poly”)

Specializing α with Σb
i−1 formulas (i ≥ 1):

I APCi+1 = Ti
2 + sWPHP(PVi+1) ⊆ Ti+2

2
can count Σb

i -definable sets (ΣP
i / poly)

I (recall: with additive error, APCi+1 can do ∆P
i+1/ poly)
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Applications

I formalization of combinatorial counting arguments
(e.g., Ramsey’s theorem, tournament principle)

I improved collapse of hierarchies:
if Ti

2 = Si+1
2 , then Ti

2 = T2 proves ΣP
i+1 ⊆ ∆P

i+1/ poly and
PH = Bool(ΣP

i+1)

I [BKT’14] APC2 proves the ordering principle
I [BKZ’15] collapse of constant-depth proofs with

modular-counting gates
(formalization of Valiant–Vazirani and Toda’s theorem in
APC2

⊕pP)
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