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Parameters in induction axioms

In arithmetic, induction (and other) schemata usually allow
formulas with free parameters:

©(0,y) AVx (@(x,y) = o(x+1,y)) = Vxp(x,y)

Examples: 1¥;, S5, Ti, ...
For full induction, this makes no difference.

What about fragments?
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Strong fragments

Notation: /T~ = induction for parameter-free [-formulas

A lot is known about /X, /M-: [KPD'88, B'97, B'99, .. .]

» I, = 1X, — 1Y,
M. ., — I, —In;
1% ,+1 and IT17 are incomparable

» X, is X, p-conservative over X
IN..; is B(X,41)-conservative over /X

» Unlike /%, neither /X, nor IT1 is finitely axiomatizable

» |X, is equivalent to the X, uniform reflection principle
IT~ can be characterized using local reflection principles

» /X and IT1; are intimately related to induction rules
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Theories and rules

We consider theories axiomatized not just by axioms, but by
more general rules of the form

L1y -5 Pk
— (%)
¥

Let T be an ordinary FO theory, and R a set of rules:

» [T, R] denotes the closure of T under unnested R-rules
(axiomatized by T + those p s.t. THF w1 A+ A k)

> [T,Rlo:=T,[T,Rlns1:=[[T,R]n R]
T+R:=U,IT,R],

» Ris reducible to R' (R < R")if [T,R] C [T,R] forall T
» R and R’ are equivalent (R=R)ifR<R' <R
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Induction rules

©(0)  p(x) = p(x +1)
¢(x)
Notation: /TR T =%, M,

» ITR is equivalent to its parameter-free variant

» [T~ is the least theory whose all extensions are closed
under /TR

» conservation results for /T~ follow from
conservation results for /TR

» T+1%,is M, 1-conservative over T + /X" for T C I,
» [T, IR = [T, M5 ] for T CM,q UL,;1 (essentially)

[B'97]
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Bounded arithmetic

Parameter-free induction and rules in weak fragments:

» [K'90] IE; is 3VE;-conservative over IE;”

» [BI'92] studied ¥ parameter-free rules

» [CFL'09] proved conservation results for 3-? rules and
parameter-free schemata

This makes a rather patchy knowledge:

» 117 rules and parameter-free schemata?
» nesting (number of instances)?

» reflection principles?
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This talk

On each level i > 0 of Buss's hierarchy, we can consider

the following rules and parameter-free schemata
(along with standard T,, S;):

A

> S b_PINDR, $:b-PIND~
» Mb-PINDR, 1Nb-PIND~
> SP_INDR, $b-IND-
» [1P-INDR, 11P-IND~

We will try to systematically investigate their properties
Warning: work in progress
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Why these?

» Siand Tj can be equivalently axiomatized by various
other schemata (LIND, MIN, ...)

» A single schema can be rulified or deprived of parameters
in several different ways

» Fortunately, most variants turn out to be equivalent to
one of the 10 mentioned

» A few pathological exceptions: LIND™
» In particular:

r-(P)IND®™ =r-(P)IND®, T =3%° 1P
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Basic reductions

One can check with varying degree of easiness:
» T-(P)IND® < T-(P)IND™ < T-(P)IND
> 12-(P)INDY/ ™) < 56 (P)INDF/)
» M-PINDR/=) < T-IND(R/-)
» S INDWR/-) < 16, -PIND(R/-)

» T =35-IND < $b,,-PINDR

> In fact, Tj = PV4 + X2 ,-PINDR
> However, likely &2, -PINDR ¢ T}
» Similar situation: PV1 + Zb INDR = PV, + 1P
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Axiom complexity

> S and Tj are finite V32, | theories

> ; (P)IND is V50 / Vsl
[1b-(P)IND® is V32 / Wb |

> Sb-(P)IND™ is JMP v V3P
fb-(P)IND ™ is 3M1b v b |

> f15-(P)IND~ is also V3, |: equivalent to

Vx (£(0) AVy < x(p(y) = @(y +1)) = ¢(x))

> This doesn’t work for 5-2-(P)IND~
—presumably not even VX5 ?

» [-(P)IND~ appear not to be finitely axiomatizable
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The following was proved by [CFL'09], based on [K'90,BI'92]:

If Tis VEIZ,+1, then T + T} (S}) is V5 P-conservative
over T + $b-(P)INDR

> T} (S}) is 35 b-conservative over ¥-b-(P)IND~
> If Tis V3P, T+ |_|,+1 PINDR = T + $->-INDR
> [Buss]: ... and T + 32 -PINDR = T + T}




If TisV3b, then T + Si*! (S)) is V352 ,-conservative
over T + b-(P)INDR.

S (S)) is gff’ﬂ vVEIf?_l conservative
over [2-(P)IND~.




Conservative fragments of S,

theory axiom. by cons. under S;™* for

Ve,

PV, +3b _PIND— | 33° . vVsb . .
1 i+1 i+2 i+1 32?4_3 v VHZ?_H

PV; + 5, -PINDR

— T Vil V3P,

35b, v vED

PV; + 16, -PIND~ . 35b, v yIEh
VP,
PV + ¥ b-IND~ 33b Vs S) L IAVEE) e
PV, + b, -PINDR . .
L+ s b VE)N

= PV, + 52-INDR ' '
I VY,
V2P
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Nesting of rules

For I = %2 1%, every ¢ € [T,T-(P)INDR] can be proved
using k instances of -(P)INDR

Theorem

> If Tis VIl : T +1b-(P)INDR = [T, 112-(P)INDR]
> If Tis V3b: T+ $b-(P)INDR = [T, ¥b-(P)INDR]

Moreover, if T + ff’—lNDRl— o(x) € b,
there are t(x) and ¥(y) € X? s.t.

T = (0) AVy (¥(y) — ¥(y +1))
PV1 = 1(t(x)) = ¢(x)

Similarly for PINDR
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Parameter-free conservativity

Conservativity of T + '-(P)IND over T + '-(P)INDF implies
conservativity of T + I-(P)IND~ over T + '-(P)INDR

We can do better by a direct argument:

Theorem

Let T =32 1% and T be of any complexity:
» T +T-(P)IND™ is VI -conservative over
T + I-(P)INDR
» All VI consequences of T + arbitrary k instances
of I-(P)IND~ are in [T,[-(P)INDF],

If [-(P)IND~ is finitely axiomatizable, there is k s.t.
T + [-(P)INDR = [T, T-(P)INDR]; for every T
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Propositional proof systems

G; = X7-fragment of quantified propositional sequent calculus
RFN;(P) = “every P-provable 7 sequent is valid"
¢(x) € £ = propositional translations [].(po; - - - , Pr1)
Definition
Let £ € 3b.

» G;[¢] denotes G; with extra initial sequents

= [[é]]n(A07 v 7An71)7

where Ay, ..., A, 1 are quantifier-free

» G/[¢] is its tree-like version
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By extension of standard results, one can show easily

Let &, € 3P,
> If T3 (S)) + Vx&(x) F ¢(x), then (PV;-provably)
there are poly-size G;[¢] (GF[£]) proofs of [¢],
» TJ (S3) + Vx&(x) proves RFN,-(G,.(*)[g])




Induction rules vs. reflection principles

Theorem

The rules on the LHS are equivalent to the rules on the
RHS for ¢ € Y%

£2-(P)INDR  x£(x) / RFNi(G[4])
SP(P)IND~ Vx £(x) = REN;(G[¢])
f2-(P)INDR  Wx&(x) / RFN;_1(G7[¢])
f12-(P)IND~ Vx £(x) = RFN;_1(G™[¢])
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Finite closure

Recall: If [ = %2 11> and T is V52, then
T +T-(P)INDR = [T, T-(P)INDR]

The equivalence with reflection rules implies

Corollary

IfF T =52 b and T = PV; +¥x&(x) with £ € £2, then
T + [-(P)INDR is finitely axiomatizable:
T + £2-(P)INDR = PV; + RFN;(G™M[¢])
T + N5-(P)INDR = T + RFN,_1(G[¢])
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Separations?

Any unexpected reduction or inclusion would subsume one of
(i) PV 4+ NP-INDR C ]

G Sy C NP ,-IND-

f15-PIND~ C PV; + 1%, ,-INDR

G [NP-PINDR < T/ — Mb-PIND- C T/} = Gi]

-+ some exceptional cases on the lowest level of the hierarchy

We want to make sure that (i)—(ii are implausible
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Separations? (cont’d)

Most extra reductions/inclusions are false when relativized:

» essentially, one can simulate parameters by the oracle
Ala) F B (o) = A(a)F B(a)
» feels like cheating

Unrelativized complexity consequences:

() Gj <p Gi—1, Gl; < Gliy
) pEloznl _ pEloW] pyy — pEl[00)]

? Seems quite subtle
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