Parameter-free induction in bounded arithmetic

Emil Jeřábek

jerabek@math.cas.cz

http://math.cas.cz/~jerabek/

Institute of Mathematics of the Academy of Sciences, Prague

Proof Complexity 2014, Vienna, July 2014

Parameters in induction axioms

In arithmetic, induction (and other) schemata usually allow formulas with free parameters:

$$\varphi(0,y) \land \forall x (\varphi(x,y) \rightarrow \varphi(x+1,y)) \rightarrow \forall x \varphi(x,y)$$

Examples: $I\Sigma_i$, S_2^i , T_2^i , ...

For full induction, this makes no difference.

What about fragments?

Strong fragments

Notation: $I\Gamma^- = \text{induction for parameter-free }\Gamma\text{-formulas}$

A lot is known about $I\Sigma_n^-$, $I\Pi_n^-$: [KPD'88, B'97, B'99, ...]

- $\begin{array}{c} \blacktriangleright \ I\Sigma_n \to I\Sigma_n^- \to I\Sigma_{n-1} \\ I\Pi_{n+1}^- \to I\Sigma_n^- \to I\Pi_n^- \\ I\Sigma_{n+1} \ \text{and} \ I\Pi_n^- \ \text{are incomparable} \end{array}$
- ▶ $I\Sigma_n$ is Σ_{n+2} -conservative over $I\Sigma_n^ I\Pi_{n+1}^-$ is $\mathcal{B}(\Sigma_{n+1})$ -conservative over $I\Sigma_n^-$
- ▶ Unlike $I\Sigma_n$, neither $I\Sigma_n^-$ nor $I\Pi_n^-$ is finitely axiomatizable
- ▶ $I\Sigma_n$ is equivalent to the Σ_{n+1} uniform reflection principle $I\Gamma^-$ can be characterized using local reflection principles
- ▶ $I\Sigma_n^-$ and $I\Pi_n^-$ are intimately related to induction rules

Theories and rules

We consider theories axiomatized not just by axioms, but by more general rules of the form

$$\frac{\varphi_1, \dots, \varphi_k}{\varphi} \tag{*}$$

Let T be an ordinary FO theory, and R a set of rules:

- ► [T, R] denotes the closure of T under unnested R-rules (axiomatized by T + those φ s.t. $T \vdash \varphi_1 \land \cdots \land \varphi_k$)
- $[T, R]_0 := T, [T, R]_{n+1} := [[T, R]_n, R]$ $T + R := \bigcup_n [T, R]_n$
- ▶ R is reducible to R' ($R \le R'$) if $[T, R] \subseteq [T, R']$ for all T
- ▶ R and R' are equivalent $(R \equiv R')$ if $R \leq R' \leq R$

Induction rules

$$\frac{\varphi(0) \qquad \varphi(x) \to \varphi(x+1)}{\varphi(x)}$$

Notation: $I\Gamma^R$, $\Gamma = \Sigma_n$, Π_n

- $ightharpoonup I\Gamma^R$ is equivalent to its parameter-free variant
- IΓ⁻ is the least theory whose all extensions are closed under IΓ^R
 - conservation results for /Γ⁻ follow from conservation results for /Γ^R
- ▶ $T + I\Sigma_n$ is Π_{n+1} -conservative over $T + I\Sigma_n^R$ for $T \subseteq \Pi_{n+2}$
- ▶ $[T, I\Sigma_n^R] = [T, I\Pi_{n+1}^R]$ for $T \subseteq \Pi_{n+1} \cup \Sigma_{n+1}$ (essentially)

[B'97]

Bounded arithmetic

Parameter-free induction and rules in weak fragments:

- ▶ [K'90] IE_i is $\exists \forall E_i$ -conservative over IE_i^-
- ▶ [Bl'92] studied Σ_i^b parameter-free rules
- ► [CFL'09] proved conservation results for $\hat{\Sigma}_i^b$ rules and parameter-free schemata

This makes a rather patchy knowledge:

- $ightharpoonup \hat{\Pi}_i^b$ rules and parameter-free schemata?
- nesting (number of instances)?
- reflection principles?

This talk

On each level i > 0 of Buss's hierarchy, we can consider the following rules and parameter-free schemata (along with standard T_2^i , S_2^i):

- $\triangleright \hat{\Sigma}_{i}^{b}$ -PIND^R, $\hat{\Sigma}_{i}^{b}$ -PIND⁻
- $\triangleright \hat{\Pi}_{i}^{b}-PIND^{R}, \hat{\Pi}_{i}^{b}-PIND^{-}$
- $\triangleright \hat{\Sigma}_{i}^{b}$ -IND^R, $\hat{\Sigma}_{i}^{b}$ -IND⁻
- $\blacktriangleright \hat{\Pi}_{i}^{b}$ -IND^R, $\hat{\Pi}_{i}^{b}$ -IND⁻

We will try to systematically investigate their properties Warning: work in progress

Why these?

- ▶ S_2^i and T_2^i can be equivalently axiomatized by various other schemata (*LIND*, *MIN*, ...)
- ▶ A single schema can be rulified or deprived of parameters in several different ways
- ► Fortunately, most variants turn out to be equivalent to one of the 10 mentioned
 - ► A few pathological exceptions: LIND⁻
- In particular:

$$\Gamma$$
- $(P)IND^{R-} \equiv \Gamma$ - $(P)IND^{R}, \quad \Gamma = \hat{\Sigma}_{i}^{b}, \hat{\Pi}_{i}^{b}$

Basic reductions

One can check with varying degree of easiness:

- $ightharpoonup \Gamma_{-}(P)IND^{R} \leq \Gamma_{-}(P)IND^{-} \leq \Gamma_{-}(P)IND^{-}$
- $ightharpoonup \Gamma-PIND^{(R/-)} \le \Gamma-IND^{(R/-)}$
- $\hat{\Sigma}_{i}^{b}\text{-}IND^{(R/-)} \leq \hat{\Pi}_{i+1}^{b}\text{-}PIND^{(R/-)}$
- $T_2^i = \hat{\Sigma}_i^b \text{-IND} \le \hat{\Sigma}_{i+1}^b \text{-PIND}^R$
 - ▶ In fact, $T_2^i = PV_1 + \hat{\Sigma}_{i+1}^b PIND^R$
 - ► However, likely $\hat{\Sigma}_{i+1}^b$ - $PIND^R \nleq T_2^i$
 - ► Similar situation: $PV_1 + \hat{\Sigma}_i^b$ -IND^R = $PV_1 + \hat{\Pi}_{i+1}^b$ -PIND^R

At a glance

Axiom complexity

- ▶ S_2^i and T_2^i are finite $\forall \hat{\Sigma}_{i+1}^b$ theories
- $\hat{\Sigma}_{i}^{b} (P)IND^{R} \text{ is } \forall \hat{\Sigma}_{i}^{b} / \forall \hat{\Sigma}_{i}^{b}$ $\hat{\Pi}_{i}^{b} (P)IND^{R} \text{ is } \forall \hat{\Sigma}_{i}^{b} / \forall \hat{\Sigma}_{i-1}^{b}$
- $\hat{\Sigma}_{i}^{b} (P)IND^{-} \text{ is } \exists \hat{\Pi}_{i}^{b} \lor \forall \hat{\Sigma}_{i}^{b}$ $\hat{\Pi}_{i}^{b} (P)IND^{-} \text{ is } \exists \hat{\Pi}_{i}^{b} \lor \forall \hat{\Sigma}_{i-1}^{b}$
- $ightharpoonup \hat{\Pi}_{i}^{b}-(P)IND^{-}$ is also $\forall \hat{\Sigma}_{i+1}^{b}$: equivalent to

$$\forall x (\varphi(0) \land \forall y < x (\varphi(y) \rightarrow \varphi(y+1)) \rightarrow \varphi(x))$$

- ► This doesn't work for $\hat{\Sigma}_{i}^{b}$ -(P) IND^{-} —presumably not even $\forall \Sigma_{\infty}^{b}$?
- $ightharpoonup \Gamma_{-}(P)IND^{-}$ appear not to be finitely axiomatizable

Conservativity for $\hat{\Sigma}_i^b$ rules

The following was proved by [CFL'09], based on [K'90,BI'92]:

Theorem

If T is $\forall \exists \hat{\Sigma}_{i+1}^b$, then $T + T_2^i$ (S_2^i) is $\forall \hat{\Sigma}_i^b$ -conservative over $T + \hat{\Sigma}_i^b$ - $(P)IND^R$

Corollary

- ▶ $T_2^i(S_2^i)$ is $\exists \forall \hat{\Sigma}_i^b$ -conservative over $\hat{\Sigma}_i^b$ -(P) IND^-
- ▶ If T is $\forall \hat{\Sigma}_i^b$, $T + \hat{\Pi}_{i+1}^b$ - $PIND^R = T + \hat{\Sigma}_i^b$ - IND^R
- ▶ [Buss]: ... and $T + \hat{\Sigma}_{i+1}^b$ - $PIND^R = T + T_2^i$

Conservativity for $\hat{\Pi}_i^b$ rules

Theorem

If T is $\forall \hat{\Sigma}_i^b$, then $T + S_2^{i+1}$ (S_2^i) is $\forall \exists \hat{\Sigma}_{i-1}^b$ -conservative over $T + \hat{\Pi}_i^b$ - $(P)IND^R$.

Corollary

$$S_2^{i+1}$$
 (S_2^i) is $\exists \hat{\Sigma}_{i+1}^b \lor \forall \exists \hat{\Sigma}_{i-1}^b$ conservative over $\hat{\Pi}_i^b$ - $(P)IND^-$.

Conservative fragments of S_2^{i+1}

theory	axiom. by	cons. under S_2^{i+1} for
$PV_1 + \hat{\Sigma}_{i+1}^b$ - $PIND^-$	$\exists \hat{\Sigma}_{i+2}^b \lor \forall \hat{\Sigma}_{i+1}^b$	$\exists \forall \hat{\Sigma}_{i+1}^{b} \\ \exists \hat{\Sigma}_{i+3}^{b} \lor \forall \exists \hat{\Sigma}_{i+1}^{b}$
$PV_1 + \hat{\Sigma}_{i+1}^b - PIND^R = T_2^i$	$orall \hat{\Sigma}_{i+1}^b$	$orall \hat{\Sigma}_{i+1}^b$
$PV_1 + \hat{\Pi}_{i+1}^b$ - $PIND^-$	$\exists \hat{\Sigma}_{i+2}^b \lor \forall \hat{\Sigma}_i^b \\ \forall \hat{\Sigma}_{i+2}^b$	$\exists \hat{\Sigma}_{i+2}^b \lor orall \exists \hat{\Sigma}_i^b$
$PV_1 + \hat{\Sigma}_i^b$ -IND $^-$	$\exists \hat{\Sigma}_{i+1}^b \lor \forall \hat{\Sigma}_i^b$	$\exists \hat{\Sigma}_{i+1}^b \lor \forall \exists \hat{\Sigma}_i^b *$
$PV_1 + \hat{\Pi}_{i+1}^b - PIND^R$ $= PV_1 + \hat{\Sigma}_i^b - IND^R$	$orall \hat{\Sigma}_i^b$	$orall \exists \hat{\Sigma}^b_i$
$PV_1 + \hat{\Pi}_i^b$ -IND $^-$	$\exists \hat{\Sigma}_{i+1}^b \lor \forall \hat{\Sigma}_{i-1}^b \\ \forall \hat{\Sigma}_{i+1}^b$	$\exists \hat{\Sigma}_{i+1}^b \lor \forall \exists \hat{\Sigma}_{i-1}^b$

Nesting of rules

For $\Gamma = \hat{\Sigma}_i^b, \hat{\Pi}_i^b$, every $\varphi \in [T, \Gamma - (P)IND^R]_k$ can be proved using k instances of $\Gamma - (P)IND^R$

Theorem

- ▶ If T is $\forall \Sigma_{\infty}^b$: $T + \hat{\Pi}_i^b (P)IND^R = [T, \hat{\Pi}_i^b (P)IND^R]$
- ▶ If T is $\forall \hat{\Sigma}_i^b$: $T + \hat{\Sigma}_i^b (P)IND^R = [T, \hat{\Sigma}_i^b (P)IND^R]$

Moreover, if $T + \hat{\Sigma}_i^b$ -IND^R $\vdash \varphi(x) \in \hat{\Sigma}_i^b$, there are t(x) and $\psi(y) \in \hat{\Sigma}_i^b$ s.t.

$$T \vdash \psi(0) \land \forall y (\psi(y) \to \psi(y+1))$$
$$PV_1 \vdash \psi(t(x)) \to \varphi(x)$$

Similarly for PIND^R

Parameter-free conservativity

Conservativity of $T + \Gamma - (P)IND$ over $T + \Gamma - (P)IND^R$ implies conservativity of $T + \Gamma - (P)IND^-$ over $T + \Gamma - (P)IND^R$

We can do better by a direct argument:

Theorem

Let $\Gamma = \hat{\Sigma}_i^b, \hat{\Pi}_i^b$, and T be of any complexity:

- ► $T + \Gamma (P)IND^-$ is $\forall \Gamma$ -conservative over $T + \Gamma (P)IND^R$
- ▶ All $\forall \Gamma$ consequences of T + arbitrary k instances of Γ - $(P)IND^-$ are in $[T, \Gamma$ - $(P)IND^R]_k$

If Γ - $(P)IND^-$ is finitely axiomatizable, there is k s.t. $T + \Gamma$ - $(P)IND^R = [T, \Gamma$ - $(P)IND^R]_k$ for every T

Propositional proof systems

 $G_i = \Sigma_i^q$ -fragment of quantified propositional sequent calculus $\mathsf{RFN}_j(P) =$ "every P-provable Σ_j^q sequent is valid" $\varphi(x) \in \hat{\Sigma}_i^b \implies \mathsf{propositional\ translations} \ \llbracket \varphi \rrbracket_n(p_0, \dots, p_{n-1})$

Definition

Let $\xi \in \hat{\Sigma}_i^b$.

• $G_i[\xi]$ denotes G_i with extra initial sequents

$$\Longrightarrow \llbracket \xi \rrbracket_n(A_0,\ldots,A_{n-1}),$$

where A_0, \ldots, A_{n-1} are quantifier-free

• $G_i^*[\xi]$ is its tree-like version

Correspondence

By extension of standard results, one can show easily

Theorem

Let $\xi, \varphi \in \hat{\Sigma}_i^b$.

- ▶ If $T_2^i(S_2^i) + \forall x \, \xi(x) \vdash \varphi(x)$, then $(PV_1$ -provably) there are poly-size $G_i[\xi](G_i^*[\xi])$ proofs of $[\![\varphi]\!]_n$
- $T_2^i(S_2^i) + \forall x \, \xi(x) \text{ proves } \mathsf{RFN}_i(G_i^{(*)}[\xi])$

Induction rules vs. reflection principles

Theorem

The rules on the LHS are equivalent to the rules on the RHS for $\xi \in \hat{\Sigma}_{i}^{b}$:

$$\hat{\Sigma}_{i}^{b}-(P)IND^{R} \qquad \forall x \, \xi(x) \, / \, \mathsf{RFN}_{i}(G_{i}^{(*)}[\xi]) \\
\hat{\Sigma}_{i}^{b}-(P)IND^{-} \qquad \forall x \, \xi(x) \to \mathsf{RFN}_{i}(G_{i}^{(*)}[\xi]) \\
\hat{\Pi}_{i}^{b}-(P)IND^{R} \qquad \forall x \, \xi(x) \, / \, \mathsf{RFN}_{i-1}(G_{i}^{(*)}[\xi]) \\
\hat{\Pi}_{i}^{b}-(P)IND^{-} \qquad \forall x \, \xi(x) \to \mathsf{RFN}_{i-1}(G_{i}^{(*)}[\xi])$$

Finite closure

Recall: If
$$\Gamma = \hat{\Sigma}_i^b$$
, $\hat{\Pi}_i^b$ and T is $\forall \hat{\Sigma}_i^b$, then $T + \Gamma - (P)IND^R = [T, \Gamma - (P)IND^R]$

The equivalence with reflection rules implies

Corollary

If
$$\Gamma = \hat{\Sigma}_i^b, \hat{\Pi}_i^b$$
 and $T = PV_1 + \forall x \, \xi(x)$ with $\xi \in \hat{\Sigma}_i^b$, then $T + \Gamma - (P)IND^R$ is finitely axiomatizable:

$$T + \hat{\Sigma}_{i}^{b} - (P)IND^{R} = PV_{1} + \mathsf{RFN}_{i}(G_{i}^{(*)}[\xi])$$

 $T + \hat{\Pi}_{i}^{b} - (P)IND^{R} = T + \mathsf{RFN}_{i-1}(G_{i}^{(*)}[\xi])$

Separations?

Any unexpected reduction or inclusion would subsume one of

- $(i) PV_1 + \hat{\Pi}_i^b IND^R \subseteq S_2^i$
- (ii) $S_2^i \subseteq \hat{\Pi}_{i+1}^b$ - IND^-
- (ii) $\hat{\Pi}_{i}^{b}$ -PIND⁻ $\subseteq PV_1 + \hat{\Pi}_{i+1}^{b}$ -IND^R
- $\text{ [$\hat{\Pi}_i^b$-PINDR} \leq T_2^{i-1} \implies \hat{\Pi}_i^b$-PIND$^-$ \subseteq T_2^{i-1} \implies \text{ [ii)}]$

 \pm some exceptional cases on the lowest level of the hierarchy

We want to make sure that (i)—(iii) are implausible

Separations? (cont'd)

Most extra reductions/inclusions are false when relativized:

essentially, one can simulate parameters by the oracle

$$A(\alpha) \vdash B^{-}(\alpha) \implies A(\alpha) \vdash B(\alpha)$$

feels like cheating

Unrelativized complexity consequences:

- $(i) G_i \leq_p G_{i-1}, GI_i \leq GI_{i-1}$
- (ii) $P^{\sum_{i=1}^{p}[\log n]} = P^{\sum_{i=1}^{p}[O(1)]}, PH = P^{\sum_{i=1}^{p}[O(1)]}$
- iii ? Seems quite subtle

Thank you for attention!

References

[B'97] L. D. Beklemishev: *Induction rules, reflection principles, and provably recursive functions,* APAL 85 (1997), 193–242

[B'99] L.D. Beklemishev: Parameter free induction and provably total computable functions, TCS 224 (1999), 13–33

[BI'92] S. A. Bloch: Divide and conquer in parallel complexity and proof theory, Ph.D. thesis, UCSD (1992)

[CFL'09] A. Cordón-Franco, A. Fernández-Margarit, F. F. Lara-Martín: Existentially closed models and conservation results in bounded arithmetic, JLC 19 (2009), 123–143

[K'90] R. Kaye: Diophantine induction, APAL 46 (1990), 1–40

[KPD'88] R. Kaye, J. Paris, C. Dimitracopoulos: *On parameter free induction schemas*, JSL 53 (1988), 1082–1097