Elementary analytic functions in VTC^{0}

Emil Jeřábek

Logic Seminar, Prague
17 and 24 October 2022

Outline

(1) TC ${ }^{0}$ and VTC^{0}
2) Analytic functions in VTC^{0}
(3) Construction of exp
(4) Construction of \log
(5) Applications
(6) Exponential integer parts

TC^{0} and VTC^{0}

(1) TC ${ }^{0}$ and $V T C^{0}$

2 Analytic functions in $\mathrm{VTC}{ }^{0}$
3 Construction of exp
4 Construction of log
5 Applications
6 Exponential integer parts

The class TC^{0}

$\mathbf{A C}^{0} \subseteq \mathbf{A C C}^{0} \subseteq \mathbf{T C}^{0} \subseteq \mathbf{N C}^{1} \subseteq \mathbf{L} \subseteq \mathbf{N L} \subseteq \mathbf{A C}^{1} \subseteq \cdots \subseteq \mathbf{P}$

$\mathrm{TC}^{0}=$ dlogtime-uniform $O(1)$-depth $n^{O(1)}$-size unbounded fan-in circuits with threshold gates
$=$ FOM-definable on finite structures representing strings
(first-order logic with majority quantifiers)
$=O(\log n)$ time, $O(1)$ thresholds on a threshold Turing machine
$=$ Constable's \mathcal{K} : closure of $+,-, \cdot, /$ under substitution and polynomially bounded \sum, Π

TC ${ }^{0}$ and arithmetic operations

For integers given in binary:

- + and \leq are in $\mathbf{A C}^{0} \subseteq \mathbf{T C}^{0}$
$-\times$ is in $\mathbf{T C}^{0}$ ($\mathbf{T C}^{0}$-complete under $\mathbf{A C}^{0}$ reductions)
TC ${ }^{0}$ can also do:
- iterated addition $\sum_{i<n} X_{i}$
- integer division and iterated multiplication [HAB'02]
- the corresponding operations on $\mathbb{Q}, \mathbb{Q}(\alpha), \ldots$
- approximate functions given by nice power series:
- $\sin X, \log X, \sqrt[k]{X}, \ldots$
- sorting, ...

The theory VTC^{0}

- Zambella-style two-sorted bounded arithmetic
- unary (auxiliary) integers with $0,1,+, \cdot, \leq$
- finite sets $=$ binary integers $=$ binary strings
- Noteworthy axioms:
- Σ_{0}^{B}-comprehension ($\Sigma_{0}^{B}=$ bounded, w/o SO q'fiers)
- every set has a counting function
- Correspondence to $\mathbf{T C}^{0}$:
- provably total computable (i.e., $\exists \Sigma_{0}^{B}$-definable) functions are exactly the $\mathbf{T C}^{0}$ functions
- has induction, minimization, ... for $\mathbf{T C}^{0}$ predicates
- Equivalent (RSUV-isomorphic) to Δ_{1}^{b}-CR of [JP'00]
- Buss-style one-sorted bounded arithmetic
- Open LIND, Δ_{1}^{b} bit-comprehension rule

Binary integer arithmetic in VTC^{0}

Basic integer arithmetic in VTC^{0} :

- can define $+, \cdot, \leq$ on binary integers
- proves integers form a discretely ordered ring (DOR)

More sophisticated:

- [J'22] iterated multiplication and division
- formalize a variant of the [HAB'02] algorithm
- [J'15] open induction in $\langle+, \cdot,<\rangle$ (IOpen), \sum_{0}^{b}-minimization and \sum_{0}^{b}-induction in Buss's language
- $\approx \mathbf{T C}^{0}$ constant-degree polynomial root approximation

Analytic functions in VTC^{0}

(1) TC^{0} and $\mathrm{VTC}{ }^{0}$

(2) Analytic functions in VTC^{0}

3 Construction of exp
4 Construction of log
5 Applications
6 Exponential integer parts

Elementary analytic functions

Recall: $\mathbf{T C}^{0}$ can compute approximations of analytic functions whose power series have $\mathbf{T C}^{0}$-computable coefficients
Question: Can VTC ${ }^{0}$ prove their basic properties?
There's a plethora of such functions \Longrightarrow let's start small:
Elementary analytic functions (real and complex)

- exp, log
- trigonometric: sin, cos, tan, cot, sec, csc
- inverse trig.: arcsin, arccos, arctan, arccot, arcsec, arccsc
- hyperbolic: sinh, cosh, tanh, coth, sech, csch
- inverse hyp.: arsinh, arcosh, artanh, arcoth, arsech, arcsch

All definable in terms of complex exp and log

Working with rational approximations only is quite tiresome:

- statements of theorems messy
- keep track of approximation parameters everywhere $\Longrightarrow \varepsilon-\delta$ analysis at its worst

Solution: work with larger structures where analytic functions can be defined as bona fide functions

Given a model $\mathfrak{M} \vDash \mathrm{VTC}^{0}$, form

- discretely ordered ring $\mathbf{Z}^{\mathfrak{M}}$ (binary integers)
- fraction field $\mathbf{Q}^{\mathfrak{M}}$
- completion $\mathbf{R}^{\mathfrak{M}}$ (real-closed field [J'15])
- algebraic closure $\mathbf{C}^{\mathfrak{M}}=\mathbf{R}^{\mathfrak{M}}$ (i) (still complete)

Completions of ordered fields

Let F be an ordered field (OF)

- F is complete if it is not dense in any proper extension OF
- completion: a complete OF \hat{F} s.t. $F \subseteq \hat{F}$ is dense
- every F has a unique completion (up to isomorphism)

More explicit description:

- cut in $F:\langle A, B\rangle$ s.t. $F=A \cup B, \neg \exists \max A$, $\inf \{b-a: b \in B, a \in A\}=0$
- F complete \Longleftrightarrow all cuts are filled $(\exists \min B)$
- $\hat{F}=$ the set of all cuts in F with obvious structure

Topological description

Every OF F carries interval topology
\Longrightarrow topological field \Longrightarrow uniform space

- complete if every Cauchy net converges
- every uniform space S has a unique completion: complete space \hat{S} s.t. $S \subseteq \hat{S}$ dense
- T complete \Longrightarrow every uniformly continuous function $S \rightarrow T$ uniquely extends to a uniformly continuous function $\hat{S} \rightarrow T$
- topological completion of an OF F has a canonical structure of $\mathrm{OF} \hat{F} \supseteq F$, coincides with OF completion

VTC ${ }^{0}$ setup (cont'd)

$\mathfrak{M} \vDash \mathrm{VTC}^{0} \leadsto \mathbf{Z}^{\mathfrak{M}} \leadsto \mathbf{Q}^{\mathfrak{M}} \leadsto \mathbf{R}^{\mathfrak{M}} \leadsto \mathbf{C}^{\mathfrak{M}}$
A well-behaved (i.e., Cauchy) sequence of approximations in $\mathbf{Q}^{\mathfrak{M}}(i)$ defines an element of $\mathbf{C}^{\mathfrak{M}}$
\Longrightarrow instead of approximations, treat our analytic functions as
$f: \mathbf{C}^{\mathfrak{M}} \rightarrow \mathbf{C}^{\mathfrak{M}}$ (or on a subset)
NB rational approximations still needed:

- translate results back to the language of VTC^{0}
- use the functions in induction arguments, ...

Further notation: unary integers embed as $\mathbf{L}^{\mathfrak{M}} \subseteq \mathbf{Z}^{\mathfrak{M}}$
$\mathbf{C}_{\mathrm{L}}^{\mathfrak{M}}=\left\{z \in \mathbf{C}^{\mathfrak{M}}: \exists n \in \mathbf{L}^{\mathfrak{M}}|z| \leq n\right\}, \mathbf{R}_{\mathrm{L}}^{\mathfrak{M}}=\mathbf{R}^{\mathfrak{M}} \cap \mathbf{C}_{\mathrm{L}}^{\mathfrak{M}}, \ldots$
(will drop the ${ }^{\mathfrak{M}}$ superscripts)

TC ${ }^{0}$ approximations

$f: D \rightarrow \mathbf{C}^{\mathfrak{M}}, D \subseteq \mathbf{C}^{\mathfrak{M}}$ s.t. $D \cap \mathbf{Q}^{\mathfrak{M}}(i)$ is dense in D
Approximation of f by $\mathbf{T C}^{0}$ functions:
Additive: $\mathbf{T C}^{0}$ function $f_{+}: \mathbf{Q}^{\mathfrak{M}}(i) \times \mathbf{L}^{\mathfrak{M}} \rightarrow \mathbf{Q}^{\mathfrak{M}}(i)$

$$
\left|f_{+}(z, n)-f(z)\right| \leq 2^{-n} \quad \forall n \in \mathbf{L}^{\mathfrak{M}}, z \in D \cap \mathbf{Q}^{\mathfrak{M}}(i)
$$

Multiplicative: $\mathbf{T C}^{0}$ function $f_{\times}: \mathbf{Q}^{\mathfrak{M}}(i) \times \mathbf{L}^{\mathfrak{M}} \rightarrow \mathbf{Q}^{\mathfrak{M}}(i)$

$$
\left|f_{x}(z, n)-f(z)\right| \leq 2^{-n}|f(z)| \quad \forall n \in \mathbf{L}^{\mathfrak{M}}, z \in D \cap \mathbf{Q}^{\mathfrak{M}}(i)
$$

In other words:

$$
\begin{aligned}
f(z)=0 & \Longrightarrow f_{\times}(z, n)=0 \\
f(z) \neq 0 & \Longrightarrow\left|\frac{f_{\times}(z, n)}{f(z)}-1\right| \leq 2^{-n}
\end{aligned}
$$

Additive vs. multiplicative approximation

For any $f: D \rightarrow \mathbf{C}^{\mathfrak{M}}, D \subseteq \mathbf{C}^{\mathfrak{M}}$, the following are equivalent:

- f has a multiplicative $\mathbf{T C}^{0}$ approximation
- f has an additive $\mathbf{T C}^{0}$ approximation, and $\exists \mathbf{T C}^{0}$ function $h: \mathbf{Q}^{\mathfrak{M}}(i) \rightarrow \mathbf{L}^{\mathfrak{M}}$ s.t.

$$
f(z) \neq 0 \Longrightarrow|f(z)| \geq 2^{-h(z)} \quad \forall z \in D \cap \mathbf{Q}^{\mathfrak{M}}(i)
$$

(bound $f(z)$ away from 0)

Main results

We can define $\pi \in \mathbf{R}^{\mathfrak{M}}$,

$$
\begin{aligned}
& \exp : \mathbf{R}_{\mathbf{L}}^{\mathfrak{M}}+i \mathbf{R}^{\mathfrak{M}} \rightarrow \mathbf{C}_{\neq 0}^{\mathfrak{M}}, \\
& \log : \mathbf{C}_{\neq 0}^{\mathfrak{M}} \rightarrow \mathbf{R}_{\mathbf{L}}^{\mathfrak{M}}+i(-\pi, \pi]
\end{aligned}
$$

such that

- $\exp (z+w)=\exp z \exp w$
- \exp is $2 \pi i$-periodic
- $\exp \log z=z$
- $\log \exp z=z$ for $z \in \mathbf{R}_{\mathbf{L}}^{\mathfrak{M}}+i(-\pi, \pi]$
$>\exp \upharpoonright \mathbf{R}_{\mathrm{L}}^{\mathfrak{M}}$ increasing bijection $\mathbf{R}_{\mathrm{L}}^{\mathfrak{M}} \rightarrow \mathbf{R}_{>0}^{\mathfrak{M}}$, convex
- for small $z: \exp z=1+z+O\left(z^{2}\right), \log (1+z)=z+O\left(z^{2}\right)$
- suitable additive and multiplicative $\mathbf{T C}^{0}$ approximations

Outline of the arguments

- Define $\exp : \mathbf{C}_{\mathrm{L}}^{\mathfrak{M}} \rightarrow \mathbf{C}^{\mathfrak{M}}$ using $\sum_{n} \frac{z^{n}}{n!}$ show $\exp \left(z_{0}+z_{1}\right)=\exp z_{0} \exp z_{1}$
- Define log on a nbh of 1 using $-\sum_{n} \frac{(1-z)^{n}}{n}$ show $\log \left(z_{0} z_{1}\right)=\log z_{0}+\log z_{1}$ for z_{j} close enough to 1
- Extend log
- to $\mathbf{R}_{>0}^{\mathfrak{M}}$ using $2^{n}: \mathbf{L}^{\mathfrak{M}} \rightarrow \mathbf{Z}^{\mathfrak{M}}$
- to an angular sector by combining the two
- to $C_{\neq 0}^{\mathfrak{M}}$ using $8 \log \sqrt[8]{z}$
- $\log \exp \left(z_{0}+z_{1}\right)=\log \exp z_{0}+\log \exp z_{1}$ when $\left|\operatorname{lm} z_{j}\right|$ small
$\Longrightarrow \log \exp z=z$ when $|\operatorname{lm} z|$ small
$\Longrightarrow \exp \log z=z$ using injectivity of \log
- \exp is $2 \pi i$-periodic for $\pi:=\operatorname{Im} \log (-1)$
\Longrightarrow extend \exp to $\mathbf{R}_{\mathrm{L}}^{\mathfrak{M}}+i \mathbf{R}^{\mathfrak{M}}$

Construction of exp

(1) TC^{0} and VTC^{0}
2. Analytic functions in VTC^{0}
(3) Construction of exp

4 Construction of log

5 Applications

6 Exponential integer parts

Power series

\checkmark define $e: \mathbf{Q}(i) \times \mathbf{L} \rightarrow \mathbf{Q}(i)$ by

$$
e(z, n)=\sum_{j<n} \frac{z^{j}}{j!}
$$

- Cauchy for fixed $z \in \mathbf{Q}_{\mathbf{L}}(i) \Longrightarrow$ define $\exp : \mathbf{Q}_{\mathbf{L}}(i) \rightarrow \mathbf{C}$,

$$
\exp z=\lim _{\llcorner\ni n \rightarrow \infty} e(z, n)
$$

- uniformly continuous on $\bar{D}_{r}(0)=\{z:|z| \leq r\}, r \in \mathbf{L}$ \Longrightarrow unique continuous extension exp: $C_{L} \rightarrow \mathbf{C}$

Homomorphism identity

- binomial identity $\frac{(z+w)^{l}}{l!}=\sum_{j+k=I} \frac{z^{j} w^{k}}{j!k!} \Longrightarrow$

$$
\begin{aligned}
e(z+w, 2 n)-e(z, n) e(w, n) & =\sum_{\substack{j+k<2 n \\
\max \{j, k\} \geq n}} \frac{z^{j} w^{k}}{j!k!} \\
& =O\left(2^{-n} \exp r\right)
\end{aligned}
$$

for $z, w \in \bar{D}_{r}(0) \cap \mathbf{Q}(i), r \in \mathbf{L}, n \geq 8 r$

- taking limits and using continuity,

$$
\exp (z+w)=\exp z \exp w \quad \forall z, w \in \mathbf{C}_{\mathbf{L}}
$$

Checkpoint

Can prove at this point:
$-\exp$ homomorphism $\left\langle\mathbf{C}_{\mathrm{L}},+, 0,-\right\rangle \rightarrow\left\langle\mathbf{C}_{\neq 0}, \cdot, 1,,^{-1}\right\rangle$
$-\exp \upharpoonright \mathbf{R}_{\mathbf{L}}$ homomorphism $\left\langle\mathbf{R}_{\mathbf{L}},+, 0,-,<\right\rangle \rightarrow\left\langle\mathbf{R}_{>0}, \cdot, 1,^{-1},<\right\rangle$

- $\exp \bar{z}=\overline{\exp z},|\exp z|=\exp \operatorname{Re} z$
- $|z| \leq \frac{3}{2} \Longrightarrow|\exp z-(1+z)| \leq|z|^{2}$
- $\exp x \geq 1+x$ for $x \in \mathbf{R}_{\mathbf{L}}, \exp \upharpoonright \mathbf{R}_{\mathbf{L}}$ is convex

Still missing:

- \exp and $\exp \upharpoonright \mathbf{R}_{\mathbf{L}}$ are surjective ($\exp \upharpoonright \mathbf{R}_{\mathbf{L}}$ isomorphism)
- $\exists \pi \exp (\pi i)=-1 \Longrightarrow \exp 2 \pi i$-periodic
\Longrightarrow extend \exp to $\mathbf{R}_{\mathbf{L}}+i \mathbf{R}$
Need to construct \log, prove $\exp \log z=z$

Construction of log

(1) TC^{0} and VTC^{0}

2. Analytic functions in VTC^{0}

3 Construction of exp

4) Construction of log

5 Applications
6 Exponential integer parts

Overview of the construction

\log not entire (branching singularity at 0$) \Longrightarrow$ trouble

- power series only works in a neighbourhood of 1
- $\log (z w)=\log z+\log w$ does not really hold

Construction in several stages:

- power series $\Longrightarrow \log _{D}$ on a disk around 1
- combine with $2^{n}: \mathbf{L} \rightarrow \mathbf{Z} \Longrightarrow \log _{\mathbf{R}}$ on $\mathbf{R}_{>0}$
\downarrow combine $\log _{D}$ and $\log _{R} \Longrightarrow \log _{S}$ on an angular sector
- use \sqrt{z} to increase the angle $\Longrightarrow \log$ on $C_{\neq 0}$

Most important arguments:

- $\log \left(z_{0} z_{1}\right)=\log z_{0}+\log z_{1}$ when $\operatorname{Re} z_{j}>0$
$\rightarrow \log \exp \left(z_{0}+z_{1}\right)=\log \exp z_{0}+\log \exp z_{1}$ when $\left|\operatorname{lm} z_{j}\right|<1$
$\Longrightarrow \log \exp z=z$ when $|\operatorname{lm} z|<1$
$\Longrightarrow \exp \log z=z$ using injectivity of \log

Power series

\Rightarrow define $\lambda: \mathbf{Q}(i) \times \mathbf{L} \rightarrow \mathbf{Q}(i)$ by

$$
\lambda(z, n)=\sum_{j=1}^{n} \frac{z^{j}}{j}
$$

- $D_{r}^{*}\left(z_{0}\right)=\left\{z:\left|z-z_{0}\right|<^{*} r\right\}$, where $x<^{*} y \Longleftrightarrow x \leq y-h^{-1}$ for some $h \in \mathbf{L}$
- λ Cauchy for $z \in D_{1}^{*}(0) \Longrightarrow \Lambda: D_{1}^{*}(0) \cap \mathbf{Q}_{\mathrm{L}}(i) \rightarrow \mathbf{C}$,

$$
\Lambda(z)=\lim _{\llcorner\ni n \rightarrow \infty} \lambda(z, n)
$$

- Λ uniformly continuous on $\bar{D}_{1-h^{-1}}(0), h \in \mathbf{L} \Longrightarrow$ $-\Lambda(1-z)$ has continuous extension $\log _{D}: D_{1}^{*}(1) \rightarrow \mathbf{C}$
- $|z| \leq \frac{1}{2} \Longrightarrow\left|\log _{D}(1+z)-z\right| \leq|z|^{2}$

Homomorphism identity

Goal: $(1+r)(1+s)<{ }^{*} 2 \Longrightarrow$
(HI) $\quad \log _{D} z w=\log _{D} z+\log _{D} w, \quad z \in \bar{D}_{r}(1), w \in \bar{D}_{s}(1)$
In particular, (HI) holds for $z, w \in \bar{D}_{2 / 5}(1)$

This follows from

$$
|\lambda(z, n)+\lambda(w, n)-\lambda(z+w-z w, n)| \leq \frac{(r+s+r s)^{n+1}}{(n+1)(1-r-s-r s)}
$$

which in turn follows from

$$
\lambda(z, n)+\lambda(w, n)-\lambda(z+w-z w, n)=\sum_{\substack{j, k, l \\ j+l, k+l \leq n<j+k+l}}\binom{j+k+l}{j, k, l} \frac{(-1)^{\prime} z^{j+l} w^{k+l}}{j+k+l}
$$

Homomorphism identity (cont'd)

- backwards difference: $(\nabla f)(x)=f(x)-f(x-1)$
- f polynomial of degree $h<n \Longrightarrow \nabla^{n} f=0$
- take $f=$ falling factorial $x^{\underline{h}}=\prod_{j<h}(x-j)$:

$$
\sum_{k \leq n}\binom{n}{k}(-1)^{k}(x-k)^{\underline{h}}=0
$$

- VTC^{0} proves this for $h<n \in \mathbf{L}, x \in \mathbf{Q}$ by induction
- this implies

$$
\sum_{\substack{j, k, l \\ 0<j+l, k+I \leq n}}\binom{j+k+l}{j, k, l} \frac{(-1)^{\prime} z^{j+l} w^{k+l}}{j+k+l}=0
$$

Real logarithm

Define $\log _{\mathbf{R}}: \mathbf{R}_{>0} \rightarrow \mathbf{R}_{\mathbf{L}}$ by

$$
\log _{\mathbf{R}} 2^{n} x=\log _{D} x+n \ell_{2}, \quad n \in \mathbf{Z}_{\mathbf{L}}, x \in\left(\frac{1}{3}, \frac{3}{2}\right)^{*}
$$

where $\ell_{2}=-\log _{D} \frac{1}{2}=\Lambda\left(\frac{1}{2}\right)$

- $(\mathrm{HI}) \Longrightarrow \log _{D} 2 x=\log _{D} x+\ell_{2}$ for all $x \in\left(\frac{1}{3}, \frac{3}{4}\right)^{*}$
$\Longrightarrow \log _{\mathrm{R}} 2^{n} x$ independent of the choice of n, x
- $\log _{R}$ continuous, strictly increasing
$\because \log _{D}$ increasing on $\left[\frac{1}{2}, 1\right]$
- $\log _{\mathrm{R}}$ satisfies (HI) for all $x, y \in \mathbf{R}_{>0}$

Logarithm in angular sector

Complex sign: $\operatorname{sgn} z=z /|z|(z \neq 0)$
$S=\left\{z \in \mathbf{C}_{\neq 0}:|\operatorname{sgn} z-1|<{ }^{*} 1\right\}=\left\{x+i y:|y|<{ }^{*} \sqrt{3} x\right\}$
Define $\log _{S}: S \rightarrow \mathbf{C}_{\mathbf{L}}$ by

$$
\log _{S} z=\log _{\mathbf{R}}|z|+\log _{D} \operatorname{sgn} z
$$

- $\log _{S}$ satisfies (HI) for elements of $\left\{z \in S:\left|\frac{y}{z}\right| \leq \frac{2}{5}\right\}$
- $\log _{S}$ extends $\log _{R}$ and $\log _{D} \upharpoonright \bar{D}_{2 / 5}(1)$
(in fact: all of $\log _{D}$, but not so easy to prove)

Complex square root

$$
\begin{aligned}
z=x+i y \Longrightarrow \sqrt{z} & =\sqrt{\frac{|z|+x}{2}}+i \sqrt{\frac{|z|-x}{2}} \operatorname{sgn}^{+} y \\
\text { where } \operatorname{sgn}^{+} y & =\left\{\begin{aligned}
1 & \text { if } y \geq 0, \\
-1 & \text { if } y<0
\end{aligned}\right.
\end{aligned}
$$

- $(\sqrt{z})^{2}=z, \mathrm{sgn}^{+} \operatorname{Im} \sqrt{z}=\mathrm{sgn}^{+} \operatorname{Im} z$
- $z \notin \mathbf{R}_{<0} \Longrightarrow \sqrt{\bar{z}}=\overline{\sqrt{z}}, \sqrt{z^{-1}}=(\sqrt{z})^{-1}$
- $\operatorname{Re} z \geq 0$, $\operatorname{Re} w>0 \Longrightarrow \sqrt{z w}=\sqrt{z} \sqrt{w}$
$-\mathrm{sgn}^{+} \operatorname{Im} z w \in\left\{\mathrm{sgn}^{+} \operatorname{Im} z, \mathrm{sgn}^{+} \operatorname{Im} w\right\}, z \notin \mathbf{R}_{<0}$
$\Longrightarrow \sqrt{z w}=\sqrt{z} \sqrt{w}$

Manipulating sectors using \sqrt{z}

Let $w=\sqrt{z}$:

$$
\begin{aligned}
z \text { any } & \Longrightarrow \operatorname{Re} w \geq 0 \\
\operatorname{Re} z \geq 0 & \Longrightarrow|\operatorname{Im} w| \leq \operatorname{Re} w \\
|\operatorname{Im} z| \leq \operatorname{Re} z & \Longrightarrow|\operatorname{lm} w| \leq \frac{2}{5}|w|
\end{aligned}
$$

Full logarithm

Define log: $\mathbf{C}_{\neq 0} \rightarrow \mathbf{C}_{\mathbf{L}}$ by

$$
\log z=8 \log _{s} \sqrt{\sqrt{\sqrt{z}}}
$$

- extends $\log _{S} \upharpoonright\{x+i y:|y| \leq x\}$ (in fact: all of $\log _{S}$)
- $z \notin \mathbf{R}_{\leq 0} \Longrightarrow \log z^{-1}=-\log z, \log \bar{z}=\overline{\log z}$
- $\log z=2 \log \sqrt{z}$
- log satisfies (HI) if $\operatorname{Re} z \geq 0, \operatorname{Re} w>0$
- also: if $\mathrm{sgn}^{+} \operatorname{Im} z w \in\left\{\mathrm{sgn}^{+} \operatorname{Im} z, \mathrm{sgn}^{+} \operatorname{Im} w\right\}, z \notin \mathbf{R}_{<0}$

Complex argument function

Define $\arg z=\operatorname{Im} \log z, \pi=\arg (-1)$

- $\log z=\log _{\mathrm{R}}|z|+i \arg z$
- $\operatorname{Re} z, \operatorname{Re} w \geq 0 \Longrightarrow$

$$
\arg z<\arg w \Longleftrightarrow \operatorname{Im} \operatorname{sgn} z<\operatorname{Im} \operatorname{sgn} w
$$

and similarly for other quadrants
$-\arg z=\arg w \Longleftrightarrow \operatorname{sgn} z=\operatorname{sgn} w$

Consequently:

- \log is injective
- $\arg z \in(-\pi, \pi]$ and $\log z \in \mathbf{R}_{\mathbf{L}}+i(-\pi, \pi]$
- $\log z+\log w-\log z w \in\{-2 \pi i, 0,2 \pi i\}$

Cauchy functional equation

$z \in \mathbf{R}_{\mathbf{L}}+i(-1,1) \Longrightarrow \operatorname{Re} \exp z>0$, consequently:
$\log \exp (z+w)=\log \exp z+\log \exp w, \quad z, w \in \mathbf{R}_{\mathbf{L}}+i(-1,1)$
Classically: continuous solutions of $f(z+w)=f(z)+f(w)$ are $f(z)=\alpha \operatorname{Re} z+\beta \operatorname{Im} z$

Idea:

- prove $\log \exp 2^{-n} z=2^{-n} \log \exp z$ by induction on n
- $\log \exp z=z+O\left(z^{2}\right)$ for small $z \Longrightarrow$ infer $\log \exp z=z$

Problem: Need TC ${ }^{0}$ approximations to use induction!

Parametrized approximation

exp grows too fast to be $\mathbf{T C}{ }^{0}$ approximable on $\mathbf{Q}_{\mathbf{L}}(i)$
Let $f: D \rightarrow \mathbf{C}, D \subseteq \mathbf{C}$ s.t. $D \cap \mathbf{Q}(i)$ is dense in D :
Additive approximation of f parametrized by $r \in \mathbf{L}$ s.t. $P(z, r)$: $\mathbf{T C}^{0}$ function $f_{+}(z, r, n)$ s.t.

$$
P(z, r) \Longrightarrow\left|f_{+}(z, r, n)-f(z)\right| \leq 2^{-n}
$$

$(z \in D \cap \mathbf{Q}(i), r, n \in \mathbf{L})$
Usually: $\forall z \in D \exists r \in \mathbf{L} P(z, r)$
Parametrized multiplicative approximation similar

TC 0 approximations

Lemma:

- $\exp z$ has multiplicative (and additive)
$\mathbf{T C}^{0}$ approximation parametrized by $r \in \mathbf{L}$ s.t. $|z| \leq r$
- $\log z$ has additive $\mathbf{T C}^{0}$ approximation
- $\log \exp z$ has $\mathbf{T C}^{0}$ additive approximation for $|\operatorname{lm} z|<1$, parametrized by $r \in \mathbf{L}$ s.t. $|z| \leq r$

Tedious, but unsurprizing:

- approximate $\exp z, \log _{D} z$, and \sqrt{x} by partial sums
- use bounds on moduli of continuity to combine them

exp and log are mutually inverse

$L E(z, r, n)$ approximation of $\log \exp z$ as above:

- for $z \in \mathbf{Q}(i), r, t, n \in \mathbf{L}$ s.t. $|\operatorname{lm} z|<1,|z| \leq r$, prove

$$
\left|L E\left(2^{-n} z, r, t\right)-2^{-n} L E(z, r, t)\right| \leq 3 \cdot 2^{-n}
$$

by induction on n

- $\log \exp 2^{-n} z=2^{-n} \log \exp z$ for $z \in \mathbf{R}_{\mathbf{L}}+i(-1,1)$ by continuity
- $\log \exp z=z+O\left(z^{2}\right)$ for small z
$\Longrightarrow \log \exp z=z$ for $z \in \mathbf{R}_{\mathbf{L}}+i(-1,1)$
- extend to $\log \exp z=z$ for $z \in \mathbf{R}_{\mathbf{L}}+i(-\pi, \pi]$
- \log injective $\Longrightarrow \exp \log z=z$ for $z \in \mathbf{C}_{\neq 0}$

Final extension of exp

$\exp n z=(\exp z)^{n}$ for $z \in \mathbf{C}_{\mathbf{L}}, n \in \mathbf{Z}_{\mathbf{L}}$ "by induction on $n "$
$\Longrightarrow \exp (z+2 \pi i n)=\exp z$
Extend \exp to $\mathbf{R}_{\downarrow \mathbf{L}}+i \mathbf{R}, \mathbf{R}_{\downarrow \mathbf{L}}=\mathbf{R}_{<0} \cup \mathbf{R}_{\mathbf{L}}$:

$$
\begin{aligned}
\exp (z+2 \pi i n) & =\exp z & & z \in \mathbf{C}_{\mathbf{L}}, n \in \mathbf{Z} \\
\exp z & =0 & & \operatorname{Re} z<\mathbf{R}_{\mathbf{L}}
\end{aligned}
$$

- $\exp (z+w)=\exp z \exp w$ for all z, w
- $\exp z$ has additive $\mathbf{T C}^{0}$ approximation for $z \in \mathbf{Q}_{\downarrow \mathbf{L}}+i \mathbf{Q}$ parametrized by $r \in \mathbf{L}$ s.t. $\operatorname{Re} z \leq r$
- $\exp z$ has multiplicative $\mathbf{T C}^{0}$ approximation for $z \in \mathbf{Q}_{\mathbf{L}}+i \mathbf{Q}$ parametrized by $r \in \mathbf{L}$ s.t. $|\operatorname{Re} z| \leq r$

Summary

For every $\mathfrak{M} \vDash \vee \mathrm{TC}{ }^{0}$, we defined $\pi \in \mathbf{R}^{\mathfrak{M}}$,

$$
\begin{aligned}
& \exp : \mathbf{R}_{\not \downarrow \mathbf{L}}^{\mathfrak{M}}+i \mathbf{R}^{\mathfrak{M}} \rightarrow \mathbf{C}^{\mathfrak{M}} \\
& \log : \mathbf{C}_{\neq 0}^{\mathfrak{M}} \rightarrow \mathbf{R}_{\mathbf{L}}^{\mathfrak{M}}+i(-\pi, \pi]
\end{aligned}
$$

They satisfy (among other properties):
$-\exp (z+w)=\exp z \exp w$

- \exp is $2 \pi i$-periodic
- $\exp \log z=z$ for $z \in \mathbf{C}_{\neq 0}^{\mathfrak{M}}$
- $\log \exp z=z$ for $z \in \mathbf{R}_{\mathbf{L}}^{\mathfrak{M}}+i(-\pi, \pi]$
$-\exp \upharpoonright \mathbf{R}_{\mathbf{L}}^{\mathfrak{M}}$ increasing bijection $\mathbf{R}_{\mathbf{L}}^{\mathfrak{M}} \rightarrow \mathbf{R}_{>0}^{\mathfrak{M}}$, convex
- exp is continuous, log is continuous in $\mathbf{C}^{\mathfrak{M}} \backslash(-\infty, 0]$
- for small $z: \exp z=1+z+O\left(z^{2}\right), \log (1+z)=z+O\left(z^{2}\right)$
- suitable additive and multiplicative $\mathbf{T C}^{0}$ approximations

Applications

(1) TC ${ }^{0}$ and VTC^{0}

(2) Analytic functions in VTC^{0}

3 Construction of exp
(4) Construction of log
(5) Applications

6 Exponential integer parts

Overview

Define

- $z^{w}=\exp (w \log z), \sqrt[n]{z}=z^{1 / n}$
- $\prod_{j<n} z_{j}$ for a sequence of $z_{j} \in \mathbf{Q}^{\mathfrak{M}}(i)$ coded in \mathfrak{M}
- $\approx \exp \left(\sum_{j<n} \log z_{j}\right)$
- trigonometric, inverse trigonometric, hyperbolic, inverse hyperbolic functions

Model-theoretic consequence:

- Every countable model of VTC^{0} is an exponential integer part of a real-closed exponential field

Complex powering

Before: well-behaved z^{n} for $z \in \mathbf{C}_{\neq 0}, n \in \mathbf{Z}_{\mathbf{L}}$

- for $z \in \mathbf{Q}(i)$ iterated multiplication, extend by continuity
- $z^{0}=1, z^{1}=z, z^{n+m}=z^{n} z^{m}, z^{n m}=\left(z^{n}\right)^{m},(z w)^{n}=z^{n} w^{n}$

Now: define $z^{w}=\exp (w \log z)$ for $z \in \mathbf{C}_{\neq 0}, w \in \mathbf{C}_{\mathbf{L}}$

- agrees with z^{n} for $w \in \mathbf{Z}_{\mathbf{L}}$
- $z^{w+w^{\prime}}=z^{w} z^{w^{\prime}}, z^{-w}=1 / z^{w}$
- $\left(z z^{\prime}\right)^{w}=z^{w} z^{\prime w}$ if $\arg z+\arg z^{\prime} \in(-\pi, \pi]$
$z^{w w^{\prime}}=\left(z^{w}\right)^{w^{\prime}}$ if $w \in(-1,1]$ or if $z \in \mathbf{R}_{>0}, w \in \mathbf{R}_{\mathbf{L}}$
In particular: well-behaved $\sqrt[n]{z}=z^{1 / n}$ for $n \in \mathbf{L}_{>0}$

Iterated multiplication

Before: $\prod_{j<n} x_{j}$ for a sequence $\left\langle x_{j}: j<n\right\rangle$ of $x_{j} \in \mathbf{Q}$
Also: $(x+i y)^{n}=\sum_{m \leq n}\binom{n}{j} x^{m}(i y)^{n-m}$
But: $\prod_{j<n}\left(x_{j}+i_{j}\right)=\sum_{J \subseteq[n]} \prod_{j \in J} x_{j} \prod_{j \notin J}$ iy $_{j}$
Now: $\prod_{j<n} z_{j}$ for a sequence $\left\langle z_{j}: j<n\right\rangle$ of $z_{j} \in \mathbf{Q}(i)$

- $\exp \left(\sum_{j<n} \log z_{j}\right)$ does not really make sense..
- $z_{j} \in \mathbf{Z}[i]$: round appx. of $\exp \left(\sum_{j<n} \operatorname{appx}\right.$. of $\left.\log z_{j}\right)$
- $z_{j} \in \mathbf{Q}(i)$: numerators and denominators separately
$\triangleright \prod_{j<0} z_{j}=1, \prod_{j<n+1} z_{j}=z_{n} \prod_{j<n} z_{j}$

Elementary analytic functions

Using exp and log, define other elementary analytic functions:

- trigonometric: sin, cos, tan, cot, sec, csc
- inverse trig.: arcsin, arccos, arctan, arccot, arcsec, arccsc
- hyperbolic: sinh, cosh, tanh, coth, sech, csch
- inverse hyp.: arsinh, arcosh, artanh, arcoth, arsech, arcsch

They have the expected properties, such as

$$
\begin{gathered}
\sin ^{2} z+\cos ^{2} z=1 \\
\sin (z+w)=\sin z \cos w+\cos z \sin w
\end{gathered}
$$

Example: tangent and arctangent

Define tan: $\mathbf{C} \backslash \pi\left(\frac{1}{2}+\mathbf{Z}\right) \rightarrow \mathbf{C}$ by

$$
\tan z=\left\{\begin{array}{ll}
i \frac{e^{-i z}-e^{i z}}{e^{-i z}+e^{i z}} & y \in \mathbf{R}_{\mathbf{L}} \\
i \operatorname{sgn} y & y \notin \mathbf{R}_{\mathbf{L}}
\end{array}\right\}= \begin{cases}i \frac{1-e^{2 i z}}{1+e^{2 i z}} & y \geq 0 \\
i \frac{e^{-2 i z}-1}{e^{-2 i z}+1} & y \leq 0\end{cases}
$$

$(z=x+i y)$
and arctan: $\mathbf{C} \backslash\{ \pm i\} \rightarrow\left(-\frac{\pi}{2}, \frac{\pi}{2}\right]+i \mathbf{R}_{\mathbf{L}}$ by

$$
\arctan z=\frac{1}{2 i} \log \left(\frac{1+i z}{1-i z}\right)
$$

Tangent and arctangent (cont'd)

Basic properties:

- arctan continuous outside $\pm i[1,+\infty)$
- $\tan \arctan z=z$ for $z \in \mathbf{C} \backslash\{ \pm i\}$
- $\arctan \tan z=z$ for $z \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right]+i \mathbf{R}_{\mathbf{L}}, z \neq \frac{\pi}{2}$
- \tan is π-periodic
- $\{w: \tan w=z\}=\arctan z+\pi \mathbf{Z}$ for $z \neq \pm i$
- tan maps $\mathbf{R} \backslash \pi\left(\frac{1}{2}+\mathbf{Z}\right)$ onto \mathbf{R}
- arctan maps \mathbf{R} onto ($-\frac{\pi}{2}, \frac{\pi}{2}$), increasing
- $\arctan z$ has additive and multiplicative $\mathbf{T C} \mathbf{C}^{0}$ approximations for $z \in \mathbf{Q}(i) \backslash\{ \pm i\}$

TC ${ }^{0}$ approximation of tan more involved:
bound away from singularities!

TC ${ }^{0}$ approximation of tangent

$\tan z$ has $\mathbf{T C}^{0}$ approximations as follows:

- additive for $z \in \mathbf{Q}(i) \backslash \pi\left(\frac{1}{2}+\mathbf{Z}\right)$, parametrized by $r \in \mathbf{L}$ s.t. $z \notin \mathbf{Q}$ or $\operatorname{dist}\left(z, \pi\left(\frac{1}{2}+\mathbf{Z}\right)\right) \geq 2^{-r}$
- multiplicative for $z \in \mathbf{Q}(i) \backslash \frac{\pi}{2} \mathbf{Z}_{\neq 0}$, parametrized by $r \in \mathbf{L}$ s.t. $z \notin \mathbf{Q}$ or $\operatorname{dist}\left(z, \frac{\pi}{2} \mathbf{Z}_{\neq 0}\right) \geq 2^{-r}$

In the standard model it's much cleaner:

- π irrational, finite irrationality measure $\Longrightarrow \mathbf{T C}^{0}$-computable lower bound on $\operatorname{dist}\left(z, \frac{\pi}{2} \mathbb{Z}_{\neq 0}\right)$
- additive and multiplicative approximation for $z \in \mathbb{Q}(i)$

Question: Can VTC^{0} prove " π is irrational"?
$\Longrightarrow \mathbf{T C}^{0}$ approximation on $\mathbf{Q}(i) w / o$ parameter

Irrationality measure

$x \in \mathbb{R} \backslash \mathbb{Q}: \mu(x)=\sup \left\{\mu: \exists^{\infty}\langle p, q\rangle \in \mathbb{Z}^{2}\left|x-\frac{p}{q}\right|<\frac{1}{q^{\mu}}\right\}$

- $\mu(x) \geq 2$
- $\mu(x)=2$ for x algebraic and for almost all $x \in \mathbb{R}$
- $\mu(\pi) \leq 42$ [Mah'53], $\mu(\pi) \leq 7.1032 \ldots$ [ZZ'20]
- conjecture: $\mu(\pi)=2$
$\mu>\mu(\pi) \Longrightarrow$

$$
\operatorname{dist}\left(\frac{p}{q}, \pi \mathbb{Z}\right) \geq \frac{N}{(q N)^{\mu}} \approx \frac{1}{q}\left(\frac{\pi}{p}\right)^{\mu-1}, \quad N=\left\lfloor\frac{p}{q \pi}\right\rceil
$$

for sufficiently large q

Exponential integer parts

(1) TC ${ }^{0}$ and VTC^{0}

(2) Analytic functions in VTC^{0}

3 Construction of exp
4 Construction of log
(5) Applications
(6) Exponential integer parts

Motivation

Let $\langle R,+, \cdot,<\rangle$ be an ordered field Integer part (IP): subring $D \subseteq R$ s.t.

- D discrete (1 is a least positive element)
- $\forall x \in R \exists u \in D|x-u|<1$

Real-closed field (RCF):

- odd-degree $f \in R[x]$ have roots, $\forall x>0 \exists \sqrt{x}$
- equivalently: $R \equiv \mathbb{R}$

Theorem [Shep'64]:

$$
\mathfrak{M} \vDash \text { IOpen } \Longleftrightarrow \mathfrak{M} \text { is an IP of a RCF }
$$

Exponential integer parts

Exponential field: $\langle R, \exp \rangle$ s.t.

- R ordered field
$-\exp :\langle R,+,<\rangle \simeq\left\langle R_{>0}, \cdot,<\right\rangle$
Following [Res'93]:
- exponential integer part (EIP):

IP $D \subseteq R$ s.t. $D_{>0}$ closed under exp

- real-closed exponential field (RCEF):
exponential field s.t. R RCF, $\exp (1)=2, \exp (x)>x$
NB: $\exp \upharpoonright D_{>0}$ may be different from the usual 2^{n}
Question:
- What models are EIP of RCEF? Do they satisfy some nontrivial consequences of totality of exponentiation?

Our results

Theorem: Every countable $\mathfrak{M} \vDash \mathrm{VTC}^{0}$ is an EIP of a RCEF

- uncountable $\mathfrak{M} \vDash \mathrm{VTC}^{0}$ has an elementary extension to an EIP of a RCEF
- FO consequences of being an EIP of a RCEF are nowhere near $I \Delta_{0}+$ EXP

Starting point:

- $\mathfrak{M} \vDash \mathrm{VTC}^{0} \Longrightarrow \mathrm{IP}$ of RCF $\mathrm{R}^{\mathfrak{M}}$
$-2^{x}:\left\langle\mathbf{R}_{\mathrm{L}}^{\mathfrak{M}},+,<\right\rangle \simeq\left\langle\mathbf{R}_{>0}^{\mathfrak{M}}, \cdot,<\right\rangle$ not quite right
- need $f:\left\langle\mathbf{R}^{\mathfrak{M}},+,<\right\rangle \simeq\left\langle\mathbf{R}_{\mathrm{L}}^{\mathfrak{M}},+,<\right\rangle$ s.t. $f\left[\mathbf{Z}^{\mathfrak{M}}\right] \subseteq \mathbf{Z}_{\mathrm{L}}^{\mathfrak{M}}$

Outline of strategy

Theorem [BS'76]: $\mathfrak{A} \equiv \mathfrak{B}$ countable, $\langle\mathfrak{A}, \mathfrak{B}\rangle$ recursively saturated $\Longrightarrow \mathfrak{A} \simeq \mathfrak{B}$

- $\mathbf{R}^{\mathfrak{M}}$ is uncountable \Longrightarrow work with $\mathbf{Q}^{\mathfrak{M}}$ instead
- axiomatize the theory of $\left\langle\mathbf{Q}, \mathbf{Z}, \mathbf{Q}_{\mathbf{L}},+,<\right\rangle$, quantifier elimination
- $\mathfrak{M} \vDash \mathrm{VTC}^{0} \Longrightarrow\left\langle\mathbf{Q}^{\mathfrak{M}}, \mathbf{Z}^{\mathfrak{M}}, \mathbf{Q}_{\mathbf{L}}^{\mathfrak{M}},+,<\right\rangle$ rec. sat.
- \mathfrak{M} countable $\Longrightarrow\left\langle\mathbf{Q}^{\mathfrak{M}}, \mathbf{Z}^{\mathfrak{M}},+,<\right\rangle \simeq\left\langle\mathbf{Q}_{\mathbf{L}}^{\mathfrak{M}}, \mathbf{Z}_{\mathrm{L}}^{\mathfrak{M}},+,<\right\rangle$, continuous extension $\left\langle\mathbf{R}^{\mathfrak{M}}, \mathbf{Z}^{\mathfrak{M}},+,<\right\rangle \simeq\left\langle\mathbf{R}_{\mathbf{L}}^{\mathfrak{M}}, \mathbf{Z}_{\mathbf{L}}^{\mathfrak{M}},+,<\right\rangle$
- alternatively: $\left\langle\mathbf{Z}^{\mathfrak{M}},+,<\right\rangle \simeq\left\langle\mathbf{Z}_{\mathbf{L}}^{\mathfrak{M}},+,<\right\rangle$ combines with id: $[0,1] \rightarrow[0,1]$ to $\left\langle\mathbf{R}^{\mathfrak{M}}, \mathbf{Z}^{\mathfrak{M}},+,<\right\rangle \simeq\left\langle\mathbf{R}_{\mathrm{L}}^{\mathfrak{M}}, \mathbf{Z}_{\mathrm{L}}^{\mathfrak{M}},+,<\right\rangle$
- problem: growth axiom $\exp (x)>x$

The theory of three groups

$\mathcal{L}_{3 \mathrm{G}}=\langle Z, L,+, 0,1,<\rangle$

- Z and L unary predicates, treat as sets
- denote the whole universe as Q

3G: $\mathcal{L}_{3 \mathrm{G}}$-theory with axioms

- $\langle Q,+, 0,<\rangle$ is a divisible totally ordered abelian group
- Z is an integer part of Q with least element 1
- L is a convex subgroup of Q containing 1
$N B$: implies Z is a \mathbb{Z}-group
Example: $\left\langle\mathbf{Q}^{\mathfrak{M}}, \mathbf{Z}^{\mathfrak{M}}, \mathbf{Q}_{\mathrm{L}}^{\mathfrak{M}},+, 0,1,<\right\rangle,\left\langle\mathbf{R}^{\mathfrak{M}}, \mathbf{Z}^{\mathfrak{M}}, \mathbf{R}_{\mathbf{L}}^{\mathfrak{M}},+, 0,1,<\right\rangle$ are models of 3 G for any $\mathfrak{M} \vDash \mathrm{VTC}^{0}$

Quantifier elimination

Theorem:
Every formula is in 3G equivalent to a Boolean combination of

$$
\begin{aligned}
\sum_{i} n_{i}\left\lfloor x_{i}\right\rfloor & \geq n \\
\sum_{i} n_{i}\left\{x_{i}\right\} & \geq n \\
\left\lfloor x_{i}\right\rfloor & \equiv k \quad(\bmod m) \\
\sum_{i} n_{i} x_{i} & \in L \\
Q & =L
\end{aligned}
$$

$\left(n_{i}, n, k, m \in \mathbb{Z}, 0 \leq k<m\right)$
Corollary: $3 G+Q=L$ and $3 G+Q \neq L$ are complete

Recursive saturation of models of 3G

Goal: 3G reducts of nonstandard models of VTC^{0} rec. sat.

- overspill $+\mathbf{T C}^{0}$ truth predicate for $\mathcal{L}_{3 \mathrm{G}}$ formulas
- fails miserably for $\sum_{i} n_{i} x_{i} \in L$:
$\mathrm{L}^{\mathfrak{M}}$ not definable in $\mathfrak{M} \vDash \mathrm{VTC}^{0}$ by any bounded formula
\Longrightarrow need to separate the role of L from the rest
Theorem: $\langle Q, Z, L,+, 0,1,<\rangle \vDash 3 G$ is rec. sat.
- $\langle Q, Z,+, 0,1,<\rangle$ is rec. sat.
- there is no $a \in Q_{>0}$ s.t. $\mathbb{N} a$ is cofinal in L or $\mathbb{N}^{-1} a$ is cofinal above L
(i.e., $\left\{\frac{1}{n} a: n \in \mathbb{N}\right\}$ downwards cofinal in $Q_{>0} \backslash L_{>0}$)

3 G reducts of models of VTC^{0}

Theorem: $\mathfrak{M} \vDash \mathrm{VTC}^{0}$ nonstandard \Longrightarrow
$\left\langle\mathbf{Q}^{\mathfrak{M}}, \mathbf{Z}^{\mathfrak{M}}, \mathbf{Q}_{\mathbf{L}}^{\mathfrak{M}},+, 0,1,<\right\rangle$ recursively saturated
Proof sketch:

- it's enough to prove it for $\left\langle\mathbf{Q}^{\mathfrak{M}}, \mathbf{Z}^{\mathfrak{M}},+, 0,1,<\right\rangle$
- fixing $\vec{a} \in \mathbf{Q}^{\mathfrak{M}}$, we consider sets Γ of disjunctions of

$$
\left.\begin{array}{rlrl}
n\{x\} & >\sum_{i} n_{i} a_{i} & n\lfloor x\rfloor & \geq \sum_{i} n_{i} a_{i} \\
\lfloor x\rfloor & \equiv k & (\bmod m) & a_{i}
\end{array}\right) \equiv k \quad(\bmod m) \text { 无 }
$$

(unary m, the same for all)

- we can determine whether x satisfies such a 「 by a TC ${ }^{0}$ predicate $T(\Gamma, x, \vec{a})$

Overspill argument

- if Γ as above is satisfiable, we can compute a satisfying x by a $\mathbf{T C}^{0}$ function $S(\Gamma, \vec{a})$
- sort all the $\frac{1}{n} \sum_{i} n_{i} a_{i}$, try all choices of $\lfloor x\rfloor \bmod m, \ldots$
$\left\{\varphi_{t}(x, \vec{a}): t \in \mathbb{N}\right\} \mathbf{T C}^{0}$-computable sequence (t unary) of disjunctions as above, finitely satisfiable:
- $\forall t \leq n T\left(\varphi_{t}, S\left(\left\{\varphi_{t}: t \leq n\right\}, \vec{a}\right), \vec{a}\right)$ is a $\mathbf{T C}^{0}$ formula
- it holds for all standard n
\Longrightarrow it holds for some nonstandard n
$\Longrightarrow x:=S\left(\left\{\varphi_{t}: t \leq n\right\}, \vec{a}\right)$ satisfies $\left\{\varphi_{t}(x, \vec{a}): t \in \mathbb{N}\right\}$

Isomorphisms

Corollary: $\mathfrak{M} \vDash \mathrm{VTC}^{0}$ countable
$\Longrightarrow\left\langle\mathbf{Q}^{\mathfrak{M}}, \mathbf{Z}^{\mathfrak{M}},+,<\right\rangle \simeq\left\langle\mathbf{Q}_{\mathrm{L}}^{\mathfrak{M}}, \mathbf{Z}_{\mathrm{L}}^{\mathfrak{M}},+,<\right\rangle$
$\Longrightarrow\left\langle\mathbf{R}^{\mathfrak{M}}, \mathbf{Z}^{\mathfrak{M}},+,<\right\rangle \simeq\left\langle\mathbf{R}_{\mathbf{L}}^{\mathfrak{M}}, \mathbf{Z}_{\mathrm{L}}^{\mathfrak{M}},+,<\right\rangle$
$\Longrightarrow \mathbf{R}^{\mathfrak{M}}$ expands to an exponential field with EIP \mathfrak{M}

Not yet quite RCEF: missing $\exp (x)>x$
Need $f:\left\langle\mathbf{R}^{\mathfrak{M}}, \mathbf{Z}^{\mathfrak{M}},+,<\right\rangle \simeq\left\langle\mathbf{R}_{\mathbf{L}}^{\mathfrak{M}}, \mathbf{Z}_{\mathbf{L}}^{\mathfrak{M}},+,<\right\rangle$ s.t. $2^{f(x)}>x$
Does not follow from recursive saturation as such, but we can adapt the back-and-forth proof of the [BS'76] isomorphism theorem

Summary

Theorem: $\mathfrak{M} \vDash \mathrm{VTC}^{0}$ nonstandard \Longrightarrow
$\left\langle\mathbf{Q}^{\mathfrak{M}}, \mathbf{Z}^{\mathfrak{M}}, \mathbf{Q}_{\mathbf{L}}^{\mathfrak{M}},+, 0,1,<\right\rangle$ recursively saturated
Theorem: Every countable $\mathfrak{M} \vDash \mathrm{VTC}^{0}$ is an EIP of a RCEF
Corollary: Every $\mathfrak{M} \vDash \mathrm{VTC}^{0}$ has an elementary extension to an EIP of a RCEF

Question: What exactly happens for uncountable $\mathfrak{M} \vDash \mathrm{VTC}^{0}$?
Question: Does every $\mathfrak{M} \vDash I$ Open have an elementary extension to an EIP of a RCEF?

Question: Can VTC^{0} prove " π is irrational"?

References

- J. Barwise, J. Schlipf: An introduction to recursively saturated and resplendent models, J. Symb. Logic 41 (1976), 531-536
- S. Cook, P. Nguyen: Logical foundations of proof complexity, Cambridge Univ. Press, 2010
- W. Hesse, E. Allender, D. M. Barrington: Uniform constant-depth threshold circuits for division and iterated multiplication, J. Comp. System Sci. 65 (2002), 695-716
- E. J.: Open induction in a bounded arithmetic for TC^{0}, Arch. Math. Logic 54 (2015), 359-394
- E. J.: Iterated multiplication in VTC^{0}, Arch. Math. Logic (2022), https://doi.org/10.1007/s00153-021-00810-6
- E. J.: Elementary analytic functions in VTC ${ }^{0}$, 2022, 55pp., arXiv:2206.12164 [cs.CC]
- E. J.: Models of VTC^{0} as exponential integer parts, 2022, 21pp., arXiv:2209.01197 [math.LO]

References (cont'd)

- J. Johannsen, C. Pollett: On the Δ_{1}^{b}-bit-comprehension rule, Logic Colloquium '98 (Proceedings), ASL, 2000, 262-280
- K. Mahler: On the approximation of π, Proc. Konink. Nederl. Akad. Wetensch. Ser. A 56 (1953), 30-42
- J.-P. Ressayre: Integer parts of real closed exponential fields, in: Arithmetic, proof theory, and computational complexity, Oxford Univ. Press, 1993, 278-288
- J. Shepherdson: A nonstandard model for a free variable fragment of number theory, Bull. Acad. Polon. Sci. 12 (1964), 79-86
- D. Zeilberger, W. Zudilin: The irrationality measure of π is at most 7.103205334137, Moscow J. Comb. Numb. Th. 9 (2020), 407-419

