Towards complex analysis in VTC⁰

Emil Jeřábek

Institute of Mathematics Czech Academy of Sciences jerabek@math.cas.cz https://users.math.cas.cz/~jerabek/

Computability in Europe Lisbon, July 2025

Arithmetic and complexity

Correspondence of theories of bounded arithmetic T and computational complexity classes C:

- provably total computable functions of T are C-functions
- T can reason using C-predicates
 (comprehension, induction, minimization, ...)
- \implies "feasible reasoning", "bounded reverse mathematics"
 - what can we prove using only concepts computable in C?
 - finite combinatorics, elementary number theory, ...
 - this talk: can we have tools from complex analysis?
 - generating functions in enumerative combinatorics
 - analytic number theory
 - eigenvalues and eigenvectors, ...

$\boldsymbol{\mathsf{TC}}^0$ and $\boldsymbol{\mathsf{VTC}}^0$

Suitable complexity class: uniform TC^0 (contained in $L \subseteq P$)

+, -, ·, /, ∑_{i<n} X_i, ∏_{i<n} X_i on Z, Q, Q(i) [HAB'02]
 approximation of functions given by nice power series: exp, log, sin, arctan, ^k√x, ...

Corresponding theory: VTC⁰ [NC'06,CN'10]

 formalize basic arithmetic operations incl. ∏_{i<n} X_i [J'22]
 model-theoretic construction of "reals": [J'15, J'23] *M* ⊨ VTC⁰ → Q^M → topological completion R^M, C^M

 R^M real-closed field, C^M algebraically closed
 construction of elementary analytic functions on C^M
 no general theory of analytic functions

 Can't quantify over reals, sequences, functions, ...
 meed a more robust setup

Emil Jeřábek Towards complex analysis in VTC⁰ CiE 2025 Lisbon

VTC⁰ with infinite sets

VTC⁰: Zambella-style two-sorted bounded arithmetic

- unary (index/auxiliary) integers: $0, 1, +, \cdot, \leq$
- ▶ finite sets \approx binary integers \approx binary strings: \in , |X|

 VTC_{∞}^{0} : two-sorted arithmetic with infinite sets

- unary (index/auxiliary) integers: $0, 1, +, \cdot, \leq$
- ▶ sets of unary integers: ∈ (no =)
- Q, induction, comprehension for $\Sigma_0^B = \Delta_0^0$ formulas: $\exists X \forall n (n \in X \leftrightarrow \varphi)$
- ► ∃ counting functions for sets
- ▶ finite sets encoded as a set *X* + a bound *n*

Comparison with related work

Buss '85: variants of V_1^i , U_1^i with infinite sets

F. Ferreira, G. Ferreira, A. Fernandes: theories for real analysis

- ▶ BTFA: based on $S_2^1 \approx V^1 \supseteq VTC^0$
- binary strings (numbers), sets of binary strings
- extra principles: collection, WKL

► theory TCA² for Riemann integration: BTFA-like extension of TCA = theory for CH TCA ≈ (quasipoly) VTC⁰, but unary numbers reinterpreted as binary ⇒ exponentially stronger

 VTC_{∞}^{0} is fully conservative over VTC^{0}

 $\forall \exists$ theorems of VTC⁰_{∞} witnessed by "infinitary **TC**⁰ functions"

Objects encodable in VTC^0_{∞}

▶ sequences of binary objects: $\{X_n\}_{n \in L}, X_n \subset [0, n^c)$ ($\mathbf{L} = \text{unary/logarithmic integers}, c \in \mathbb{N}$ standard constant) encoded as $X_n = \{j < n^c : \langle n, j \rangle \in X\}$ ▶ real numbers: sequence of integers $a = \{A[n]\}_{n \in L}$ s.t. $|A[n] - 2^{-m}A[n+m]| \le 1$ represents $a = \lim_{n \to \infty} 2^{-n}A[n]$ \implies complex numbers z = x + iy• double sequences $\{X_{n,m}\}_{n,m \in L}$ \implies real/complex sequences $\{a_n\}_{n \in L}$ \implies power series $f(z) = \sum_{n} a_n (z - w)^n$ ▶ analytic functions: $\{w_k, r_k, a_{k,n}\}_{k,n \in L}$ s.t. (roughly) • $f_k(z) = \sum_{n} a_{k,n}(z - w_k)$ radius of convergence $\geq r_k$ • domain covered by $\bigcup_k B(w_k, r_k/3)$ $|w_k - w_l| < r_k \implies f_l$ is f_k shifted to w_l

Convergence and power series

Sequence with a polynomial modulus of Cauchyness has a limit

arithmetical operations +, .
more generally: {a_n}_{n∈L} → {∑_{n<N} a_n}_{N∈L}, {∏_{n<N} a_n}_{N∈L}
f(z) = ∑_n a_nzⁿ converges for |z| <* r if a_n = O(r⁻ⁿ) x <* y ⇔ x ≤ y(1 - m⁻¹) for some m ∈ L

Operations on power series:

- derivatives and primitive functions $f^{(n)}(z)$, $n \in \mathbf{Z}_{L}$
- shift: f(z) = ∑_n a_n(z − u)ⁿ → f(z) ≡ ∑_n b_n(z − v)ⁿ
 ∑_{n<N} f_n, ∏_{n<N} f_n
 f(g(z))

Contour integration

Analytic function $f = \bigcup_k f_k$ as above, $f_k(z) = \sum_n a_{k,n} (z - w_k)^n$ radius $\ge r_k$

 γ piecewise linear path with endpoints $\{z_j : j \leq \ell\}$

Define
$$\int_{\gamma} f(z) dz := \sum_{j < \tilde{\ell}} (F_{k_j}(\tilde{z}_j) - F_{k_j}(\tilde{z}_{j+1}))$$
 if
 $\tilde{\gamma} \equiv {\tilde{z}_j : j \le \tilde{\ell}}$ subdivision of γ
 $\tilde{z}_j, \tilde{z}_{j+1} \in B^*(w_{k_j}, r_{k_j}/3)$ for each $j < \tilde{\ell}$
 F_k = the primitive function of f_k
VTC⁰_{\pi} proves

uniqueness

• existence if γ covered by $\bigcup_{k < K} B^*(w_k, r_k/3)$

Emil Jeřábek Towards complex analysis in VTC⁰ CiE 2025 Lisbon

What's next?

Work in progress

...

Some goals to pursue:

- Cauchy's residue theorem and calculus of residues
- root counting (argument principle, Rouché's theorem)
- analytic continuation, monodromy

Applications in combinatorics, number theory

References

- S. R. Buss: Bounded arithmetic, Bibliopolis, Naples, 1986
- S. Cook, P. Nguyen: Logical foundations of proof complexity, Cambridge Univ. Press, 2010
- A. M. Fernandes, F. Ferreira, G. Ferreira: Analysis in weak systems, in Logic and computation: Essays in honour of Amílcar Sernadas, College Publication, 2017, 231–262
- ▶ F. Ferreira: A feasible theory for analysis, J. Symb. Logic 59 (1994), 1001–1011
- F. Ferreira, G. Ferreira: The Riemann integral in weak systems of analysis, J. Univ. Computer Sci. 14 (2008), 908–937
- W. Hesse, E. Allender, D. M. Barrington: Uniform constant-depth threshold circuits for division and iterated multiplication, J. Comp. System Sci. 65 (2002), 695–716
- E. Jeřábek: Open induction in a bounded arithmetic for TC⁰, Arch. Math. Logic 54 (2015), 359–394
- E. Jeřábek: Iterated multiplication in VTC⁰, Arch. Math. Logic 61 (2022), 705–767
- E. Jeřábek: Elementary analytic functions in VTC⁰, Ann. Pure Appl. Logic 174 (2023), 103269
- P. Nguyen, S. Cook: Theories for TC⁰ and other small complexity classes, Log. Methods Comput. Sci. 2 (2006), art. 3

Emil Jeřábek | Towards complex analysis in VTC⁰ | CiE 2025 Lisbon