Towards analysis in VTC⁰

Emil Jeřábek

Institute of Mathematics Czech Academy of Sciences jerabek@math.cas.cz https://users.math.cas.cz/~jerabek/

Proof Complexity 2024 University of Oxford, September 2024

Feasible analytic reasoning

Formalization of mathematical results in bounded arithmetic:

- feasible reasoning, "bounded reverse mathematics"
- uniform propositional proofs
- consistency of computational complexity conjectures

Typically: finite combinatorics, elementary number theory

Some arguments use tools from real/complex analysis:

- eigenvalues and eigenvectors
- generating functions in enumerative combinatorics
- analytic number theory

Can we do such things in bounded arithmetic?

\mathbf{TC}^0 and VTC^0

Minimal complexity class: **TC**⁰

 +, -, ·, /, ∑_{i<n} X_i, ∏_{i<n} X_i on Z, Q, Q(i) [HAB'02]
 approximation of functions given by nice power series: exp, log, sin, arctan, ^k√x, ...

Corresponding theory: VTC⁰ [NC'06,CN'10]

- ▶ formalize basic arithmetic operations incl. ∏_{i<n} X_i [J'22]
 ▶ model-theoretic construction of "reals":
 - $\mathfrak{M} \vDash \mathsf{VTC}^{\mathsf{O}} \rightsquigarrow \mathbf{Q}^{\mathfrak{M}} \rightsquigarrow \mathsf{topological \ completion} \ \mathbf{R}^{\mathfrak{M}}, \mathbf{C}^{\mathfrak{M}}$
 - $\blacktriangleright~ R^{\mathfrak{M}}$ real-closed field, $C^{\mathfrak{M}}$ alg. closed [J'15]
 - construction of elementary analytic functions on C^m: exp, log, trigonometric, hyperbolic, their inverses [J'23]
 - no general theory of analytic functions

Can't quantify over reals, sequences, functions, ...

 \implies need a more robust setup

Emil Jeřábek Towards analysis in VTC⁰ Proof Complexity 2024, Oxford

VTC⁰ with infinite sets

VTC⁰: Zambella-style two-sorted bounded arithmetic

- unary (index/auxiliary) integers: $0, 1, +, \cdot, \leq$
- finite sets \approx binary integers \approx binary strings: \in , |X|

 VTC^0_{∞} : two-sorted arithmetic with infinite sets

- unary (index/auxiliary) integers: $0, 1, +, \cdot, \leq$
- ▶ sets of unary integers: ∈ (no =)
- Robinson's arithmetic, induction: $0 \in X \land \forall n \ (n \in X \to n+1 \in X) \to \forall n \ n \in X$
- comprehension: ∃X ∀n (n ∈ X ↔ φ), φ ∈ Σ₀^B = Δ₀⁰
 counting:

$$\forall X \exists C: C^{(0)} = 0 \land \forall n C^{(n+1)} = \begin{cases} C^{(n)} & n \notin X \\ C^{(n)} + 1 & n \in X \end{cases}$$

Reals in VTC^0_{∞}

Encode stuff in VTC_{∞}^{0} :

Finite sets: set X + bound n \rightarrow binary strings, integers, rationals as usual in VTC⁰ **•** sequences of binary objects: $\{X_n : n \in \mathbf{L}\}, X_n \subset [0, n^c)$ (L = unary integers, $c \in \mathbb{N}$ standard constant) encoded by X: $X_n = \{i < n^c : \langle n, i \rangle \in X\}$ ▶ real numbers: sequence of integers $\alpha = \{A[n] : n \in L\}$ s.t. $|A[n] - 2^{-m}A[n+m]| < 1$ leven more formally: A[0] plus $\{A[n] - 2^n A[0] : n \in L\}$ • represents $\alpha = \lim_{n \to \infty} \alpha[n]$, where $\alpha[n] := 2^{-n} A[n]$ • "known" α represented by $A[n] = \lfloor 2^n \alpha \rfloor := \lfloor 2^n \alpha + \frac{1}{2} \rfloor$ comparison: $\alpha \leq \beta \iff \forall n A[n] \leq B[n] + 2$ $\alpha \approx \beta \iff \alpha < \beta \land \beta < \alpha$

Related work

- Buss '85: variants of V_1^i , U_1^i with infinite sets
- F. Ferreira, G. Ferreira, A. Fernandes: theories for analysis
 - ► BTFA \approx S₂¹ + B Σ_{∞}^{b} + recursive comprehension
 - binary strings (numbers), sets of binary strings
 - ▶ cons. over $S_2^1 + B\Sigma_{\infty}^b$, Π_2^0 -cons. over $S_2^1 \approx V^1 \supseteq VTC^0$
 - ► BTFA + Σ_{∞}^{b} -WKL Π_{1}^{1} -cons. over BTFA
 - ▶ for Riemann integration:
 - ▶ TCA²: BTFA-like extension of TCA = theory for **CH**
 - ► TCA ≈ (quasipoly) VTC⁰, but unary numbers reinterpreted as binary ⇒ exponentially stronger

VTC_{∞}^{0} vs. VTC^{0}

$$\mathfrak{M} = \langle M_1, M_2, \ldots \rangle \vDash \mathsf{VTC}^0_{\infty}, \ M_2 \subseteq \mathcal{P}(M_1)$$

\$\display\$ canonical \$\mathcal{M}' = \$\langle M_1, M_2', \dots \rangle \box \mathcal{VTC}^0\$:

$$M'_{2} = \{ X \in M_{2} : \exists n \in M_{1} X \subseteq [0, n) \} \\ = \{ X \cap [0, n) : X \in M_{2}, n \in M_{1} \}$$

 $\mathfrak{M} = \langle M_1, M_2, \dots \rangle \vDash \mathsf{VTC}^0, \ M_2 \subseteq \mathcal{P}(M_1)$ \$\vishtarrow\$ expands to many models of VTC^0_∞

minimal: M[⊥] = ⟨M₁, M₂[⊥], ...⟩, M₂[⊥] = subsets of M₁ definable by **TC**⁰-formulas with parameters from M₂
 maximal: M[⊤] = ⟨M₁, M₂[⊤], ...⟩,

$$M_2^{\top} = \{X \subseteq M_1 : \forall n \in M_1 \ X \cap [0, n) \in M_2\}$$

 VTC^0_∞ is a conservative extension of VTC^0

Emil Jeřábek Towards analysis in VTC⁰ Proof Complexity 2024, Oxford

Universal conservative extensions

In the spirit of Cook & Nguyen's \widehat{VTC}^0 and \overline{VTC}^0 , we have

 $\widehat{\text{VTC}}^0_{\infty}$: new function symbols $\min(X \cup \{n\}), \{u : \varphi(u, \vec{n}, \vec{X})\}$ for $\varphi \in \Sigma^B_0, C(X)$: counting function for X

 $\overline{\mathsf{VTC}}^0_\infty$: also $\{u: \varphi(u, \vec{n}, \vec{X})\}$ for $\varphi \in \Sigma^B_0(\mathcal{L}_{\overline{\mathsf{VTC}}^0_\infty})$

- universally axiomatized
- ► $\overline{\mathsf{VTC}}^0_{\infty} \vdash \Sigma^B_0(\mathcal{L}_{\overline{\mathsf{VTC}}^0_{\infty}})$ -comprehension, induction
- ▶ all $\mathcal{L}_{\overline{\mathsf{VTC}}^0_{\infty}}$ -functions Δ^B_1 -bit-definable in VTC^0_{∞}

▶ witnessing theorem: $\overline{\mathsf{VTC}}^0_{\infty} \vdash \forall \vec{n}, \vec{X} \exists \vec{m}, \vec{Y} \varphi(\vec{n}, \vec{x}, \vec{m}, \vec{Y}), \varphi \in \Sigma^1_1(\mathcal{L}_{\overline{\mathsf{VTC}}^0_{\infty}}) \implies \text{there are } \mathcal{L}_{\overline{\mathsf{VTC}}^0_{\infty}}\text{-terms } \vec{t}, \vec{T} \text{ s.t.}$

$$\overline{\mathsf{VTC}}^0_{\infty} \vdash \forall \vec{n}, \vec{X} \varphi\big(\vec{n}, \vec{X}, \vec{t}(\vec{n}, \vec{X}), \vec{T}(\vec{n}, \vec{X})\big)$$

Feasibly Cauchy sequences

sequence of reals $\{\alpha_n : n \in \mathbf{L}\}$ encoded as a double sequence $\{A_n[m] : n, m \in \mathbf{L}\}$

polynomially Cauchy: $\forall n, m \ge p(k), r > k : |A_n[r] - A_m[r]| \le 2^{r-k}$ for some poly p

$$\implies$$
 limit α in VTC _{∞} ⁰: $A[n] = \left\lfloor \frac{1}{16} A_{p(n+3)}[n+4] \right\rceil$

(a bit simpler for a sequence of rationals)

Application: define arithmetical operations on reals

•
$$\alpha + \beta = \lim_{n} 2^{-n} (A[n] + B[n])$$

• $\alpha \cdot \beta = \lim_{n} 2^{-2n} A[n] B[n]$

Algebraic properties

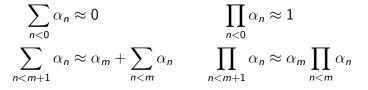
 VTC^0_∞ proves $\langle \mathbb{R},+,\cdot\rangle$ is an ordered field

Adapting [J'15] to VTC^0_{∞} : \mathbb{R} is a real-closed field, \mathbb{C} algebraically closed (wrt polynomials of standard degree)

Recall: $\mathfrak{M} \models VTC^{0} \rightsquigarrow \mathfrak{M}^{\perp}, \mathfrak{M}^{\top} \models VTC_{\infty}^{0}$ binary rationals $\mathbb{Q}^{\mathfrak{M}} \rightsquigarrow$ topological completion $\mathbb{R}^{\mathfrak{M}}$ Fact: $\mathfrak{M} \models VTC^{0}$ countable $\implies \mathbb{R}^{\mathfrak{M}} \simeq \mathbb{R}^{\mathfrak{M}^{\top}}$ In general: $\mathfrak{M}^{*} \models VTC_{\infty}^{0}$ expands $\mathfrak{M} \models VTC^{0}$ $\implies \mathbb{R}^{\mathfrak{M}^{*}}$ embeds in $\mathbb{R}^{\mathfrak{M}}$

Further constructions

real/complex sequence $\{\alpha_n : n \in \mathbf{L}\}$ \rightsquigarrow unique (up to \approx) sequences of partial sums and products $\{\sum_{n < m} \alpha_n : m \in \mathbf{L}\}, \{\prod_{n < m} \alpha_n : m \in \mathbf{L}\}$ s.t.



Adapting [J'23]: VTC_{∞}^{0} has well-behaved definitions of elementary analytic functions (exp, log, trigonometric, hyperbolic, inv. trig., inv. hyp.)

What's next?

Develop a reasonable theory of

- sequences, sums
- Taylor series

• . . .

basic complex analysis

to support analytic arguments in combinatorics, number theory No fixed set of goals

References

- S. R. Buss: Bounded arithmetic, Bibliopolis, Naples, 1986
- S. Cook, P. Nguyen: Logical foundations of proof complexity, Cambridge Univ. Press, 2010
- A. M. Fernandes, F. Ferreira, G. Ferreira: Analysis in weak systems, in Logic and computation: Essays in honour of Amílcar Sernadas, College Publication, 2017, 231–262
- ▶ F. Ferreira: A feasible theory for analysis, J. Symb. Logic 59 (1994), 1001–1011
- F. Ferreira, G. Ferreira: The Riemann integral in weak systems of analysis, J. Univ. Computer Sci. 14 (2008), 908–937
- W. Hesse, E. Allender, D. M. Barrington: Uniform constant-depth threshold circuits for division and iterated multiplication, J. Comp. System Sci. 65 (2002), 695–716
- E. Jeřábek: Open induction in a bounded arithmetic for TC⁰, Arch. Math. Logic 54 (2015), 359–394
- E. Jeřábek: Iterated multiplication in VTC⁰, Arch. Math. Logic 61 (2022), 705–767
- E. Jeřábek: Elementary analytic functions in VTC⁰, Ann. Pure Appl. Logic 174 (2023), 103269
- P. Nguyen, S. Cook: Theories for TC⁰ and other small complexity classes, Log. Methods Comput. Sci. 2 (2006), art. 3

Emil Jeřábek Towards analysis in VTC⁰ Proof Complexity 2024, Oxford