
Mathematical Logic

Emil Jeřábek

Based on course notes taken by Jindřich Novák

Charles University Prague
Faculty of Mathematics and Physics January 2025

Course overview

Mathematical logic, in a broad sense, is the investigation of formal logical systems—that typically have
a syntactic component operating with expressions such as formulas, and a semantic component that
assigns a “meaning” to these expressions interpreted in suitable structures—by mathematical means and
methods, similar to, say, abstract algebra (whereas logic had been traditionally a domain of philosophy
since antiquity). In a narrower sense, mathematical logic studies formal systems relevant to the founda-
tions of mathematics, such as first-order logic and set theory. It also includes spin-off fields such as the
theory of computation.

The purpose of this course is to introduce three (related) basic topics in mathematical logic, each
part culminating with one of the major achievements of the field:

1. Classical propositional and first-order logic, leading up to the completeness theorem.

2. Computability, leading up to the undecidability of the halting problem.

3. Theories of arithmetic, leading up to Gödel’s theorems.

These lecture notes also include a list of exercises (purely voluntary): besides helping to get a better
acquaintance of the material, many of them present additional side results that may interest dedicated
students, but for which there is no room in the main lecture due to time constraints.

A website for this course is maintained at

https://users.math.cas.cz/~jerabek/teaching/mathlog/mathlog.html.

It includes basic information about the course, and an updated detailed break-down of topics we covered
in each lecture.

Concerning literature, Part 1 seeks to be consistent with

• Lou van den Dries, Lecture notes on mathematical logic,

and Part 2 with

• Michael Sipser, Introduction to the theory of computation, 2nd ed., Thomson, 2006.

Part 3 does not follow any particular source. Other recommended literature:

• Vı́tězslav Švejdar, Logika: neúplnost, složitost a nutnost, Academia, Praha, 2002 (in Czech).

• René Cori and Daniel Lascar, Mathematical logic: A course with exercises (Part I and Part II),
Oxford University Press, 2000.

• Joseph R. Shoenfield, Mathematical logic, Addison-Wesley, London, 1967.

iii

https://users.math.cas.cz/~jerabek/teaching/mathlog/mathlog.html

iv Mathematical Logic

Contents

Course overview iii

1 Syntax and semantics of logic 1
1.1 Propositional logic . 1
1.2 Completeness of propositional logic . 5
1.3 First-order logic . 8
1.4 First-order proof system . 12
1.5 Completeness of first-order logic . 15
1.6 Consequences of the completeness theorem . 19

2 Computability 23
2.1 Turing machines . 23
2.2 Universal Turing machines and the halting problem . 29
2.3 Computability of logical syntax . 32

3 Arithmetic 35
3.1 Robinson and Peano arithmetics . 35
3.2 Σ1-completeness of Q . 37
3.3 Sequence encoding and definability of computation . 39
3.4 Undecidability and incompleteness . 43
3.5 Unprovability of consistency . 45

Exercises 49

v

vi Mathematical Logic

Part 1

Syntax and semantics of logic

The goal of this part is to prove the completeness theorem for first-order logic (and for propositional
logic). We start from the beginning, that is, we introduce the syntax and semantics of propositional
and first-order logic and their basic properties. However, since these basics are included among the
prerequisites for the course, our treatment of them will be in the form of an extensive review of the
material to make sure we are all on the same page and to fix notation and terminology. The presentation
will be, therefore, rather terse at times, and we will skip some proofs.

Convention 1.1. Throughout the course, N denotes the set of natural numbers including 0. Ordered
pairs and other tuples are denoted using the angle brackets ⟨x, y⟩.

Definition 1.2 (Strings). Given an alphabet Σ, the strings of a given length n over Σ are elements
of Σn. The set of all strings over Σ is

Σ∗ =

∞⋃
n=0

Σn.

Notation 1.3. The length of w ∈ Σ∗ is denoted |w|; i.e., |w| is the n ∈ N such that w ∈ Σn.
Given u, v ∈ Σ∗, their concatenation (of length |u|+ |v|) is denoted u⌣v, or simply uv.
The empty string (the unique string of length 0) is denoted ε.

Convention 1.4. Even though there is a formal distinction between a symbol a ∈ Σ and the corre-
sponding string of length one from Σ1, both will be denoted the same.

1.1 Propositional logic

When formulating propositional logic, there is a somewhat arbitrary choice of which connectives are
postulated as basic, and which are introduced as abbreviation. In accordance with van den Dries’s lecture
notes, we formulate propositional logic in the De Morgan language using the connectives ∧ (conjunction),
∨ (disjunction), ¬ (negation), ⊤ (truth, verum), and ⊥ (falsity, falsum):

Definition 1.5 (Atoms, propositional formulas). Let A be a set of atoms (or propositional vari-
ables). The set PropA of propositional formulas over A is the smallest subset of Σ∗, where Σ =
A ∪ {∧,∨,¬,⊤,⊥, (,)})∗, such that

(i) a ∈ A =⇒ a ∈ PropA,

(ii) φ,ψ ∈ PropA =⇒ (φ ∧ ψ), (φ ∨ ψ),¬φ,⊤,⊥ ∈ PropA.

Remark 1.6. It may not be immediately clear that there exists an object satisfying an inductive
definition such as the definition of PropA above. (It is clear that if it exists, it is unique, as the can be
only one smallest set—meaning w.r.t. inclusion—with a given property.) This can be formally proved in
several ways:

1

2 Mathematical Logic

• Let F be the collection of all subsets of Σ∗ with the given property, and put PropA =
⋂
F . Using

the fact that the property X ∈ F is defined by a collection of inductive clauses of the form “if
φ0, φ1, . . . ∈ X then F (φ0, φ1, . . .) ∈ X”, it is readily seen that PropA ∈ F , hence it is the smallest
set in F .

• Define a sequence of sets Xn ⊆ Σ∗, n ∈ N, such that X0 = ∅, and Xn+1 is the result of all the
inductive clauses applied to Xn; i.e., here,

Xn+1 = A1 ∪ {(φ ∧ ψ), (φ ∨ ψ),¬φ,⊤,⊥ : φ,ψ ∈ Xn}.

We can show Xn ⊆ Xn+1 by induction on n. Put PropA =
⋃

n∈NXn. Since all the inductive
clauses are finitary, we see that PropA is closed under them, and it is the smallest set with this
property.

We will see other such inductive definitions later; they can all be formalized in a similar manner.

Notation 1.7. We introduce the shorthands (φ→ ψ) = (¬φ ∨ ψ), (φ↔ ψ) = ((¬φ ∨ ψ) ∧ (¬ψ ∨ φ)).

Convention 1.8. When writing formulas, we will omit outermost brackets, and, in contexts where it
does not matter, brackets occurring in repeated conjunctions or disjunctions (e.g., φ ∧ ψ ∧ ω).

It is also a common convention that ∧ and ∨ bind more strongly than → and ↔, thus, e.g., the
expression φ ∧ ψ → χ ∨ ω is understood as the formula ((φ ∧ ψ)→ (χ ∨ ω)), i.e., (¬(φ ∧ ψ) ∨ (χ ∨ ω)).

Notation 1.9. Given a finite sequence of formulas φ0, . . . , φn−1, their repeated conjunction (bracketed
in some canonical way, e.g., left-to-right) is denoted∧

i<n

φi = φ0 ∧ · · · ∧ φn−1.

Analogous notation is introduced for logical disjunction. For n = 0, this is understood as
∧

i<0 φi = ⊤,∨
i<0 φi = ⊥; for n = 1,

∧
i<1 φi =

∨
i<1 φi = φ0.

Lemma 1.10. (Unique readability) For any formula φ ∈ PropA, exactly one of the following cases
happens:

(i) φ ∈ A (φ is atomic).

(ii) φ = (φ0 ∧ φ1) for some φ0, φ1 ∈ PropA.

(iii) φ = (φ0 ∨ φ1) for some φ0, φ1 ∈ PropA.

(iv) φ = ¬φ0 for some φ0 ∈ PropA.

(v) φ = ⊤.

(vi) φ = ⊥.

Moreover, the formulas φ0 and φ1 in (ii)–(iv) are uniquely determined by φ.

Remark 1.11. The syntactic build-up of a formula may be described by a so-called syntactic tree: this
is an ordered binary tree each of whose nodes is labelled with an occurrence of a symbol in the formula,
such that atoms (and constants) are leaf nodes, and a node labelled with a connective has as its the
children the arguments of the connective. Lemma 1.10 can be generalized to show that every formula
has a unique syntactic tree.

Definition 1.12. A propositional assignment, or truth assignment, or simply an assignment, is a function
α : A→ {0, 1}. The set of all assignments on A is denoted {0, 1}A.

Part 1. Syntax and semantics of logic 3

Lemma 1.13 (Formula evaluation). Any truth assignment α has a unique extension α̂ : PropA → {0, 1}
such that for all φ,ψ ∈ PropA and a ∈ A,

α̂(a) = α(a),

α̂(φ ∧ ψ) = min {α̂(φ), α̂(ψ)} ,
α̂(φ ∨ ψ) = max {α̂(φ), α̂(ψ)} ,
α̂(¬φ) = 1− α̂(φ),
α̂(⊤) = 1,

α̂(⊥) = 0.

Observation 1.14. For any sequence of formulas φ0, . . . , φn−1, we have

α̂
(∨
i<n

φi

)
= 1 ⇐⇒ ∃i < n α̂(φi) = 1

and

α̂
(∧
i<n

φi

)
= 1 ⇐⇒ ∀i < n α̂(φi) = 1.

Definition 1.15. If α̂(φ) = 1, we say that α satisfies φ, or that α is a satisfying assignment of φ; this
is denoted α ⊨ φ.

A formula φ is a tautology, written as ⊨ φ, if every truth assignment α : A→ {0, 1} satisfies φ.
Dually, φ is satisfiable if there exists a truth assignment α : A→ {0, 1} that satisfies φ.
Formulas φ and ψ are equivalent, written φ ≡ ψ, if

∀α ∈ {0, 1}A α̂(φ) = α̂(ψ).

Observation 1.16. φ ≡ ψ if and only if ⊨ (φ↔ ψ).

Definition 1.17 (Entailment). Let Γ ⊆ PropA be a set of propositional formulas. We say that a truth
assignment α satisfies Γ (or that α is a model of Γ), written α ⊨ Γ, if α satisfies every formula φ ∈ Γ.

Γ entails φ, written as Γ ⊨ φ, if for each α ∈ {0, 1}A, whenever α ⊨ Γ, then α ⊨ φ.

Definition 1.18 (Boolean function). A Boolean function is any function of the form f : {0, 1}n → {0, 1}.
We can identify it with f : {0, 1}A → {0, 1} if |A| = n; i.e., A = {a0, . . . , an−1}. A formula φ ∈ Prop

represents a Boolean function f if for each α ∈ {0, 1}A we have f(α) = α̂(φ).

Observation 1.19. Every formula φ represents a unique Boolean function, namely the truth-table
function ttφ : {0, 1}A → {0, 1} defined by ttφ(α) = α̂(φ).

Lemma 1.20. If A is a finite set of atoms, every Boolean function f : {0, 1}A → {0, 1} can be represented
by a formula.

Proof. Check that

f(p⃗) ≡
∨

α∈f−1(1)

∧
i∈A

p
α(i)
i ≡

∧
α∈f−1(0)

∨
i∈A

p
1−α(i)
i .

This is often expressed by saying that the set of connectives {∧,∨,¬,⊤,⊥} is functionally complete
on {0, 1}. See Exercises 1–3.

Definition 1.21. A literal is an atom or its negation. We write p1 = p, p0 = ¬p.
A clause is a disjunction of a (possibly empty) set of literals.
A formula in conjunctive normal form, or a CNF, is a conjunction of a (possibly empty) set of clauses.
Dually, a formula in disjunctive normal form, or a DNF, is disjunction of a set of conjunctions of sets

of literals.

4 Mathematical Logic

Conjunctions of sets of literals are also called terms, but we will refrain from this terminology to
avoid clash with Definition 1.42 below.

The proof of Lemma 1.20 actually shows:

Corollary 1.22. Every Boolean function can be represented by a CNF and by a DNF.

Corollary 1.23. Every formula is equivalent to a CNF and to a DNF.

Remark 1.24. It follows from the proof of Lemma 1.20 that any Boolean function in n variables can
be represented by a formula of size O(2nn) (where the size of a formula is its length as a string). We
can improve this to O(2n) by an inductive construction (see Exercise 7). One may ask if we could do
better. The answer is no, not by much.

In fact, there are Boolean functions f : {0, 1}n → {0, 1} such that any formula representing f has
size Ω(2n/ log n). (Conversely, every Boolean function has a formula of size O(2n/ log n), but this small
improvement takes a lot of work to prove.)

This may be proved by a simple counting argument: a formula φ of size s is a string of length s made
of n+ 7 possible symbols, thus the number of such formulas is ≤ (n+ 7)s, while there are 22

n

Boolean
functions. If all functions can be represented by formulas of size s, then 22

n ≤ (n + 7)s, which implies
2n ≤ s · log(n+ 7), whence s ≥ 2n/ log(n+ 7). The same argument actually shows that a vast majority
of Boolean functions require formulas of size Ω(2n/ log n).

Despite that, it is an open problem to construct an explicit sequence of Boolean functions that require
formulas of size more than Ω(nc) for all constants c. We can construct functions that require formulas
of cubic size, but we cannot do any better.

This falls into the field of study known as circuit complexity, which is related to various problems in
computational complexity.

Propositional logic may seem, at first sight, trivial, but it is related to many very difficult and very
intensely studied areas of mathematics.

Another open problem is the question: given a formula, how difficult is it to compute whether it
is satisfiable? One obvious way to go about this is to brute-force the solution by trying all possible
assignments. This is an inefficient algorithm, however, with computational complexity on the order of
2n.

Another possibility is to convert the given formula to a DNF and check the satisfiability thereof.
Note that it is trivial to check the satisfiability of DNFs, which can be done in polynomial time. The
conversion itself, however, requires exponential time to compute (cf. Exercise 6).

Observe that we can easily verify that φ is satisfiable if we are given a satisfying assignment as a
witness. Problems like this, where a positive answer has an efficiently checkable witness, are said to
belong to the complexity class NP. In fact, satisfiability is a “complete” problem for NP in a suitable

sense. The famous question P
?
= NP in effect asks whether there exists an efficient (i.e., polynomial-time)

algorithm for satisfiability testing. It is generally conjectured that this is not the case, and in fact, that
every satisfiability-testing algorithm requires time 2Ω(n).

Lemma 1.25 (Algebraic equivalences). Conjunction and disjunction are commutative, associative, and
idempotent operators up to equivalence. Moreover, ⊤ is a neutral element for conjunction, and a zero
element for disjunction; dually for ⊤. We also have the lattice absorption and distributivity laws:

φ ∧ (ψ ∧ χ) ≡ (φ ∧ ψ) ∧ χ φ ∨ (ψ ∨ χ) ≡ (φ ∨ ψ) ∨ χ
φ ∧ ψ ≡ ψ ∧ φ φ ∨ ψ ≡ ψ ∨ φ
φ ∧ φ ≡ φ φ ∨ φ ≡ φ

φ ∧ (φ ∨ ψ) ≡ φ φ ∨ (φ ∧ ψ) ≡ φ
φ ∧ (ψ ∨ χ) ≡ (φ ∧ ψ) ∨ (φ ∧ χ) φ ∨ (ψ ∧ χ) ≡ (φ ∨ ψ) ∧ (φ ∨ χ)

φ ∧ ⊤ ≡ φ φ ∨ ⊥ ≡ φ
φ ∧ ⊥ ≡ ⊥ φ ∨ ⊤ ≡ ⊤.

Part 1. Syntax and semantics of logic 5

Lemma 1.26. The following so called De Morgan laws hold:

¬(φ ∨ ψ) ≡ ¬φ ∧ ¬ψ, ¬(φ ∧ ψ) ≡ ¬φ ∨ ¬ψ.

(We also have ¬¬φ ≡ φ.) More generally,

¬
∨
i<n

φi ≡
∧
i<n

¬φi, ¬
∧
i<n

φi ≡
∨
i<n

¬φi.

Lemmas 1.25 and 1.26 show that the quotient structure ⟨PropA,∧,∨,¬,⊥,⊤⟩ /≡ is a Boolean algebra.

1.2 Completeness of propositional logic

We want to characterize entailment in propositional logic by a proof system: a proof of φ from Γ
is a witness whose existence guarantees that φ indeed follows from Γ, and whose correctness is easily
checkable. Many different kinds of proof systems with different properties are considered in the literature
on proof theory and proof complexity, such as Hilbert-style proof systems, sequent calculi, natural
deduction, resolution, etc. Furthermore, the selection of axioms and inference rules in proof systems of
one type may differ.

We are going to work with a Hilbert-style proof system, also known as a Frege system: this means
that a proof is just a sequence of formulas consisting of axioms and of formulas inferred by specified
rules of inference. The advantage of such proof systems is that they are very simple to define; their
disadvantage is a lack of analogues of more advanced proof-theoretic tools such as cut elimination/proof
normalization, but these are outside the scope of this course anyway.

The De Morgan language is rather inconvenient to formulate Hilbert-style proof systems for: on
the one hand, it includes many redundant connectives, which means we need many axioms to fix their
properties; on the other hand, most natural axioms have the form of an implication, but → is not
included in the De Morgan language. To make our lives simpler, we will use in this section an alternative
language with only {→,⊥} as the basic connectives (which is readily seen to be functionally complete).
A complete proof system using the De Morgan language can be found in the van den Dries lecture notes;
alternatively, you can solve Exercise 12.

Definition 1.27. A (propositional) logical axiom is any instance of one of the axiom schemata

(φ→ (ψ → χ))→ ((φ→ ψ)→ (φ→ χ)),(A1)

φ→ (ψ → φ),(A2)

((φ→ ⊥)→ ⊥)→ φ.(A3)

We also consider the schematic inference rule modus ponens:

From φ and φ→ ψ infer ψ.(MP)

Definition 1.28 (Proofs). Let φ ∈ PropA and Γ ⊆ PropA. A proof (or derivation) of φ from Γ is a
sequence of formulas φ0, φ1, . . . , φs such that φs = φ and for every i = 0, . . . , s one of the following
holds:

• φi ∈ Γ;

• φi is a logical axiom (i.e., it is an instance of one of the axiom schemata);

• there are j, k < i such that φi is derived from φj , φk using modus ponens.

A formula φ is provable from Γ, written Γ ⊢ φ, if there exists a proof of φ from Γ.
A proof of φ from the empty set ∅ is simply called a proof of φ, and φ is called provable, written ⊢ φ.
Γ is consistent if Γ ⊬ ⊥.

6 Mathematical Logic

Our present goal is to prove the following theorem:

Theorem 1.29 (Soundness and completeness). For all φ ∈ PropA and Γ ⊆ PropA,

Γ ⊢ φ ⇐⇒ Γ ⊨ φ.

The soundness theorem is the left-to-right implication (which is the easy part); the completeness
theorem proper is the right-to-left implication.

Lemma 1.30 (Deduction). For all Γ ⊆ PropA and φ,ψ ∈ PropA,

Γ, ψ ⊢ φ ⇐⇒ Γ ⊢ ψ → φ.

Proof. The right-to-left implication is trivial (it follows by a single application of modus ponens). We
shall now prove the left-to-right implication. By assumption, there is a proof φ0, . . . , φn = φ of φ from
Γ ∪ {ψ}. We will show Γ ⊢ ψ → φi by induction on i ≤ n. We distinguish the ways how φi could have
been derived:

• Suppose either φi is a logical axiom or φi ∈ Γ. Then Γ ⊢ φi, and we infer Γ ⊢ ψ → φi using the
instance φi → (ψ → φi) of (A2) and (MP).

• Suppose φi = ψ. The following proof shows Γ ⊢ ψ → ψ:

(ψ → ((ψ → ψ)→ ψ))→ ((ψ → (ψ → ψ))→ (ψ → ψ)) (A1)

ψ → ((ψ → ψ)→ ψ) (A2)

(ψ → (ψ → ψ))→ (ψ → ψ) (MP)

ψ → (ψ → ψ) (A2)

ψ → ψ (MP)

• Suppose φi has been derived by (MP) from φj and φk for some j, k < i, i.e., φk = (φj → φi). By
the induction hypothesis, Γ ⊢ ψ → φj and Γ ⊢ ψ → (φj → φi). We obtain Γ ⊢ ψ → φi using the
instance

(ψ → (φj → φi))→ ((ψ → φj)→ (ψ → φi))

of (A1) and two applications of (MP).

Corollary 1.31. Γ ⊢ φ ⇐⇒ Γ, (φ→ ⊥) ⊢ ⊥.

Proof.

⇒ A simple application of modus ponens.

⇐ Using the deduction lemma,

Γ, φ→ ⊥ ⊢ ⊥ =⇒ Γ ⊢ (φ→ ⊥)→ ⊥
=⇒ Γ ⊢ φ,

where the last line is obtained via (MP) from ((φ→ ⊥)→ ⊥)→ φ, which is (A3).

Definition 1.32 (Maximal consistent set). Γ ⊆ PropA is maximal consistent if Γ is consistent but all
Γ ⊊ ∆ ⊆ PropA are inconsistent.

Lemma 1.33. Let Γ be a maximal consistent set and φ ∈ PropA.

(i) Γ ⊢ φ =⇒ φ ∈ Γ.

(ii) φ /∈ Γ =⇒ φ→ ⊥ ∈ Γ.

Proof.

Part 1. Syntax and semantics of logic 7

(i) If Γ ⊢ φ, then Γ ∪ {φ} is still consistent. Thus, φ ∈ Γ by the maximality of Γ.

(ii) φ /∈ Γ implies by the maximality of Γ that Γ, φ ⊢ ⊥, which implies Γ ⊢ φ → ⊥ by the deduction
lemma. It follows that φ→ ⊥ ∈ Γ by (i).

Lemma 1.34. Every maximal consistent set Γ is satisfiable.

Proof. Let Γ be maximal consistent and define an assignment α : A→ {0, 1} by

α(p) = 1 ⇐⇒ p ∈ Γ for all p ∈ A.

We will show that this equivalence holds for all formulas φ, not just for atoms:

α̂(φ) = 1 ⇐⇒ φ ∈ Γ.

It will follow that α ⊨ Γ. We prove this by induction on the complexity of φ:

• Suppose φ is an atom. Then α̂(φ) = 1 ⇐⇒ φ ∈ Γ by definition.

• Suppose φ = ⊥. Then α̂(⊥) = 0, and ⊥ /∈ Γ because Γ is consistent.

• Suppose φ = (ψ → χ). We distinguish three cases:

– α̂(χ) = 1, thus α̂(ψ → χ) = 1.

By the induction hypothesis, χ ∈ Γ, whence Γ ⊢ ψ → χ using the axiom χ → (ψ → χ).
Finally then ψ → χ ∈ Γ by Lemma 1.33.

– α̂(ψ) = 0, thus α̂(ψ → χ) = 1.

By the induction hypothesis, ψ /∈ Γ, which implies Γ, ψ ⊢ ⊥ by the maximality of Γ. We
derive Γ, ψ ⊢ (χ → ⊥) → ⊥ using the axiom ⊥ → ((χ → ⊥) → ⊥), and Γ, ψ ⊢ χ using
((χ→ ⊥)→ ⊥)→ χ.

This gives us Γ ⊢ ψ → χ using the deduction lemma and, therefore, ψ → χ ∈ Γ by Lemma 1.33.

– α̂(ψ) = 1 and α̂(χ) = 0, thus α̂(ψ → χ) = 0.

By the induction hypothesis, it follows that ψ ∈ Γ, χ /∈ Γ, whence ψ → χ /∈ Γ (otherwise
Γ ⊇ {ψ,ψ → χ} ⊢ χ by (MP), which implies χ ∈ Γ, quod non).

Lemma 1.35. Every consistent set Γ ⊆ PropA is included in a maximal consistent set Γ̃ ⊆ PropA.

Proof. We will use Zorn’s Lemma. For the partial order, take all consistent extensions ∆ ⊇ Γ ordered by
inclusion. The union of any, possibly infinite, chain (= linearly ordered set) C of consistent extensions
is a consistent extension. This is due to the fact that a proof contains only finitely many formulas: if⋃
C were not consistent, contradiction could be obtained from a finite subset of

⋃
C; since C is linearly

ordered, such a finite set would be included in some ∆ ∈ C, which would contradict the consistency of
∆. Thus every chain has an upper bound. Consequently, there exists a maximal element, which is a
maximal consistent extension of Γ.

Theorem 1.36 (Propositional completeness theorem). Let Γ ⊆ PropA and φ ∈ PropA. Then

Γ ⊢ φ ⇐⇒ Γ ⊨ φ.

Proof. Soundness (Γ ⊢ φ implies Γ ⊨ φ) is left to the reader as Exercise 8. For the converse implication,
assume Γ ⊬ φ. Then Γ ∪ {φ→ ⊥} is a consistent theory by Corollary 1.31, and we may extend it to a
maximal consistent theory Γ̃ by Lemma 1.35. There exists an assignment α satisfying Γ̃ by Lemma 1.34.
Then, in particular, α ⊨ Γ, and α̂(φ→ ⊥) = 1 implies α ⊭ φ. Consequently, Γ ⊭ φ.

Theorem 1.37 (Propositional compactness theorem). Let Γ ⊆ PropA and φ ∈ PropA.

(i) Γ ⊨ φ iff there exists a finite subset Γ0 ⊆ Γ such that Γ0 ⊨ φ.

8 Mathematical Logic

(ii) Γ is satisfiable iff all finite Γ0 ⊆ Γ are satisfiable.

Proof.

(i) ⇐ If there exists a (finite or otherwise) subset Γ0 ⊨ φ, then Γ ⊨ φ trivially.

⇒ Γ ⊨ φ implies Γ ⊢ φ by Theorem 1.36, whence there exists a finite subset Γ0 ⊆ Γ such that
Γ0 ⊢ φ, as a proof of φ is a finite sequence of formulas. Then Γ0 ⊨ φ again by Theorem 1.36.

(ii) Take φ = ⊥.

Remark 1.38. The compactness theorem is a purely semantic statement that does not rely on any
underlying proof system; it may be proved directly without using the completeness theorem, for example
by topological considerations (using the topological compactness of a suitable space; see Exercise 13).

Our proof of the completeness theorem, hence of the compactness theorem, used the axiom of choice
(in the form of Zorn’s lemma). One can show that both statements are (over the Zermelo–Fraenkel set
theory) equivalent to the Boolean prime ideal theorem, which is weaker than full axiom of choice. This
holds also for the completeness and/or compactness theorems of first-order logic below (Theorems 1.80
and 1.82).

The compactness theorem can be used to prove combinatorial statements that ostensibly do not
involve any logic, such as the De Bruijn–Erdős theorem below.

Recall that a graph G = ⟨V,E⟩ (where V is a set of vertices and E ⊆
{
{u, v} : u, v ∈ V, u ̸= v

}
is a

set of edges) is k-colourable if there exists a mapping c : V → [k] such that c(u) ̸= c(v) for all {u, v} ∈ E,
where k ∈ N and [k] = {0, . . . , k < 1}.

Theorem 1.39 (De Bruijn, Erdős). For any k ∈ N, a graph G = ⟨V,E⟩ is k-colourable iff all finite
subgraphs G0 of G are k-colourable.

Proof. Consider a set of atoms
AG = {pu,i : u ∈ V, i < k} ,

where pu,i intuitively means “c(u) = i”, and define a set of formulas over AG by

ΓG =
{∨
i<k

pu,i : u ∈ V
}
∪
{
¬(pu,i ∧ pv,i) : {u, v} ∈ E, i < k

}
.

Then ΓG is satisfiable iff G is k-colourable:

⇐ Let c : V → [k] be a k-colouring of G. Then α ⊨ ΓG, where α(pu,i) = 1 iff c(u) = i.

⇒ Given α ⊨ ΓG, we define a k-colouring c : V → [k] as follows: for any u ∈ V , there is i < k s.t.
α(pu,i) = 1; let c(u) be one such i (say, the least one). Then if ⟨u, v⟩ ∈ E, then α ⊨ ¬(pu,i ∧ pv,i)
for each i, thus c(u) ̸= c(v).

If all finite subgraphs of G are k-colourable, then every finite Γ0 ⊆ ΓG is satisfiable, as Γ0 ⊆ ΓG0
for

some finite subgraph G0 of G. Thus, ΓG is satisfiable by compactness, whence G is k-colourable.

1.3 First-order logic

Definition 1.40 (Language). A language or signature is a collection of relation and function symbols,
each of a given arity. Formally, L =

〈
Lr, Lf , ar

〉
where Lr ∩ Lf = ∅ and ar : Lr ∪ Lf → N. We also

require that Lr ∪ Lf is disjoint from {∧,∨,¬,⊤,⊥,∀,∃,=, (,), ,} ∪Var (see Definition 1.42).
For any R ∈ Lr, ar(R) = n signifies that R is an n-ary relation symbol. Similarly, F ∈ Lf with

ar(F) = n is an n-ary function symbol. Nullary function symbols are called constant symbols. Nullary
relation symbols are rarely used, but they behave essentially as propositional atoms.

Definition 1.41. An L-structure is A =
〈
A,

{
RA : R ∈ Lr

}
,
{
FA : F ∈ Lf

}〉
where

Part 1. Syntax and semantics of logic 9

• A ̸= ∅ is the domain1 (underlying set) of A;

• for any R ∈ Lr with ar(R) = n, RA ⊆ An;

• for any F ∈ Lf with ar(F) = n, FA : An → A.

If s ∈ Lr ∪ Lf , sA is also called the interpretation of s in A.

Definition 1.42. The set of variables is Var = {vn : n ∈ N}. We will denote variables with various
lowercase letters such as x, y, z,

The set TermL of L-terms is the least set such that every variable is an L-term, and for every n-ary
function symbol F ∈ Lf and any L-terms t0, . . . , tn−1, we have F (t0, . . . , tn−1) ∈ TermL.

An atomic L-formula is an expression of the form R(t0, . . . , tn−1) or t0 = t1, where R ∈ Lr is an
n-ary relation symbol and t0, . . . are L-terms.

The set FormL of L-formulas is the least set such that every atomic L-formula is an L-formula, and
if φ and ψ are L-formulas, and x is a variable, then (φ ∧ ψ), (φ ∨ ψ), ¬φ, ⊤, ⊥, ∃xφ, and ∀xφ are
L-formulas.

When L is understood from the context or immaterial, we will say just term, formula, etc.

Convention 1.43. In practice, we will not follow the above formalities when specifying languages,
structures, terms, and formulas. We will typically write a language as a set of symbols, such as L =
{+,−, ·, <}, where the nature of the symbols (relation/function, arity) either follows their conventional
use, or is understood from the context, and we will write R ∈ L and F ∈ L instead of R ∈ Lr and
F ∈ Lf .

Likewise, we will write structures as tuples listing the domain and interpretations of the symbols,
such as ⟨Z,+,−, ·, <⟩; as also seen here, standard operations on common mathematical structures will
be identified just by their symbol (we do not need to write +Z instead of + if no confusion arises).

Common binary symbols such as + and < will be written in the usual infix notation, e.g., x+ y and
x < y rather than +(x, y) and <(x, y). Sometimes, applications of function and relation symbols are
written without brackets and commas: Rt0 . . . tn−1, Ft0 . . . tn−1 (this is the official definition in some
sources); we will at least invariably omit brackets in constants, writing c instead of the c() required by
Definition 1.42.

Following common practice, we will write t ̸= s for ¬t = s; we might do this also with other binary
predicates, e.g., t ≰ s.

An interpretation of a constant c in a structure A is formally supposed to be a function cA : A0 → A.
Since |A0| = 1, such a function is uniquely specified by just giving its single value; thus, we will identify
cA with an element of A.

Definition 1.44. An occurrence of a variable x in a formula φ is bound if it occurs inside a subformula
(= a substring that is itself a formula) that starts with ∃x or ∀x. Such an occurrence is said to be within
the scope of the latter bounding quantifier. An occurrence that is not bound is called free.

A variable is said to be free in φ if it has a free occurrence in φ (it may or may not also have bound
occurrences).

Definition 1.45. A term or a formula is closed if it has no free variables; closed formulas are also called
sentences. A theory is a set of sentences.

A formula is called open or quantifier-free if it has no bound variables.

We remark that the definition of a theory varies in the literature: sometimes, theories are required to
be deductively closed, i.e., φ ∈ T whenever φ is a sentence such that T ⊢ φ (see Definition 1.63 below).

Definition 1.46 (Substitution). Let t be a term and x a variable. Given a term s, we define s(t/x) as
the result of replacing every occurrence of x in s with t. If φ is a formula, then φ(t/x) denotes the result
of replacing every free occurrence of x in φ with t.

More generally, if t0, t1, . . . , tn−1 are terms and x0, x1, . . . , xn−1 are distinct variables, then for any
term s, s(t0/x0, . . . , tn−1/xn−1) is the result of simultaneously replacing every occurrence of each xi

1Sometimes, especially in model theory, A = ∅ is admitted as well.

10 Mathematical Logic

with ti in s. For a formula φ, the expression φ(t0/x0, . . . , tn−1/xn−1) is defined similarly, substituting
just for free occurrences of variables.

Notation 1.47. We will write t(x0, . . . , xn−1) or φ(x0, . . . , xn−1) to indicate that all variables that occur
free in φ or t are among x0, x1, . . . , xn−1. Then we write φ(t0, . . . , tn−1) for φ(t0/x0, . . . , tn−1/xn−1) and
likewise for terms. When n is not important or understood from context, we may also write φ(x⃗) for
φ(x0, . . . , xn−1), etc.

Remark 1.48. Intuitively, the meaning of φ(t/x) is “the property expressed by φ(x) applied to the
element denoted by t”. However, it does not always work that way. For a simple example, let φ(x) be
the formula ∃y y ̸= x, whose meaning is “there is an element distinct from x”. When we substitute y
for x, we obtain the formula ∃y y ̸= y, which does not mean “there is an element distinct from y”, but
“there is an element distinct from itself”. The problem here is that we substituted the variable y into
a context where it is quantified by ∃y, which means it locally does not denote the element referred to
by the free variable. To avoid such situations, we will only use substitution when it meets the condition
below:

Definition 1.49 (Term free for substitution). A term t is free for x in φ (or more explicitly, free for
substitution for x in φ) if no free occurrence of x in φ is in the scope of a quantifier of the form ∃y or ∀y
where y occurs in t.

Remark 1.50. Once we define the semantics, we could formally state and prove that if t is free for x in φ,
then φ(t/x) indeed has the “φ(x) applied to the element denoted by t” meaning. In fact, a variant of this
property can be stated purely syntactically as the next lemma (this would imply the semantic version
when we take for si and r the constants a introduced below and used in the definition of satisfaction).

Lemma 1.51 (Successive substitution). If t(x0, . . . , xn−1, y) is free for y in a formula φ(x0, . . . , xn−1, y),
then for all terms s⃗, r, the formula (φ(t/y))(s0/x0, . . . , sn−1/xn−1, r/y), denoting successive substitution,
is the same formula as (i.e., syntactically identical to) the formula φ(s0, . . . , sn−1, t(s0, . . . , sn−1, r)).

Proof. Exercise 15.

Definition 1.52 (Constant-symbol language extension). For any L-structure A and X ⊆ A, let LX =
L ∪ {a : a ∈ X}, where each a is a new constant symbol distinct from all others and from all symbols
of L.

Then AX is an LX -structure with domain A, sAX = sA for all s ∈ L, and aAX = a for all a ∈ X.

We will later cease underlining constant symbols unless needed for clarity.

Definition 1.53 (Evaluation). If A is an L-structure, and t is a closed term, then we define tA ∈ A by
induction on the complexity of t:

• If t = F (t0, . . . , tn−1) then t
A = FA (

tA0 , . . . , t
A
n−1

)
.

For any term t(x0, . . . , xn−1), we define tA : An → A by tA(a0, . . . , an−1) = (t(a0, . . . , an−1))
AA .

Definition 1.54 (Satisfaction, model, logical consequence). Let A be an L-structure. Given an LA-
sentence φ, we define A ⊨ φ by induction on the complexity of φ:

• If φ is R(t0, . . . , tn−1) for some n-ary relation R and closed LA-terms ti, then we put A ⊨ φ iff〈
tA0 , . . . , t

A
n−1

〉
∈ RA.

• If φ is t = s, A ⊨ φ ⇐⇒ tA = sA.

Part 1. Syntax and semantics of logic 11

• We shall now define behaviour of ⊨ on logical operators and quantifiers:

A ⊨ φ0 ∧ φ1 ⇐⇒ A ⊨ φ0 and A ⊨ φ1,

A ⊨ φ0 ∨ φ1 ⇐⇒ A ⊨ φ0 or A ⊨ φ1,

A ⊨ ¬φ ⇐⇒ A ⊭ φ,
A ⊨ ⊤,
A ⊭ ⊥,
A ⊨ ∃xφ ⇐⇒ there exists a ∈ A such that A ⊨ φ(a/x),

A ⊨ ∀xφ ⇐⇒ for all a ∈ A, A ⊨ φ(a/x).

Observe that in the last two clauses, φ(a/x) is again an LA-sentence.

For a not necessarily closed formula φ(x0, . . . , xn−1), we write A ⊨ φ if A ⊨ φ(a0, . . . , an−1) for all
a0, . . . , an−1 ∈ A; we say that φ holds in A, or A is a model of φ.

More generally, if Γ ⊆ FormL, we write A ⊨ Γ if for all φ ∈ Γ we have A ⊨ φ; we say that A is a
model of Γ.

A formula φ is a logical consequence of Γ, or Γ entails φ, or φ follows from Γ, written Γ ⊨ φ, if every
model A of Γ is also a model of φ.

Finally, φ is said to be logically valid (or a first-order tautology), written ⊨ φ, if ∅ ⊨ φ (i.e., φ is
entailed by Γ = ∅); in other words, if A ⊨ φ for all structures A.

L-formulas φ and ψ are equivalent, written φ ≡ ψ, if for every L-structure A and every tuple
a0, . . . , an−1 ∈ A, we have

A ⊨ φ(a0, . . . , an−1) ⇐⇒ A ⊨ ψ(a0, . . . , an−1).

In other words, φ ≡ ψ iff ⊨ (φ ↔ ψ). More generally, L-theories T and S are equivalent if T ⊨ φ ⇐⇒
S ⊨ φ for all L-sentences φ.

Definition 1.55 (Universal closure). For any formula φ(x0, . . . , xn−1), its universal closure φ
∀ is

∀x0 . . . ∀xn−1 φ(x0, . . . , xn−1).

In other words, all freely occurring variables of φ are made bound with universal quantifiers.

Remark 1.56. The definition of entailment Γ ⊨ φ and/or provability Γ ⊢ φ (that we will introduce
later) sometimes varies in the literature when Γ contains formulas with free variables. This is the reason
why it became standard to define theories to consist of sentences only, for which the common definitions
agree. On the other hand, there is a general convention that axioms of theories may be written with
outer universal quantifiers stripped, thus a formula given as an axiom of a theory really represents its
universal closure.

Under our definitions, these distinctions are not important: we observe immediately from the defini-
tion that every formula is mutually entailed with its universal closure, as stated in the next lemma, and
our proof system will also have this property.

Lemma 1.57. For any L-formula φ, φ ⊨ φ∀ and φ∀ ⊨ φ.

Lemma 1.58. If φ ≡ φ′ and ψ′ results from a formula ψ by replacing some occurrences of φ as
subformulas with φ′, then ψ ≡ ψ′.

Proof. By induction on the complexity of ψ.

Definition 1.59. A formula φ(x0, . . . , xn−1) is in prenex normal form if it has the form

Q0y0 · · ·Qm−1ym−1 θ(x0, . . . , xn−1, y0, . . . , ym−1)

where Qi ∈ {∃,∀}, the formula θ is open, and the yi are pairwise distinct variables, distinct from the
xjs.

12 Mathematical Logic

Lemma 1.60. Let Q be either the existential or the universal quantifier. Then

¬∃xφ ≡ ∀x¬φ,
¬∀xφ ≡ ∃x¬φ,
Qxφ ≡ Qy φ(y/x) if y is free for x in φ,

(φ ∧Qxψ) ≡ Qx (φ ∧ ψ)
(φ ∨Qxψ) ≡ Qx (φ ∨ ψ)

}
if x is not free in φ.

The first two equivalences are called the De Morgan rules for quantifiers.

Lemma 1.61. Every formula is equivalent to a formula in prenex normal form.

Proof. Apply Lemma 1.60 systematically to bring all quantifiers out, renaming them in case of clashes.

1.4 First-order proof system

Definition 1.62. We consider the following list of axioms and rules for first-order logic:

Propositional axioms and rules of inference

Same as in Definition 1.27.

Axioms of equality

x = x,

x = y ∧ x = z → y = z,(∧
i<n

xi = yi

)
→ (R(x⃗)→ R(y⃗)),(∧

i<n

xi = yi

)
→ F (x⃗) = F (y⃗)

for each n-ary relation symbol R and n-ary function symbol F .

Quantifier axioms and rules

Supposing t is free for x in φ:

∀xφ→ φ(t/x),

φ(t/x)→ ∃xφ.

Supposing x is not free in ψ:

From ψ → φ infer ψ → ∀xφ. (universal generalization, (∀Gen))

From φ→ ψ infer ∃xφ→ ψ. (existential generalization, (∃Gen))

Definition 1.63 (Provability). Let Γ ⊆ FormL and φ ∈ FormL. Then φ is provable from Γ, written
Γ ⊢ φ, if there exists a sequence of formulas φ0, . . . , φn (called a proof or derivation of φ from Γ) such
that φn = φ, and for each i ≤ n, one of the following holds:

• φi ∈ Γ;

• φi is a logical axiom;

• φi is derived by a rule of inference from some of the φj , j < i.

Part 1. Syntax and semantics of logic 13

If Γ = ∅, we just say that φ is provable, and write ⊢ φ.

Remark 1.64. Since we base our proof system on the propositional one from Definition 1.27, we again
need to adjust the language so that we use the propositional connectives {→,⊥} instead of {∧,∨,¬,⊤,⊥}.
In particular, we should, strictly speaking, replace the conjunctions appearing in the axioms of equality
with equivalent {→,⊥}-formulas; since the conjunctions only occur as antecedents of implications, we
can do it elegantly by rewriting

(∧
i<n xi = yi

)
→ (R(x⃗)→ R(y⃗)) as

x0 = y0 → (x1 = y1 → (· · · → (xn−1 = yn−1 → (R(x⃗)→ R(y⃗))) · · ·)),

and similarly for the other formulas.
Alternatively, we could base our proof system on a propositional system that directly uses the De Mor-

gan connectives. In a way, since we already proved the propositional completeness theorem, the choice
of the propositional part of our calculus, including what set of basic connectives it employs, does not
matter much. We may essentially treat the propositional part of the proof system as a “black box”: the
exact selection of axioms and rules is not important as long as they are complete for propositional logic.
As the next lemma shows, we can allow any propositional tautologies as axioms, and any propositionally
valid rules as rules of inference. But in order not to confuse things further, we will formally stick with
{→,⊥} as the set of basic connectives in this and the next section.

Lemma 1.65. If φ(p0, . . . , pn−1) is a propositional tautology, then

⊢ φ(ψ0, . . . , ψn−1)

for any first-order formulas ψ0, . . . , ψn−1. More generally, if

φ0(p⃗), . . . , φm−1(p⃗) ⊨ φ(p⃗)

for propositional formulas φ0, . . . , φm−1, φ, then

φ0(ψ⃗), . . . , φm−1(ψ⃗) ⊢ φ(ψ⃗).

We will say that φ(ψ⃗) follows from φ0(ψ⃗), . . . , φm−1(ψ⃗) by propositional reasoning.

Proof. By Theorem 1.36, we may fix a propositional proof χ0(p⃗), . . . , χs(p⃗) of φ(p⃗) from {φi(p⃗) : i < m}.
(If the proof involves other atoms than p⃗, we either substitute them with e.g. ⊥, or we extend the ψ⃗ list.

This is not important.) Then χ0(ψ⃗), . . . , χs(ψ⃗) is a first-order proof of φ(ψ⃗) from {φi(ψ⃗) : i < m}.

Remark 1.66. Using (∀Gen) and propositional reasoning, it is easy to derive a simpler version of the
(∀Gen) rule: φ ⊢ ∀xφ. This implies that our proof system shares with the notion of entailment the
property that any formula is equiderivable with its universal closure, as we promised earlier:

Lemma 1.67. For any L-formula φ, φ ⊢ φ∀ and φ∀ ⊢ φ.

Remark 1.68. As in propositional logic, our basic tool for constructing proofs will be the deduction
lemma. We have to be slightly careful with its formulation: as we just observed, we have φ ⊢ ∀xφ, but
in general ⊬ φ → ∀xφ as this formula is not logically valid. In order to fend off such examples, we will
require that the principal formula in the deduction lemma is a sentence.

Lemma 1.69 (Deduction). If Γ is a set of L-formulas, ψ is an L-formula, and φ is an L-sentence, then

Γ, φ ⊢ ψ ⇐⇒ Γ ⊢ φ→ ψ.

Proof. The right-to-left implication is a trivial application of (MP). For the left-to-right implication, let
φ0, . . . , φn = ψ be a proof of ψ from Γ ∪ {φ}. We show Γ ⊢ φ→ φi by induction on i:

(i) Suppose that φi ∈ Γ∪{φ}, or φi is an axiom, or φi is derived by (MP). Then the proof is identical
to that of Lemma 1.30.

14 Mathematical Logic

(ii) Suppose φi is derived by the existential generalization rule; i.e., φi = ∃xα → β is derived from
φj = α → β, j < i, where x is not free in β. By the induction hypothesis, Γ ⊢ φ→ (α → β), and
thus

Γ ⊢ φ→ (α→ β) induction hypothesis

⊢ α→ (φ→ β) propositional reasoning

⊢ ∃xα→ (φ→ β) (∃Gen)

⊢ φ→ (∃xα→ β) propositional reasoning.

We can use (∃Gen) because φ is a sentence, thus x is not free in φ→ β.

(iii) Finally, suppose φi is derived by universal generalization; i.e., that φi = β → ∀xα is derived from
φj = β → α. Similarly to the existential case, we can derive

Γ ⊢ φ→ (β → α) induction hypothesis

⊢ φ ∧ β → α propositional reasoning

⊢ φ ∧ β → ∀xα (∀Gen)

⊢ φ→ (β → ∀xα) propositional reasoning.

Our main goal in Part 1 is to prove that the first-order proof system we have defined adequately
captures logical consequence. Let us start with the easy part:

Theorem 1.70 (Soundness theorem). Let Γ ⊆ FormL and φ ∈ FormL. Then

Γ ⊢ φ =⇒ Γ ⊨ φ.

Proof. We fix a proof, say φ0, . . . , φn, of φ from Γ, and let A be an L-structure such that A ⊨ Γ. We will
show A ⊨ φi by induction on i, and hence A ⊨ φ. In essence, we are proving that satisfaction is preserved
under the rules of inference. As before, we consider the various ways φi could have been derived from
some φj , j < i, and we analyse each case individually:

Derived propositionally. This case includes φi ∈ Γ, φi being a logical axiom, and being derived by
(MP). We leave this to the reader as an exercise.

Derived by universal generalization. By the definition of (∀Gen), we need to verify that

A ⊨ β(x⃗)→ α(x⃗, y)︸ ︷︷ ︸
φj

implies A ⊨ β(x⃗)→ ∀y α(x⃗, y)︸ ︷︷ ︸
φi

,

where we indicated explicitly the free variables. Note that y does not occur free in β by assumptions
of the (∀Gen) rule. Assuming

A ⊨ β(x⃗)→ α(x⃗, y),

we will show

A ⊨ β(x⃗)→ ∀y α(x⃗, y)

using the definition of satisfaction: let a⃗ ∈ A be such that A ⊨ β(⃗a); then we need to check
A ⊨ ∀y α(⃗a, y).

Let b ∈ A: we have A ⊨ β(⃗a) → α(⃗a, b), thus A ⊨ α(⃗a, b). This means A ⊨ ∀y α(⃗a, y) as b was
arbitrary.

Derived by existential generalization. Suppose A ⊨ α(x⃗, y) → β(x⃗); we need to show that A ⊨
∃y α(x⃗, y)→ β(x⃗). This can be proved by a similar argument as for (∀Gen).

Part 1. Syntax and semantics of logic 15

Axiom of equality. This follows easily. For example, assume φi is the axiom

x0 = y0 ∧ · · · ∧ xn−1 = yn−1 → F (x0, . . . , xn−1) = F (y0, . . . , yn−1).

For every a⃗, b⃗ ∈ A, ifA ⊨
∧

i<n ai = bi, then a0 = b0 and . . . and an−1 = bn−1, thus F
A(⃗a) = FA(⃗b),

i.e., A ⊨ F (⃗a) = F (⃗b).

Quantifier axiom. Consider an axiom φi of the form α(t/y) → ∃y α(x⃗, y). Recall that to postulate
this axiom, we require that t be free for y in α. Indicating explicitly the free variables, φ is

α(x⃗, t(x⃗, y)/y)→ ∃y α(x⃗, y).

We need to show that this holds in any structure A. Let a⃗, b ∈ A be such that

A ⊨ α(x⃗, t(x⃗, y)/y)(⃗a/x⃗, b/y).

By Lemma 1.51, this means
A ⊨ α(⃗a, t(⃗a, b)).

Putting c = tA(⃗a, b), we obtain A ⊨ α(⃗a, c) (Exercise 16). It follows that A ⊨ ∃y α(⃗a, y) by the
definition of satisfaction.

The argument for axioms of the form ∀y α→ α(t/y) is completely analogous.

1.5 Completeness of first-order logic

We aim to prove the completeness theorem:

Theorem 1.71. If Γ is a set of L-formulas and φ is an L-formula, then

Γ ⊨ φ =⇒ Γ ⊢ φ.

Definition 1.72. Let T be an L-theory. Then T is said to be

• consistent if T ⊬ ⊥;

• complete if for all L-sentences φ, we have T ⊢ φ or T ⊢ ¬φ;

• Henkin if every existential statement has a witness: i.e., for every L-formula φ(x), there is a
constant c (called the Henkin constant for φ) such that

T ⊢ ∃xφ(x)→ φ(c).

Remark 1.73. Since our proof systems uses {→,⊥} as basic connectives, ¬φ in the definition of complete
theories formally denotes (φ→ ⊥).

A complete theory is essentially the same thing as a maximal consistent set of sentences (a first-order
version of Definition 1.32). We use the former instead of the latter as it is an notion of independent
interest outside the context of the proof of the completeness theorem (e.g., it will be of central importance
in Part 3). In this connection, we note for future reference that an L-sentence φ such that T ⊬ φ and
T ⊬ ¬φ is called independent of T (or undecidable in T , though this usage somewhat clashes with the
notion of algorithmic undecidability that we will see later in Definitions 2.6 and 2.32). Sentences φ such
that T ⊢ ¬φ are called refutable in T .

An outline of our proof of Theorem 1.71 is as follows:

• Reduce it to proving that any consistent theory T has a model.

• If T ⊬ ⊥, there is a complete theory T̃ ⊇ T , T̃ ⊬ ⊥, in the same language.

16 Mathematical Logic

• If T ⊬ ⊥, there is a Henkin theory TH ⊇ T , TH ⊬ ⊥ (in an expanded language).

• If T ⊬ ⊥ is complete and Henkin, there is a structure A such that A ⊨ T .

We shall proceed with the details. We start with the last point, which explains the motivation for intro-
ducing Henkin theories. But let us first observe that even though the definition of Henkin theories only
provides Henkin constants that witness existential sentences, we also obtain suitable Henkin constants
witnessing universal sentences:

Lemma 1.74. If T is a Henkin L-theory, then for every L-formula φ(x), there is a constant c such that
T ⊢ φ(c)→ ∀xφ(x).

Proof. By assumption, there is a constant c such that T ⊢ ∃x¬φ(x)→ ¬φ(c). Then we have

T ⊢ ¬φ(x)→ ∃x¬φ(x) axiom

⊢ ∃x¬φ(x)→ ¬φ(c) Henkin assumption

⊢ ¬φ(x)→ ¬φ(c) propositional reasoning

⊢ φ(c)→ φ(x) more propositional reasoning

⊢ φ(c)→ ∀xφ(x) (∀Gen).

Lemma 1.75. If T is a complete and consistent Henkin theory, then T has a model.

Proof. Let CT stand for the collection of all closed L-terms. We define an equivalence relation on CT
by t ∼ s iff T ⊢ t = s. The axioms of equality ensure that ∼ is an equivalence relation, hence we may
define the quotient set A = CT/∼. If t is a closed term, let [t] denote the equivalence class of t.

We define an L-structure A with underlying set A by

FA([t0], . . . , [tn−1]) = [F (t0, . . . , tn−1)],

⟨[t0], . . . , [tn−1]⟩ ∈ RA ⇐⇒ T ⊢ R(t0 . . . tn−1)

for each n-ary function symbol F , and n-ary relation symbol R. In order to make sure that FA and RA

are well-defined, we need to check that the definitions are independent of the choice of representatives
of the equivalence classes: i.e., if [t0] = [s0], . . . , [tn−1] = [sn−1], then [F (⃗t)] = [F (s⃗)], and T ⊢ R(⃗t) ⇐⇒
T ⊢ R(s⃗). This follows from the equality axioms.

We can show tA = [t] for each t ∈ CT by induction on the complexity of t.
We claim that

A ⊨ φ ⇐⇒ T ⊢ φ
for all sentences φ, which implies A ⊨ T . We proceed by induction on the complexity of φ:

Atomic formula. Suppose φ is R(t0, . . . , tn−1). Then

A ⊨ R(t0 · · · tn−1) ⇐⇒
〈
tA0 , . . . , t

A
n−1

〉
∈ RA

⇐⇒ ⟨[t0], . . . , [tn−1]⟩ ∈ RA

⇐⇒ T ⊢ R(t0, . . . , tn−1).

The same argument also applies with = in place of R.

Falsum. Suppose φ is ⊥. Then T ⊬ ⊥ by consistency, and A ⊭ ⊥ by definition.

Implication. Suppose φ is φ0 → φ1. Then

A ⊨ φ0 → φ1 ⇐⇒ A ⊭ φ0 or A ⊨ φ1

⇐⇒ T ⊢ ¬φ0 or T ⊢ φ1 induction hypothesis

⇐⇒ T ⊢ φ0 → φ1.

For the last equivalence, “⇒” follows by propositional reasoning (we have ¬φ0 ⊢ φ0 → φ1 and
φ1 ⊢ φ0 → φ1). To show “⇐”, assume T ⊢ φ0 → φ1. If T ⊢ φ0, we obtain T ⊢ φ1 by (MP);
otherwise, T ⊢ ¬φ0 by the completeness of T .

Part 1. Syntax and semantics of logic 17

Existential quantification. Suppose φ is ∃xψ(x). Then

A ⊨ ∃xψ(x) ⇐⇒ (∃t ∈ CT)A ⊨ ψ([t])

⇐⇒ (∃t ∈ CT)A ⊨ ψ(t) using tA = [t] = [t]
A

⇐⇒ (∃t ∈ CT)T ⊢ ψ(t) induction hypothesis

⇐⇒ T ⊢ ∃xψ(x).

Concerning the last equivalence, for “⇒”, use the axiom ψ(t) → ∃xψ(x); for “⇐”, T is Henkin
whence there exists a constant c such that T ⊢ ∃xψ(x)→ ψ(c).

Universal quantification. Suppose φ is ∀xψ(x). We compute

A ⊨ ∀xψ(x) ⇐⇒ (∀t ∈ CT)A ⊨ ψ([t])

⇐⇒ (∀t ∈ CT)A ⊨ ψ(t)

⇐⇒ (∀t ∈ CT)T ⊢ ψ(t)
⇐⇒ T ⊢ ∀xψ(x)

similarly to the existential case.

Lemma 1.76. If T is a consistent L-theory, then there exists a complete consistent L-theory T̃ extending
it; i.e., T̃ ⊇ T .

Proof. As in the propositional case, we use Zorn’s lemma to show that there exists a maximal consistent
L-theory T̃ such that T̃ ⊇ T (recall that the union of a chain of consistent theories is consistent).

To see that T̃ is complete, let φ be a sentence such that T̃ ⊬ φ; we will show T̃ proves ¬φ, i.e.,
φ→ ⊥. By the maximality of T̃ , the theory T̃ ∪ {φ} is inconsistent: T̃ , φ ⊢ ⊥. Thus, T̃ ⊢ φ→ ⊥ by the
deduction theorem.

Lemma 1.77 (Constants). Let T be an L-theory, φ(x) an L-formula, and c a constant symbol such that
c /∈ L. Then

T ⊢ φ(c) implies T ⊢ φ(x).

Proof. Let φ0, . . . , φn be a proof of φ(c) in T , and y be a variable that does not occur in the proof.
Then φ0(y/c), . . . , φn(y/c) is still a valid proof of (φ(c/x))(y/c) = φ(y/x) from T . (The meaning of
“(y/c)” is that we replace each occurrence of c with y; this is not formally a substitution according to
Definition 1.46 as c is not a variable.) Thus, T proves φ(y/x); we may infer ∀y φ(y/x) using (∀Gen),
and then φ(x) using the axiom ∀y φ(y/x)→ (φ(y/x))(x/y)︸ ︷︷ ︸

φ(x)

.

Lemma 1.78. If T is a consistent L-theory, c /∈ L a constant symbol, and φ(x) an L-formula, then the
following theory is consistent:

T ∪ {∃xφ(x)→ φ(c)} .

Proof. If T, ∃xφ(x)→ φ(c) ⊢ ⊥, let y be a variable not occurring in φ(x). Then

T ⊢ (∃xφ(x)→ φ(c))→ ⊥ deduction theorem

T ⊢ (∃xφ(x)→ φ(y))→ ⊥ lemma on constants

T ⊢ ∃y (∃xφ(x)→ φ(y))→ ⊥ (∃Gen).

But ⊢ ∃y (∃xφ(x)→ φ(y)) (Exercise 18), hence T ⊢ ⊥, which is a contradiction.

Lemma 1.79. Let T be a consistent L-theory; then there exists a language LH ⊇ L and a consistent
Henkin LH-theory TH ⊇ T .

18 Mathematical Logic

Proof. We construct the language LH and the theory TH inductively as follows2:

L0 = L Ln+1 = Ln ∪ {cφ : φ(x) is an Ln-formula}
T0 = T Tn+1 = Tn ∪ {∃xφ(x)→ φ(cφ) : φ(x) is an Ln-formula}

LH =
⋃
n∈N

Ln TH =
⋃
n∈N

Tn

Clearly, TH is an LH -theory such that TH ⊇ T . If φ(x) is an LH -formula, then φ(x) is an Ln-formula for
some n ∈ N, hence TH ⊇ Tn includes the Henkin axiom ∃xφ(x)→ φ(cφ). Thus, TH is a Henkin theory.

It remains to show that TH is consistent. It suffices to show that Tn ⊬ ⊥ for all n ∈ N. We do this
by induction on n. For the base case, T0 = T is consistent by assumption.

Let us show the induction step for n + 1. Assume that Tn ⊬ ⊥, and suppose Tn+1 ⊢ ⊥ towards a
contradiction. Then

Tn ∪ {∃xφi(x)→ φi(cφi) : i < m} ⊢ ⊥

for some m ∈ N and some Ln-formulas φi, i < m. But this theory is consistent by m applications of
Lemma 1.78 (more formally, we should prove this by induction on m). This is a contradiction.

Theorem 1.80 (Completeness). Let Γ be a set of L-formulas and φ an L-formula. Then

Γ ⊨ φ implies Γ ⊢ φ.

Proof. Assume Γ ⊬ φ. Then Γ∀ ⊬ φ∀ by Lemma 1.67, thus the theory T = Γ∀ ∪
{
¬φ∀} is consistent. By

Lemma 1.79, T may be extended to a consistent Henkin LH -theory TH , which in turn may be extended
to a consistent complete LH -theory T̃ by Lemma 1.76. T̃ remains a Henkin theory.

Since T̃ is a consistent complete Henkin theory, it has a model AH ⊨ T̃ by Lemma 1.75. Observe AH

is, in particular, an LH -structure.

Let A be the L-reduct of AH ; i.e., we forget about the interpretations of symbols outside of L.

Then A ⊨ T , whence A ⊨ Γ∀ and A ⊭ φ∀. It follows that A ⊨ Γ and A ⊭ φ (Lemma 1.57), which
proves Γ ⊭ φ.

Before we forget the proof of the completeness theorem, let us observe that it also gives an upper
bound on the minimal cardinality of models of consistent theories (the cardinality of an L-structure is
understood to be the cardinality of its underlying set):

Theorem 1.81 (Downward Löwenheim–Skolem theorem). Let T be an L-theory and κ ≥ |L| an infinite
cardinal. If T has a model, then it has a model A ⊨ T such that |A| ≤ κ.

Proof. Let us estimate the size of the model of T constructed in the proof of Theorem 1.80. Since L-
formulas in a language L of cardinality |L| ≤ κ are finite strings made of ≤ κ many possible symbols,
there are at most κ<ω = κ many L-formulas. It follows by induction on n that the languages Ln from
the proof of Lemma 1.79 satisfy |Ln| ≤ κ: for the induction step, we have

|Ln+1| ≤ |Ln|︸︷︷︸
≤κ

+ |{cφ : φ(x) is an Ln-formula}|︸ ︷︷ ︸
≤κ

≤ κ.

This implies |LH | ≤ κ, and in particular, there are ≤ κ closed LH -terms. Thus, the model of the Henkin
completion of T in language LH defined in the proof of Lemma 1.75 has cardinality at most κ.

2Note that once φ(x) is an Ln-formula, it is also an Lm-formula for every m ≥ n, hence we introduce (wastefully) a new
constant cφ in each Lm, m > n, even though this is not indicated in the notation. That is, we should formally distinguish
the constants by writing something like cφ,n for the constants newly introduced in Ln+1; alternatively, we could define
Ln+1 so that we add the Henkin constants only for formulas that do not already have them. We will not bother with these
technicalities as they do not really matter.

Part 1. Syntax and semantics of logic 19

1.6 Consequences of the completeness theorem

Theorem 1.82 (Compactness). Let Γ be a set of L-formulas.

(i) Γ ⊨ φ iff there is a finite subset Γ0 ⊆ Γ such that Γ0 ⊨ φ.

(ii) Γ has a model iff every finite Γ0 ⊆ Γ has a model.

Proof.

(i) “⇒” is trivial; for “⇐”, Γ ⊨ φ implies Γ ⊢ φ by the Completeness Theorem. By definition, there
is a proof φ0, . . . , φn of φ from Γ. Let Γ0 = Γ ∩ {φ0, . . . , φn}. Then Γ0 ⊆ Γ is finite and Γ0 ⊢ φ,
thus Γ0 ⊨ φ.

(ii) We apply (i) with φ = ⊥.

Definition 1.83. Let A and B be L-structures for some language L. An isomorphism of A to B is a
bijection f : A→ B such that

• RA(a0, . . . , an−1) ⇐⇒ RB(f(a0), . . . , f(an−1)) for all n-ary relations R ∈ L and a0, . . . an−1 ∈ A;

• FB(f(a0), . . . , f(an−1)) = f(FA(a0, . . . , an−1)) for n-ary functions F ∈ L and a0, . . . , an−1 ∈ A.

We write f : A ≃ B if f is an isomorphism of A to B. We say A and B are isomorphic, written A ≃ B,
if there exists an isomorphism f : A ≃ B.

Lemma 1.84. Let f : A ≃ B and a0, . . . , an−1 ∈ A. Write f (⃗a) for the tuple f(a0), . . . , f(an−1).

(i) tB(f (⃗a)) = f(tA(⃗a)) for each term t(x⃗).

(ii) A ⊨ φ(⃗a) ⇐⇒ B ⊨ φ(f (⃗a)) for each formula φ(x⃗).

Proof. By induction on the complexity of t and φ.

Definition 1.85. If A is an L-structure, the (complete) theory of A is Th(A) = {φ : A ⊨ φ}.
The standard model of arithmetic is N = ⟨N, 0, 1,+, ·, <⟩; its theory Th(N) is called the true arithmetic.

Models of arithmetic not isomorphic to N are called nonstandard.

Example 1.86. There exists a nonstandard model of true arithmetic. We can prove this using the
compactness theorem as follows. We extend the language of arithmetic L to L′ = L ∪ {c} and put

T = Th(N) ∪
{
c > n : n ∈ N

}
, where n = 1 + · · ·+ 1︸ ︷︷ ︸

n

.

Every finite T0 ⊆ T has a model: if n is the largest such that c > n occurs in T0, then ⟨N, n+ 1⟩ ⊨ T0.
The compactness theorem then implies T has a modelM.
M is a model of Th(N), not isomorphic to N. Note that N is embedded inM as an initial segment

via the inclusion n ∈ N 7→ nM; these are called the standard elements ofM, and we will pretend that N
is outright a subset ofM. The axioms of T ensure that cM is a nonstandard element.

The full structure ofM is very complicated, but we can at least understand how ⟨M,<⟩ looks like:
The ordering of M is discrete, thus each nonstandard element a ∈ M belongs to a convex subset

{a + n : n ∈ Z} order-isomorphic to Z. These are equivalence classes of the equivalence relation
a ∼ b ⇐⇒ |a − b| ∈ N. The induced order on these equivalence classes, i.e., the quotient structure
⟨M,<⟩ /∼, is a dense linear order with a least element N and without a largest element: e.g., if a and b
belong to different classes, then the class of ⌊(a+ b)/2⌋ is strictly between the classes of a and b.

The compactness theorem is also useful for proving undefinability results:

20 Mathematical Logic

Example 1.87. Let L = {P (x)}. There is no L-sentence φ such that for every finite L-structureM,

M ⊨ φ ⇐⇒ |PM| > |M∖ PM|.

Assume for contradiction that φ is such a sentence, and define

T =
{
∃x⃗

(∧
i<j<n

xi ̸= xj ∧
∧
i<n

P (xi)
)
,∃x⃗

(∧
i<j<n

xi ̸= xj ∧
∧
i<n

¬P (xi)
)}

n∈N
.

Every finite T0 ⊆ T is consistent with φ and with ¬φ. By compactness, both T ∪ {φ} and T ∪ {¬φ}
have models: A ⊨ T ∪ {φ} and B ⊨ T ∪ {¬φ}. We may assume both A and B to be countable by the
downward Löwenheim–Skolem theorem.

Then writing A =
〈
A,PA〉, we have that A,PA, A∖ PA are countably infinite and the same for B.

Thus, A is isomorphic to B, but A ⊨ φ, B ⊭ φ. This is a contradiction.

Example 1.88. No sentence can define the class of connected graphs.

We can usefully generalize the construction in Example 1.86 to all first-order theories:

Theorem 1.89 (Löwenheim–Skolem theorem). Let T be an L-theory and κ ≥ |L| an infinite cardinal.
Let us assume that T either has an infinite model, or it has arbitrarily large3 finite models. Then T has
a model of cardinality κ.

Proof. The basic idea is to employ κ many constants to ensure that any model has size ≥ κ, and apply
the downward L-S theorem.

Let Lκ = L ∪ {cα : α < κ} be new constants and Tκ = T ∪ {cα ̸= cβ : α < β < κ}. Let us check that
every finite T ′ ⊆ Tκ has a model. T ′ only mentions the new constants cα for α ∈ I, where I ⊆ κ is finite.
Let A ⊨ T be such that |A| ≥ |I|; pick distinct cAα ∈ A for α ∈ I, and pick arbitrary cAα ∈ A for α /∈ I.
Then 〈

A, cAα : α < κ
〉
⊨ T ′.

By compactness, Tκ has a model A. Since |Lκ| = κ, we may assume |A| ≤ κ by the downward
Löwenheim–Skolem theorem. Because A ⊨ Tκ, the interpretations

{
cAα : α < κ

}
are pairwise distinct.

Thus, |A| ≥ κ, whence |A| = κ.

In Example 1.86, we constructed a nonstandard model of arithmetic. The Löwenheim–Skolem theo-
rem tells us that there are such models of arbitrary cardinality.

We are also going to extract a useful general statement from the argument in Example 1.87:

Definition 1.90. Let T be an L-theory and κ ≥ ℵ0 a cardinal. Then T is κ-categorical if all A ⊨ T of
cardinality κ are isomorphic.

Theorem 1.91 (Vaught’s test). Let κ ≥ |L| be an infinite cardinal. If T is a κ-categorical L-theory
without finite models, then T is complete.

Proof. Assume for contradiction that T is not complete, and fix a sentence φ such that T ∪ {φ} and
T ∪ {¬φ} are consistent. Then there exist models A ⊨ T ∪ {φ}, B ⊨ T ∪ {¬φ}, |A| = |B| = κ by the
Löwenheim–Skolem theorem. We have A ⊨ φ and B ⊭ φ, thus A and B are not isomorphic.

Example 1.92. The theory DLO of dense linear orders without endpoints has language L = {<} and
the following axioms:

x ̸< x,

x < y ∧ y < z → x < z,

x < y ∨ x = y ∨ y < x,

∀x ∀y (x < y → ∃z (x < z ∧ z < y)),

∀x ∃y x < y,

∀x ∃y y < x.

3I.e., for every n ∈ N, T has a model of cardinality at least n.

Part 1. Syntax and semantics of logic 21

This theory is ℵ0-categorical, hence complete. This can be shown by a back-and-forth argument: given
two countable models A = ⟨A,<⟩ and B = ⟨B,<⟩ of DLO, we enumerate them as A = {an : n ∈ N} and
B = {bn : n ∈ N}. We construct an isomorphism between them as a union of a chain of finite partial
isomorphisms, starting from the empty partial mapping, and extending it with one element at a time,
alternately adding the first unused element from {an : n ∈ N} to the domain, or the first unused element
from {bn : n ∈ N} to the codomain. We use density and the other axioms of DLO to make sure that
a suitable image or preimage exists for each element as it is being added. We leave the details to the
reader (who might have very well seen this famous argument before, anyway).

22 Mathematical Logic

Part 2

Computability

We wish to formalize the notion of an effective algorithm. There are several motivations for this:
First, it is intrinsically interesting as effective computability seems to be a fundamental concept for

which we would like to have a formal counterpart.
Second, it allows us to mathematically formulate and answer questions about computability of partic-

ular problems or about general properties of computable problems. If a problem is computable, we can
show this just by exhibiting an algorithm, for which an intuitive understanding of the concept suffices.
However, if we want to prove that some problem is not computable, we need a precise definition so that
we can argue about the collection of all algorithms.

A specific problem suggested by Part 1 is the so-called Entscheidungsproblem1:

Is there an algorithm that decides whether a given first-order sentence φ is logically valid?

We know that validity of propositional formulas is algorithmically decidable by trying all assignments (see
also Remark 1.24). For first-order sentences, we have a “one-sided” algorithm: we may systematically
enumerate all possible proofs. The completeness theorem ensures that if a sentence is valid, we will (in
principle) find its proof sooner or later; however, if a sentence is not valid, this algorithm will run forever
and never halt. We will eventually show that the Entscheidungsproblem is not decidable; for that, we
will need to develop a formal definition of algorithms.

Third, effective algorithms and related concepts are an important tool for investigation of first-order
theories of arithmetic, as we will see in Part 3.

2.1 Turing machines

Many different formal models of computation have been proposed:

• Turing machines

• General recursive functions

• λ-calculus

• Random-access machines

• . . .

However, all of these turn out to be equivalent. This leads to the so-called Church–Turing thesis, which
posits that a problem is effectively computable in the informal sense iff it is computable by a Turing
machine.

Turing machines are what we will use as our formal model. Intuitively speaking, this is an abstract
model of a simple physical device consisting of an internal logic circuitry that can be in finitely many

1Which literally just means “decision problem” in German, but it was borrowed to English with a more specific meaning.

23

24 Mathematical Logic

states, with access to a tape divided into discrete cells, each of which can hold one symbol. The tape
provides the machine with input, and it is subsequently used as a working memory. We assume the
tape has a beginning, but it is (at least potentially) infinite in the other direction, and the machine,
therefore, may not run out of memory to write into. The machine can scan one cell of the tape using a
reading-writing head that can move along the tape.

What the machine does at any given moment is determined by its current state and the input symbol
it is scanning at that moment: the machine can write a new symbol on the tape, switch to a different
state, and move left or right2, as specified by the transition function. There are three special states: the
initial state that the machine is in when the computation starts, and the accepting and rejecting states
that terminate the computation, indicating a YES/NO answer.

The input of the machine is a string of symbols (e.g., digits, letters, or other symbols) from the input
alphabet ; for convenience, the machine may write on the tape symbols from a larger alphabet called the
tape alphabet during the computation. The tape alphabet also includes the blank symbol that denotes
“empty” cells; this is the only symbol that may occur infinitely many times on the tape. When the
computation begins, all cells after the actual input string contain the blank symbol.

The formal definition follows:

Definition 2.1. A Turing machine is a septuple M = ⟨Q,Σ,Γ, δ, q0, qacc, qrej⟩ where

• the set of states Q is a finite set that contains the initial state q0, the accepting state qacc, and the
rejecting state qrej such that qacc ̸= qrej;

• the input alphabet Σ is a finite nonempty set such that /∈ Σ;

• the tape alphabet Γ is a finite set such that Γ ⊇ Σ ∪ { };

• and the transition function is a function δ : Q× Γ→ Q× Γ× {L,R}.

This defines a Turing machine as a syntactic object, but what we really need is to define how it
computes.

Definition 2.2. A configuration of a Turing machine M is ⟨q, h, u⟩ where q ∈ Q is the current state,
h ∈ ω is the head position, and u ∈ Γω is the tape content. We denote the ith cell of u as ui. A
configuration ⟨q, h, u⟩ is accepting if q = qacc; rejecting if q = qrej; and halting if it is accepting or
rejecting.

The initial configuration corresponding to an input x ∈ Σ∗ is ⟨q0, 0, x⌣ ω⟩ (i.e., the machine is in
the initial state, and the head is at the beginning of the tape, whose content is the input string followed
by infinitely many blanks).

A nonhalting configuration ⟨q, h, u⟩ yields a configuration ⟨q′, h′, u′⟩ defined as follows. Let a = uh
be the current symbol, and δ(q, a) = ⟨q′, a′, t⟩. Then h′ ∈ ω and u′ ∈ Γω are defined by

h′ =

{
h+ 1 if t = R,

max{h− 1, 0} if t = L,
u′i =

{
a′ for i = h,

ui for i ∈ ω, i ̸= h.
2The machine may not stay put in place. We could allow that, but a moment’s reflection shows that it would be

pointless: if the head does not move, the output of the transition function (the new state and new symbol written on
the tape) completely determines what happens next. Thus, we can just keep applying the transition function until the
head does move (or the computation terminates or enters an infinite loop); i.e., we can modify the machine by collapsing
steps when the head does not move with the following step. However, this argument does not work for multi-tape Turing
machines (see below), hence their heads are allowed not to move.

Part 2. Computability 25

We observe that any nonhalting configuration yields exactly one new configuration; we view this as
performing one step of the computation.

Definition 2.3. A run of a Turing machineM on input x ∈ Σ∗ is a sequence of configurations C0, . . . , Ct

where C0 is the initial configuration on input x, and Ci yields Ci+1 for each i < t.
M accepts, resp. rejects, x, if there is a run C0, . . . , Ct of M on x where Ct is an accepting, resp.

rejecting, configuration.

Remark 2.4. As can be seen from the definitions above, the values of the transition function δ(q, a) for
q ∈ {qacc, qrej} are irrelevant, as the machine always halts in such states anyway. Thus, we could have
defined δ as only a function (Q∖ {qacc, qrej})× Γ→ Q× Γ× {L,R}. We keep the domain to be all of Q
for consistency with Sipser’s book.

Definition 2.5. A decision problem (or language; not to be confused with first-order languages) is any
subset L ⊆ Σ∗. That is to say, it is a collection of possible inputs for a Turing machine.

For historical reasons, computability is replete with lots of parallel terminology (even the field itself
was rebranded from recursion theory to computability in recent decades). We could of course choose a
particular set of terms and stick to it, but it is important to at least be aware of the synonyms as they
are all used in common sources.

Definition 2.6 (Decidability). A Turing machine M is said to decide, or compute, a decision problem L
if for every input x ∈ Σ∗:

x ∈ L =⇒ M accepts x; x /∈ L =⇒ M rejects x.

A decision problem L is decidable (or computable, or recursive) if there exists a Turing machine M that
decides L.

Definition 2.7 (Semidecidability). A Turing machine M is said to recognize (or semidecide) a decision
problem L if for every input x ∈ Σ∗ we have

x ∈ L ⇐⇒ M accepts x.

L is said to be semidecidable (or recognizable, computably enumerable, recursively enumerable, or
partially decidable, abbreviated c.e. or r.e.) if L is recognized by some Turing machine M . The language
of M is

L(M) = {x ∈ Σ∗ :M accepts x} .

Remark 2.8.

• Every Turing machine recognizes exactly one language, viz. L(M). That is, a language L is
recognized by a Turing machine M iff L = L(M).

• M decides L iff M recognizes L (i.e., L = L(M)) and M halts on every input x ∈ Σ∗.

That is, the difference between recognizing and deciding a language is that a decider must reject every
input x /∈ L in finitely many steps, whereas a recognizer may run forever on such inputs and never halt.

Observation 2.9. Every decidable language is semidecidable.

Decision problems formalize the notion of computational tasks that admit a YES/NO answer. How-
ever, not all problems we might consider computing by an algorithm are of this kind. We will also work
with more general problems where the solution can be an arbitrary string; these are called function
problems3:

3Even more generally, we could consider problems that admit more than one valid solution; these are called search
problems, and are important in computational complexity, but we will not see them in this course.

26 Mathematical Logic

Definition 2.10. A partial function f : X ⇀ Y is a function f : X ′ → Y whereX ′ ⊆ X; i.e., f is possibly
defined only on a portion of X and not necessarily everywhere. The domain of f is dom(f) = X ′. In this
context, a function is said to be total if dom(f) = X; i.e., if f obeys the usual definition of a function
X → Y .

A function problem is partial function f : Σ∗ ⇀ Σ∗.

Definition 2.11 (Function-problem computation). A Turing machine M is said to output y ∈ Σ∗ on
input x ∈ Σ∗ if there is an accepting run C0, . . . , Ct of M on input x such that Ct = ⟨qacc, h, y⌣ ω⟩.

M computes a function problem f : Σ∗ ⇀ Σ∗ if L(M) = dom(f) and for each x ∈ dom(f),M outputs
f(x) on input x.

f : Σ∗ ⇀ Σ∗ is a partial computable function (or partial recursive function) if there is a Turing machine
M that computes it. A partial computable function f that is total (i.e., defined everywhere on Σ∗) is
called simply a computable function (or recursive function).

Example 2.12. Consider the language

Palindromes =
{
w ∈ {a, b}∗ : w = wR

}
,

where the string reversal operator R is defined by (w0 . . . wn−1)
R = wn−1 . . . w0. In other words, the

language consists of words over a 2-letter alphabet {a, b} that read the same in both directions; e.g., bab
or abba. We will now design a Turing machine that decides whether a given word is a palindrome.

A simple algorithm is to repeatedly check that both symbols at the ends of the string are the same
and cross them out, until we either detect an inconsistency or end up with a string of length ≤ 1. A
Turing machine cannot operate at both ends simultaneously, but we can achieve something similar by
moving the head back and forth: the machine removes the left-most symbol and “remembers” it in its
internal state, moves to the right end, checks that the last symbol agrees with the remembered one and
removes it, and rewinds back to the left.

Formally, we define the machine as

M = ⟨Q, {a, b} , {a, b, } , δ, q0, qacc, qrej⟩ ,
Q = {q0, qacc, qrej, q1,a, q1,b, q2,a, q2,b, q3},

where the transition function δ is given by the following diagram:

q1,a q2,a

q0 qacc qrej q3

q1,b q2,b

a→ ,R

→ ,L

b→ ,R

→ ,L

b

a

a→ ,L

b→ ,L

→ ,R

a→a,L

b→b,L

a→a,R b→b,R

a→a,R b→b,R

Remark 2.13. Programming Turing machines down to an explicit listing of the transition function
table can be a tedious endeavour that requires a lot of determination and patience, while the result is
not very illuminating and obscures the ideas behind the algorithm. The purpose of Example 2.12 is to
present during the lecture at least once a complete Turing machine with all the bells and whistles that
computes something sensible to show that it can be done, but from now on we will rather describe Turing
machines using an informal pseudo-code, assuming that the reader can imagine how to translate it to a
formal presentation if required.

Part 2. Computability 27

If desired—to get a better feeling for what can be implemented on Turing machines and how, or
just for fun—there are a number of online Turing machines simulators one can play with, e.g., https:
//turingmachinesimulator.com. The palindrome machine from Example 2.12 can be found at
https://turingmachinesimulator.com/shared/slylqbjruc.

Remark 2.14. One can find many variant definitions of Turing machines in the literature. Some of the
common modifications include:

• A two-sided infinite tape, or different conventions for handling attempts to move past the end of
the tape.

• Different halting conditions: e.g., using a partial transition function (the machine halts when δ is
undefined in the current configuration), or allowing more than one accepting/rejecting state.

• Restrict the tape alphabet to be just Σ ∪ { }.

• Multi-tape Turing machines: the machine has k tapes (where k is a fixed number that’s part of
the specification of the machine) including an input tape (usually read-only), several work tapes,
and—if we are interested in function problems—an output tape (usually write-only); each tape has
its own head that can move (or stay put) independently.

• Nondeterministic, alternating, randomized, or quantum machines: these are considered to be dif-
ferent models of computation rather than simple variants. They generally yield the same class of
computable problems as ordinary Turing machines, but they may be able to solve some problems
more efficiently, whence they are important in computational complexity.

Lemma 2.15. Any problem computable on a k-tape Turing machine is computable on a single-tape
Turing machine.

Proof sketch. Represent the content of all k tapes (including markers indicating head positions) on one
tape using a new tape alphabet (Γ×{0, 1})k ∪{ }. To simulate one step of the original machine, sweep
the tape to locate the head positions of the simulated tapes and read the symbols at these positions,
remembering them in the state of the new machine. When this information is collected, the machine
knows what to do in the next step (write new symbols, move tape heads); it traverses the tape again to
implement these changes.

We remark that even though multi-tape Turing machines are equivalent to single-tape machines in
the sense above, it is often easier or more efficient to solve a problem on a multi-tape machine. For
example, to decide Palindromes on a two-tape Turing machine, we can simply copy the string to a
work tape and then traverse the two copies in opposite directions. Multi-tape Turing machines are the
standard model of computation in computational complexity as they tend to correspond more closely in
terms of efficiency to an informal notion of algorithms.

Multi-tape Turing machines are also sometimes handy for simplifying proofs, such as the next im-
portant lemma:

Lemma 2.16. A language L ⊆ Σ∗ is decidable iff L and Σ∗ ∖ L are semidecidable.

Proof.

⇒ Suppose L is decidable; then so is Σ∗∖L (we may take a Turing machine deciding L and swap the
accepting and rejecting states). It follows Σ∗ ∖ L is semidecidable, while L itself is semidecidable
trivially.

⇐ LetM0 recognize (semidecide) L, andM1 recognize Σ∗∖L. A 2-tape Turing machineM described
by the following pseudo-code decides L:

(1) Copy the input onto the second tape.

(2) Run M0 and M1 in parallel on the two tapes.

(3) If M0 accepts, then ACCEPT. If M1 accepts, then REJECT.

https://turingmachinesimulator.com
https://turingmachinesimulator.com
https://turingmachinesimulator.com/shared/slylqbjruc

28 Mathematical Logic

Observe that M has to eventually halt by definition of language recognition: any input x belongs
to either Σ∗ or its complement Σ∗ ∖L. Hence x is accepted by exactly one of M0 and M1, and the
algorithm halts in finite time with the correct response.

Remark 2.17. Let us convince ourselves that any Turing machine with input alphabet of size |Σ| ≥ 2
can be simulated by one with tape alphabet Γ = Σ ∪ { }. Given a machine

M = ⟨Σ,Γ, Q, δ, q0, qacc, qrej⟩ ,

we fix k such that |Γ| ≤ (|Σ| + 1)k, and an injective encoding e : Γ → (Σ ∪ { })k. We may assume
e() = k. We simulate M using k-tuples of symbols from Σ ∪ { } to represent each symbol on the
tape using e. To simulate one step, we read and remember the k-tuple of symbols to the right of the
head position, and apply the original transition function: we write a new k-tuple of symbols, and move
the head k positions to the left or to the right.

We need to expand the input to the tape encoding at the beginning of the simulation. This may be
done one cell at a time: we take a symbol a that had not been encoded yet, shift the content of the
tape to the right of the symbol by k − 1 positions to make room, go back to write the encoding e(a),
and repeat until we get to the end of the original input. If we care about the output string, we have to
similarly decode it after the simulation halts.

Remark 2.18. We introduced computability of problems (sets, functions) on finite strings, but in other
accounts, the primary definition of computability is often stated for problems on nonnegative integers
(in particular, this is standard in the set-up of general recursive functions). We want to consider such a
definition as well: besides the fact that there are various intrinsically interesting computational problems
dealing with integers, we will need it as a tool for investigation of first-order theories of arithmetic in the
third part of this course.

We can accommodate integers in our set-up by encoding them with suitable finite strings (as we can
do with other objects that we might want to compute with, such as finite graphs). Perhaps the simplest
encoding is the unary representation, where n ∈ N is represented by the string 1n := 11 . . . 1︸ ︷︷ ︸

n

(possibly

using other symbol in place of 1). This requires a string of length n. A more efficient representation
is to express integers in binary, decimal, or more generally, base-k positional notation for some k ≥ 2:
n ∈ N is written as at−1 . . . a0 ∈ {0, . . . , k − 1}t, where n =

∑
i<t aik

i. The length of this representation
is ⌈logk(n+ 1)⌉.

While this may be the most natural choice, it has the drawback that distinct strings may represent
the same integer due to leading 0s: e.g., 000101 = 101. For some purposes it may be more convenient
to use a representation that is a bijection between N and Σ∗: e.g., when we will arithmetize Turing
machines and their computation, we will need to assign each string a distinct number. An elegant way
to accomplish this is to use the following variant of the positional notation:

Definition 2.19. Let k ≥ 1, and assume Σ is the finite alphabet {1, 2, 3, . . . , k}. The bijective base-k
numeration (also called dyadic in the case k = 2) is the following encoding:

⌜−⌝ : Σ∗ → N, ⌜a0 . . . at−1⌝ =
∑
i<t

aik
i.

(Up to the choice of writing direction this is the same formula as for normal base-k notation, but crucially,
we use digits {1, . . . , k} rather than {0, . . . , k − 1}. Note that for k = 1, we obtain the unary encoding
described above.)

We also call ⌜w⌝ the Gödel4 number of w.

Lemma 2.20. For any k ≥ 1, ⌜−⌝ is a bijection between N and {1, . . . , k}∗.

Proof. Exercise.

4This is not really the encoding originally used by Gödel. In general, this term refers to any encoding of finite objects
(e.g., graphs, Turing machines, . . .) by natural numbers.

Part 2. Computability 29

We also note that the dyadic representation of n can be constructed by taking the binary represen-
tation of n+ 1, stripping the leading digit 1, and adding 1 to each remaining digit.

Definition 2.21. We say that L ⊆ N is (semi)decidable if its dyadic encoding
{
w ∈ {1, 2}∗ : ⌜w⌝ ∈ L

}
is (semi)decidable.

We say F : N ⇀ N is computable if G : {1, 2}∗ ⇀ {1, 2}∗ is computable, where G is uniquely deter-
mined by F (⌜w⌝) = ⌜G(w)⌝. In other words, G is given by the following commutative diagram:

Σ∗ N

⟲

Σ∗ N

F

⌜−⌝

⌜−⌝

G

Exercise 25 shows that the choice of representation of natural numbers does not actually affect what
sets or functions on N are computable.

It is also convenient to extend the definition of computability to k-ary relations and functions:

Definition 2.22. We say R ⊆ (Σ∗)k is (semi-)decidable if

{w0#w1# · · ·#wk−1 : ⟨w0, . . . , wk−1⟩ ∈ R} ⊆ (Σ ∪ {#})∗

is (semi-)decidable, where # /∈ Σ is a new separator symbol.
Similarly, F : (Σ∗)k ⇀ Σ∗ is computable if the partial function G : (Σ ∪ {#})∗ ⇀ Σ∗ such that

G(w0#w1# · · ·#wk−1) = F (w0, . . . , wk−1) is computable.
By combining this with Definition 2.21, we can also define (semi-)decidability of relations R ⊆ Nk

and computability of partial functions f : Nk ⇀ N.

We remark that a more elegant way of defining computability of k-ary relations and functions might
be to use a variant of multi-tape Turing machines with k input tapes.

2.2 Universal Turing machines and the halting problem

We don’t need a different computer for every task that we want to get done: we just need one universal
computer that can run arbitrary programs that it reads as data. This paradigm applies to Turing
machines, too.

Warning. While we continue to use angle brackets ⟨−⟩ to denote finite sequences, in computability
theory they are also commonly used for strings encoding finite objects (analogues of Gödel numbers, but
with the result being a string rather than a number). In particular, they will denote strings encoding
Turing machines.

Theorem 2.23. Let Σ be an alphabet with at least two symbols. Then there exists a universal Turing
machine UΣ with the following property:

For every Turing machine M on the same alphabet Σ, there is a code ⟨M⟩ ∈ Σ∗ such that

UΣ(⟨M⟩x) ≃M(x) for each x ∈ Σ∗.

Here, “≃” means that UΣ accepts ⟨M⟩x iff M accepts x, and it rejects ⟨M⟩x iff M rejects x.
Moreover, UΣ outputs y ∈ Σ∗ on input ⟨M⟩x iff M outputs y on input x.

Proof. Let M = ⟨Q,Σ,Γ, δ, q0, qacc, qrej⟩ be a Turing machine on the alphabet Σ, where we assume
Γ = Σ ∪ { } (see Remark 2.17). We fix an enumeration Q = {qi : i < s}, where q0 the initial state as
indicated above, q1 = qacc, and q2 = qrej. We also fix an enumeration Γ = {aj : j < k}.

30 Mathematical Logic

The code ⟨M⟩ ofM will describe the transition function δ : Q×Γ→ Q×Γ×{L,R}. For convenience,
we will use some auxiliary extra symbols (#, #, 0, 1, L, R) to define ⟨M⟩ and the operation of UΣ (also,
⟨M⟩may include blanks). Officially, UΣ is required to have input alphabet Σ, and in particular, we should
make ⟨M⟩ ∈ Σ∗; we achieve this by encoding the expanded alphabet Σ′ = Σ ∪ { ,#,#, 0, 1, L,R} by c-
tuples of symbols from Σ for a suitable c, similarly to Remark 2.17. (This is where we use the assumption
|Σ| ≥ 2.)

We define

⟨M⟩ = ## ⟨δ(q0, a0)⟩# ⟨δ(q0, a1)⟩# · · ·# ⟨δ(q0, ak−1)⟩
⟨δ(q1, a0)⟩# ⟨δ(q1, a1)⟩# · · ·# ⟨δ(q1, ak−1)⟩
...

⟨δ(qs−1, a0)⟩# · · ·# ⟨δ(qs−1, ak−1)⟩##

where if δ(qi, aj) = ⟨qi′ , aj′ , t⟩ ∈ Q× Σ× {L,R}, we define the encoding of δ(qi, aj) as

⟨δ(qi, aj)⟩ = aj′t0
i′ .

Here, 0i
′
denotes a string of zeroes of length i′.

We shall now describe the operation of the universal Turing machine UΣ. It maintains on its tape a
representation of the current configuration of M ; it works in an endless loop where on each iteration, it
simulates the effects of one step of M . It will be convenient for this purpose to represent a configuration
of M as

u0 . . . uh−1 ⟨M⟩uhuh+1 . . .

where u0 . . . uh−1 is the content of the simulated tape to the left of the head position h, and uhuh+1 . . .
the rest of the tape from the head position onward. During the simulation, some parts of ⟨M⟩ will be
modified a little; we will still refer to it as ⟨M⟩. In particular, we need to indicate the current state qi
of M : we do this by replacing the # in front of the entry ⟨δ(qi, a0)⟩ of the encoded transition function
table (i.e., the beginning of the row of the table corresponding to qi) with the symbol #.

Note that the encoding of Σ′ by Σc is applied only to the ⟨M⟩ part of the configurations; the symbols
ui of the simulated tape will be written literally.

During the simulation, the head will be kept inside ⟨M⟩, except possibly venturing one step outside
to read/write the current symbol of the simulated machine, or to move the simulated head. We can
rewind the tape to the left or right end of ⟨M⟩ at any time, because these can be recognized by the
substring ## (or ##); this works even after the encoding of Σ′ by Σc because we never go far away
from ⟨M⟩, and therefore we cannot lose track of whether we are currently seeing an encoded symbol of
Σ′ or an unencoded symbol of Σ.

Let us now describe the operation of UΣ using pseudo-code. In the beginning of the simulation, UΣ

starts with ⟨M⟩x on the input tape, which is almost a valid representation of the initial configuration
of M on input x—we only need to mark the row of the transition function table corresponding to the
initial state q0:

(00) Move right and replace the second # with #.

Next comes the main loop of UΣ, simulating one step of the computation of M . Suppose that the tape
contains a representation of a configuration as above. We first have to locate the entry of the transition
table corresponding to the current state qi and the symbol aj under the head of the simulated machine:

(01) Move past the right end of ⟨M⟩.
(02) Read and remember uh = aj.
(03) Locate the # symbol, and replace it with #.

(04) Repeat j times: move right towards the next # symbol.

The head is now at the # symbol in front of the string ⟨δ(qi, aj)⟩ = aj′t0
i′ .

(05) Read and remember aj′ and t.

Part 2. Computability 31

We now have to mark the table row corresponding to the new state qi′ with #. Unlike aj′ or t, we cannot
just read i′ and remember in the state of UΣ, because the number of states ofM may be arbitrarily large
(it is not bounded by a constant). We proceed as follows: we convert the 0i

′
in ⟨δ(qi, aj)⟩ to 1i

′
, mark

the row corresponding to q0, and then use a loop that converts the 1s back to 0s one by one, each time
moving the marker to the next row.

However, we must take care to abort the simulation if the new state is halting. Note that we can
count up to 2 in the state of UΣ, thus we can check if i′ = 1 or i′ = 2, even if we cannot remember an
arbitrarily large i′. (This is the reason we fixed the accepting and rejecting states to be q1 and q2, resp.)

(06) Move right to the next #, replacing 0 with 1 as we go.

(07) If the total number of 0s was 1, then ACCEPT.

(08) If the total number of 0s was 2, then REJECT.

(09) Locate the left end of ⟨M⟩.
(10) Change the second # to #.

Now comes the loop for moving the marker. Note that each row of the table has k = |Γ| = |Σ|+1 entries,
which is a constant that we can count up to in the state of UΣ.

(11) Move right to locate the first 1.
(12) If none is found before the end of ⟨M⟩, go to (18).

(13) Change the 1 to 0.
(14) Locate the # symbol and change it to #.

(15) Move to the kth # to the right.

(16) Change it to #.

(17) Move to the beginning of ⟨M⟩, and go to (11).

We have now placed # correctly to mark the new state. We have yet to update the symbol under the
simulated head, and move the head. Note that upon exiting the loop above, the head of UΣ is past the
right end of ⟨M⟩, i.e., at the position of uh.

(18) If t = R:
(19) Shift ⟨M⟩ to the right (overwriting uh).
(20) Write aj′ in the free space to the left of it.

(21) If t = L:
(22) Write aj′.
(23) Locate the left end of ⟨M⟩.
(24) If it is at the beginning of the tape, go to (01).

(25) Remember the symbol uh−1 = aj′′ to the left of it.

(26) Shift ⟨M⟩ to the left (overwriting uh−1).

(27) Write aj′′ in the free space to the right.

(28) Go to (01).

This finishes the simulation for decision problems. If we care about computation of functions, UΣ

cannot literally halt in step (07): it must first clean up the tape (i.e., remove ⟨M⟩ and shift uhuh+1 . . .
accordingly) so that its output is the same as the output of M .

Definition 2.24. The halting problem for a given alphabet Σ is the language

AΣ = {⟨M⟩x :M accepts x} ⊆ Σ∗.

Theorem 2.25. The halting problem AΣ is semidecidable, but not decidable.

Proof. AΣ is recognized by the universal Turing machine UΣ. To see it is not decidable, we assume
towards a contradiction that AΣ is decided by some Turing machine H. This means that H accepts the
pair ⟨M⟩x if M accepts x, and rejects it otherwise.

We define a new Turing machine D on the input alphabet Σ that works as follows:

32 Mathematical Logic

(1) Duplicate the input x to xx.
(2) Run H.

(3) If H accepts, then REJECT; if H rejects, then ACCEPT.

We run D on input ⟨D⟩, and obtain a contradiction:

D accepts ⟨D⟩ ⇐⇒ H rejects ⟨D⟩ ⟨D⟩ definition of D

⇐⇒ ⟨D⟩ ⟨D⟩ /∈ AΣ H decides AΣ

⇐⇒ D does not accept ⟨D⟩ definition of AΣ.

Remark 2.26. D stands for “diagonal machine”, as the proof of Theorem 2.25 is a variant of Cantor’s
diagonal argument. We imagine the infinite matrix indexed by strings where rows enumerate codes ⟨M⟩
of Turing machines, columns enumerate inputs x, and a 0/1 entry in the matrix indicates whether M
accepts x or not. The machine D computes the diagonal of the matrix with 0/1 flipped, but this clearly
cannot agree with any row of the matrix.

Remark 2.27. The undecidability of the halting problem is a fundamental result of the theory of
computation. It implies the undecidability of many other problems concerning the behaviour of Turing
machines by means of reductions: the general idea is that is we assume for contradiction that problem
X is computable, we can use an algorithm solving X as a subprogram to build an algorithm that decides
the halting problem (which is impossible). The full extent of the idea of “using A as a subprogram to
compute B” leads to so-called Turing reductions. We will not define them formally as this requires a
modification of the Turing machine model; rather, we will introduce a more strict notion of many-one
reductions, which is much easier to define.

It might seem that the halting problem is not robustly defined as it depends on the—rather arbitrary—
encoding of Turing machines we devised in the proof of Theorem 2.23. One should not worry about this:
in fact, all “reasonable” encodings of Turing machines yield halting problems of the same complexity
(i.e., reducible to each other). Better yet, as we will see later in Part 3, we can use reductions from the
halting problem to prove undecidability of “pre-existing” problems of independent interest that do not
mention Turing machines at all, in particular, the Entscheidungsproblem. In this way, the undecidability
of the halting problem is not just an important result on its own, but also a useful tool: once we identified
one undecidable problem, we can show the undecidability of many other.

Definition 2.28. Let A,B ⊆ Σ∗. We say A is many-one reducible (or mapping reducible) to B, written
A ≤m B, if there is a computable f : Σ∗ → Σ∗ such that for all x ∈ Σ∗ we have

x ∈ A ⇐⇒ f(x) ∈ B.

We say A and B are many-one equivalent, written A ≡m B, if A ≤m B and B ≤m A.

Lemma 2.29. If A ≤m B and B is (semi)decidable, then A is (semi)decidable.

Proof. If M (semi)decides B, and M ′ computes f , then A is (semi)decided by the Turing machine that
simulates M ′ to compute f(x) and then simulates M .

Example 2.30. We defined the “halting problem” to be AΣ in accordance with Sipser’s book, but it
would be more logical to call AΣ the “acceptance problem”, and reserve the name “halting problem” for
HΣ = {⟨M⟩x :M halts on input x} (which is indeed the traditional definition). Fortunately, this does
not make a significant difference: it is a simple exercise to prove that HΣ ≡m AΣ.

2.3 Computability of logical syntax

We are particularly interested in computing problems associated to logical theories. If L is a finite first-
order language, then L-terms, L-formulas, and other syntactic objects such as proofs can be manipulated
by Turing machines as they are just finite strings. A minor issue is that as defined in Definition 1.40,
formulas are strings over an infinite alphabet, as there are infinitely many variables. This is easy to fix:
we may, e.g., denote variables vn by strings of the form v1001101, where 1001101 is the representation
of n in binary. It is then easy to show that basic features of logical syntax are computable:

Part 2. Computability 33

Lemma 2.31. The following sets and functions are computable for a fixed finite language L:

(i) The set of L-terms.

(ii) The set of L-formulas.

(iii) {⟨φ, x⟩ : x is a free variable of a formula φ} .

(iv) The substitution function: given a formula φ, a variable x and a term t, compute φ(t/x).

(v) {⟨Γ, φ, π⟩ : π is a proof of φ ∈ FormL from a finite set Γ ⊆ FormL}.

Proof. Exercise 28.

The established terminology concerning decidability of first-order theories is a bit confusing; or rather,
it reflects an alternative definition of theories that requires them to be deductively closed sets of sentences:

Definition 2.32. If T is a theory in a finite language L, then T is said to be decidable if Thm(T) =
{φ : φ is an L-sentence, T ⊢ φ} is a decidable set of strings.

A theory T in a finite language L is said to be recursively axiomatized, or computably axiomatized,
if T—considered as a set of axioms (i.e., without the requirement of deductive closure)—is decidable.
A theory T is recursively (or computably) axiomatizable if it is equivalent to a recursively axiomatized
theory.

Lemma 2.33.

(i) Every recursively axiomatizable theory is semidecidable.

(ii) Every complete, recursively axiomatizable theory is decidable.

Proof.
(i): We may assume T is recursively axiomatized. Given a sentence φ, we exhaustively enumerate all

pairs ⟨Γ, π⟩. We accept if π is a proof of φ from Γ and all ψ ∈ Γ are in T .
(ii): Thm(T) is semidecidable by (i). Then

Σ∗ ∖ Thm(T) = {φ : φ is not an L-sentence} ∪ {φ : T ⊢ ¬φ}

is also semidecidable and, therefore, Thm(T) is decidable by Lemma 2.16.

Remark 2.34. Conversely, every semidecidable theory is recursively axiomatizable; in particular, a
theory is “semidecidably axiomatizable” iff it is recursively axiomatizable, hence there is no need to
introduce this notion separately. This can be shown by so-called Craig’s trick, whose idea is that each
sentence has many equivalent sentences that can be used to additionally encode arbitrary data. See
Exercise 30. It is also good to mention that every consistent decidable theory has a complete consistent
decidable extension (Exercise 31).

One more useful general observation is that adding finitely many axioms cannot increase the com-
plexity of a theory; in particular, if an extension of a theory by finitely many axioms is undecidable, the
theory itself is undecidable:

Lemma 2.35. Let T be an L-theory, where L is a finite language, and X a finite set of L-sentences.
Then Thm(T +X) ≤m Thm(T).

Proof. T +X ⊢ φ iff T ⊢
(
α→ φ), where α =

∧
φ∈X ψ.

34 Mathematical Logic

Part 3

Arithmetic

We are interested in this part in properties of the structure of natural numbers ⟨N,+, ·, . . .⟩ and related
theories that encompass elementary integer arithmetic:

• Can we present the theory of N by an effective proof system (say, as a recursively axiomatized
first-order theory)?

• Can we decide whether a given number-theoretic statement (i.e., a first-order sentence over N) is
true?

• Can we prove the consistency of the theory of elementary arithmetic by finitary methods?

(Here, “finitary” means roughly that we are only allowed to reason with natural numbers, finite
strings, and other finite objects, but not infinite sets. Of course, the theory of N is consistent as it has,
by definition, a model. But this argument requires infinite sets such as N and the satisfaction relation
on N.) We will see that the answers to all of these are negative.

These questions, particularly the last one, arose in connection to the foundations of mathematics
at the turn of the 19th/20th century. During the 19th century, the focus of mathematics shifted from
the study of “concrete” objects such as natural and real numbers or geometric shapes towards more
abstract reasoning, such as abstract algebra (group theory, field theory) and, especially, set theory. This
opened a realm of very powerful methods that were, however, met with suspicion and skepticism of
many mathematicians,1 especially after the discovery of various paradoxes (such as Russell’s paradox)
that showed that näıve set theory in the form initiated by Cantor was untenable, and put in doubt the
consistency of infinitary methods at large.

Hilbert’s program sought to put the theory of abstract, infinitary mathematics on a firm footing by
formally proving its consistency by proof-theoretic means in an incontroversial finitary theory, such as a
theory of arithmetic.

Proof theoretic analysis of foundational theories is not, on the whole, an unreasonable idea, and
some progress had been made early on: notably, Presburger provided a complete axiomatization of the
theory of ⟨N, 0, 1,+,≤⟩, and proved it consistent and decidable by proof-theoretic means; later, Tarski
did the same for theories of ⟨R, 0, 1,+, ·,≤⟩ and elementary geometry. However, Hilbert’s program as
such was all but killed by Gödel’s theorems, establishing that any effectively presented theory capable of
expressing basic integer arithmetic is incomplete, and cannot even prove its own consistency, let alone
the consistency of a considerably stronger theory.

3.1 Robinson and Peano arithmetics

The idea of an axiomatic definition of natural numbers ties in with the general axiomatic approach in
mathematics, including axiomatic definitions of other basic structures such as ⟨R, 0, 1,+, ·,≤⟩ being the

1Cf. the oft-quoted comment attributed to P. Gordan, “this is not mathematics; this is theology,” on Hilbert’s solution
of Gordan’s problem in invariant theory, involving what we now know as Hilbert’s basis theorem.

35

36 Mathematical Logic

unique completely ordered field up to isomorphism. An early axiomatic description of N, which actually
defines it uniquely up to isomorphism, is given by the Dedekind–Peano axioms. Up to some differences
in terminology, they essentially postulate that there is a natural number 0 ∈ N and a function S : N→ N
(the successor function, normally denoted x+ 1) such that:

(i) ∀x, y ∈ N (S(x) = S(y)→ x = y).

(ii) ∀x ∈ NS(x) ̸= 0.

(iii) Any set X ⊆ N that contains 0 and is closed under S equals N.

While the first two axioms are straightforward, the last axiom (the induction principle) is not expressible
by a first-order sentence as it quantifies over subsets of N rather than just its elements. (One can do this
in second-order logic.) One might think we could amend this by considering a structure with domain
P(N), but this does not really work either because for any theory in such a language, there is no way of
enforcing that its model includes all subsets of N using first-order axioms.

After all, we know from Part 1 that any first-order theory of arithmetic will have nonstandard models
of arbitrarily large cardinality, hence there is no way it could define N up to isomorphism; but we may
still hope to capture all first-order sentences valid in N by a nice explicit set of natural axioms (as is
possible for ⟨N, 0, 1,+,≤⟩ and ⟨R, 0, 1,+, ·,≤⟩). A natural attempt at such an axiomatization is Peano
arithmetic that postulates the induction axiom for sets definable by first-order formulas, which seems to
be all one can do in first-order logic.

Definition 3.1 (Robinson and Peano arithmetics). The language of arithmetic2 is LPA = {0, S,+, ·,≤}.
Robinson’s arithmetic Q is the LPA-theory with axioms

S(x) = S(y)→ x = y,(Q1)

S(x) ̸= 0,(Q2)

x ̸= 0→ ∃y S(y) = x,(Q3)

x+ 0 = x,(Q4)

x+ S(y) = S(x+ y),(Q5)

x · 0 = 0,(Q6)

x · S(y) = x · y + x,(Q7)

x ≤ y ↔ ∃z z + x = y.(Q8)

Peano arithmetic PA is Q extended with the schema of induction

φ(0) ∧ ∀x
(
φ(x)→ φ(S(x))

)
→ ∀xφ(x)

for all formulas φ. We allow φ to have other free variable besides x; these are called the parameters of
the induction axiom. Thus, more formally, the universal closure of

φ(0/x) ∧ ∀x
(
φ→ φ(S(x)/x)

)
→ ∀xφ

is an axiom of PA for every LPA-formula φ.

Recall that the standard model of arithmetic is N = ⟨N, 0, 1,+, ·, <⟩; its theory Th(N) is called the
true arithmetic. An LPA-sentence φ is called true if N ⊨ φ, and false otherwise; an LPA-theory T is called
sound if N ⊨ T .

Observation 3.2. PA is sound.

2The Dedekind–Peano axioms could make do with just 0 and S as they define N up to isomorphism; common arithmetical
operations such as +, · are then definable using second-order recursion. However, this is impossible in first-order logic—the
first-order theory of ⟨N, 0, S⟩ is expressively very poor. We thus need to explicitly include + and · in the language.

Part 3. Arithmetic 37

PA is a first-order version of the Dedekind–Peano axioms, and may look as a plausible candidate for
a complete axiomatization of true arithmetic. However, we will prove that it is in fact incomplete, and
it cannot be made complete by adding any semidecidable set of axioms; furthermore, this holds already
for extensions of the rudimentary theory Q. This is the content of Gödel’s first incompleteness theorem.

In contrast to PA, Robinson’s arithmetic Q is a very weak base theory, and it is not a reasonable
approximation of the theory of N on its own (it cannot prove even basic identities such as ∀x 0 + x = x;
cf. Exercises 34 and 35). It is introduced in a utilitarian way as a minimal-ish theory for which (or
rather, for whose arbitrary extensions) we can prove Gödel’s theorem. Here, the weakness of Q becomes
its strength—the weaker the base theory is, the more broadly applicable Gödel’s theorem is, and the
easier it is to verify its assumptions in a given application. It is, in particular, technically convenient
that Q is (unlike PA) finitely axiomatized.

We will derive the incompleteness of extensions of Q from their undecidability (cf. Lemma 2.33).
Towards that goal, we will show that we can “represent” semidecidable sets X ⊆ N in the theory, and
then undecidability of the theory will follow by reduction from the halting problem. We do this in two
steps:

• Semidecidable sets are definable by so-called Σ1 formulas in N.

– The main technical ingredient here is that LPA is expressive enough to define encoding of finite
sequences.

• True Σ1 sentences are provable in Q.

We start with the second bullet point.

3.2 Σ1-completeness of Q

Definition 3.3. Bounded quantifiers are the abbreviations

∃x ≤ t φ ≡ ∃x (x ≤ t ∧ φ), ∀x ≤ t φ ≡ ∀x (x ≤ t→ φ),

where t is a term not containing x.
A formula is bounded, or ∆0, if all its quantifiers are bounded.
A formula φ(x⃗) is Σ1 if it has the form ∃y⃗ θ(x⃗, y⃗) where θ is bounded.

Remark 3.4. The motivation for the definition is that a bounded quantifier ∃x ≤ t . . . or ∀x ≤ t . . .
only quantifies over a finite set {0, . . . , t}, hence we can verify its truth by checking all the cases one by
one. This may not be literally true if t depends on other variables, as then—if we are in a nonstandard
modelM—the interval {x ∈ M : x ≤M t} may actually be an infinite set when viewed from outside of
the model. However, if the value of t is a standard number, this argument works, even in a very weak
theory like Q. This is the intuition behind the fact that all true Σ1 sentences are provable in Q that we
are aiming to prove.

Definition 3.5. The numeral representing n ∈ N is the closed term

n = S(S(· · · (S︸ ︷︷ ︸
n times

(0)) · · ·)).

Formally, we define n by induction (in the meta-theory) as 0 = 0 and n+ 1 = S(n). It follows immediately
from the definition that

nN = n.

Remark 3.6. The next key lemma expresses that Q can evaluate arithmetic operations on standard
numbers, and bounded quantifiers with standard bounds. We note that essentially all our subsequent
results about Q (Σ1-completeness, the undecidability and incompleteness theorems) only rely on this
lemma rather than any other properties of Q; that is, they hold when Q is replaced with the theory
axiomatized by the sentences listed in the statement of Lemma 3.7 (this is a variant of the theory known
in the literature as Robinson’s theory R).

38 Mathematical Logic

Lemma 3.7. Let n,m ∈ N.

(i) Q ⊢ n+m = n+m.

(ii) Q ⊢ n ·m = nm.

(iii) If n ̸= m, then Q ⊢ n ̸= m.

(iv) Q ⊢ ∀x (x ≤ n↔ x = 0 ∨ x = 1 ∨ · · · ∨ x = n).

Proof.

(i) By induction (in the meta-theory!) on m. The base case m = 0 is clear:

Q ⊢ n+ 0
Q4
= n = n+ 0.

For the induction step m 7→ m+ 1:

Q ⊢ n+m+ 1
def
= n+ S(m)

Q5
= S(n+m)

i.h.
= S(n+m)

def
= n+m+ 1.

(ii) Again, the proof is by meta-induction on m. The base case m = 0 is Q6. For the induction step,
Q proves

n ·m+ 1
def
= n · S(m)

Q7
= n ·m+ n

i.h.
= nm+ n

(i)
= nm+ n︸ ︷︷ ︸

n(m+1)

.

(iii) By meta-induction on min {n,m}. First suppose m = 0 < n. Then

Q ⊢ n def
= S(n− 1)

Q2

̸= 0.

Similarly if m > 0 = n. Finally, if n,m > 0, we have

Q ⊢ n = m→ n− 1 = m− 1 Q1,

Q ⊢ n− 1 ̸= m− 1 induction hypothesis.

(iv) (←) If m ≤ n, then

Q ⊢ n = n−m+m by (i),

⊢ m ≤ n by Q8.

(→) By meta-induction on n:

Base case n = 0. Let us reason in Q. If x ≤ 0, then z + x = 0 for some z by Q8. By Q3,
either x = 0 and we are done, or x = S(y) for some y. But then 0 = z + S(y) = S(z + y)
by Q5, contradicting Q2.

Induction step n 7→ n+ 1. Reason in Q, and assume x ≤ n+ 1. Again, we have n+ 1 =
z + x for some z by Q8, and either x = 0 (in which case we are done) or x = S(y) for
some y.
In the latter case, S(z + y) = n+ 1 = S(n) by Q5, thus Q1 implies z + y = n, i.e., y ≤ n
by Q8.
Then y is 0 or 1 or . . . or n by the induction hypothesis, thus x is 1 or 2 or . . . or
n+ 1.

Corollary 3.8. If t is a closed LPA-term, and tN = n, then Q ⊢ t = n.

Proof. By induction on the complexity of t using (i) and (ii) of Lemma 3.7.

Part 3. Arithmetic 39

Lemma 3.9. Let θ be a ∆0 sentence. Then

N ⊨ θ =⇒ Q ⊢ θ,
N ⊭ θ =⇒ Q ⊢ ¬θ.

Proof. By induction on the complexity of θ:

Atomic formulas. Suppose θ is t = s or t ≤ s for some closed terms t and s (they have to be closed as
θ is a sentence). Let n = tN and m = sN. By Corollary 3.8, Q ⊢ t = n and Q ⊢ s = m. Moreover,
using Lemma 3.7,

N ⊨ t = s =⇒ n = m =⇒ Q ⊢ n = m,

N ⊭ t = s =⇒ n ̸= m =⇒ Q ⊢ n ̸= m by (iii),

N ⊨ t ≤ s =⇒ n ≤ m =⇒ Q ⊢ n ≤ m by (iv),

N ⊨ t ≰ s =⇒ n ≰ m =⇒ Q ⊢ n ≰ m by (iv) and (iii).

Conjunction, Disjunction, Negation. This case is left as an exercise.

Universal quantification. Suppose θ = ∀x ≤ t θ0(x) for some closed term t. As before, we have
Q ⊢ t = n, where n = tN.

• Suppose N ⊨ θ. It follows that for each m ≤ n, we have N ⊨ θ0(m), thus Q ⊢ θ0(m) by the
induction hypothesis. Moreover,

Q ⊢ x ≤ t→ x = 0 ∨ x = 1 ∨ · · · ∨ x = n

by (iv), thus
Q ⊢ x ≤ t→ θ0(x),

whence Q ⊢ ∀x ≤ t θ0(x).
• Suppose N ⊭ θ. Then there is m ≤ n such that N ⊭ θ0(m); whence by the induction
hypothesis, Q ⊢ ¬θ0(m). Moreover, Q ⊢ m ≤ n = t by (iv), hence Q ⊢ ¬∀x ≤ t θ0(x).

Existential quantification. This is analogous to universal quantification; details are left as an exercise.

Theorem 3.10 (Σ1-completeness). Every true Σ1 sentence φ is provable in Robinson’s arithmetic Q.

Proof. Let φ = ∃x0, . . . , xk−1 θ(x⃗) be a Σ1 sentence, where θ ∈ ∆0. Then N ⊨ φ implies there are some
n0, . . . , nk−1 ∈ N such that N ⊨ θ(n⃗), which implies Q ⊢ θ(n0, . . . , nk−1) by the previous lemma, whence
Q ⊢ ∃x⃗ θ(x⃗).

3.3 Sequence encoding and definability of computation

Our next goal is to express Turing computation by formulas in the language of arithmetic. We will forget
about Q for the moment: we will work exclusively with true arithmetic Th(N) in this section, which is
much more convenient, as we do not have to verify the formal provability of anything. The results will
be linked back to Q by means of its Σ1-completeness: we will make sure to express everything relevant
by Σ1 formulas.

In order to make our life simpler, we will allow certain definable functions to appear inside ∆0 and
Σ1 formulas, with complexity low enough so that they can be eliminated.

Definition 3.11. An R ⊆ Nk is a ∆0 relation if it is definable in N by a ∆0 formula θ(x⃗), i.e.,

R(n⃗) ⇐⇒ N ⊨ θ(n⃗)

for all n⃗ ∈ Nk.
A ∆0 function is a partial function f : Nk ⇀ N such that

40 Mathematical Logic

• f is bounded by an LPA-term t (i.e., a polynomial with coefficients from N): f(x⃗) ≤ t(n⃗) for all
n⃗ ∈ dom(f); and

• the graph of f , i.e., {⟨n⃗,m⟩ ∈ Nk+1 : f(n⃗) = m}, is a ∆0 relation.

Example 3.12. The function x −̇ y = max{x − y, 0} is a ∆0 function, as x −̇ y ≤ x, and x −̇ y = z iff
x = y + z ∨ (x ≤ y ∧ z = 0).

The functions ⌊x/y⌋ and rem(x, y) = x − y⌊x/y⌋ for y > 0 (i.e., rem(x, y) is the unique r such that
0 ≤ r < y and x ≡ r (mod y)) are ∆0 functions: they are again bounded by x, and their graphs are
∆0-definable by

⌊x/y⌋ = z ⇐⇒ yz ≤ x ∧ x < y(z + 1),

rem(x, y) = z ⇐⇒ z < y ∧ ∃u ≤ xx = yu+ z.

Definition 3.13. If L ⊇ LPA, an L-formula θ is a ∆0(L) formula if all quantifiers in θ are bounded. A
Σ1(L) formula is an L-formula of the form ∃y⃗ θ(x⃗, y⃗), where θ is a ∆0(L) formula.

(Thus, the difference between ∆0 and ∆0(L) formulas is that the latter may use the extra relations
and functions from L in atomic formulas, and in the case of functions, in quantifier bounds; likewise for
Σ1(L) formulas.)

We can now formally state that ∆0 relations and functions can be eliminated in the following way:

Lemma 3.14. Let L ⊇ LPA, and N(L) be an L-structure expanding the standard model N such that
the interpretations of relations and functions from L∖ LPA in N(L) are ∆0 relations and ∆0 functions,
respectively.

Then any ∆0(L) formula is equivalent in N(L) to a ∆0 formula, and any Σ1(L) formula is equivalent
in N(L) to a Σ1 formula.

Proof. It suffices to prove the result for ∆0(L) formulas. We can replace each (L∖LPA)-relation symbol
with its ∆0 definition. We have to be slightly more careful with functions, as they may appear nested
in terms. However, they can be successively eliminated inside out: if f(s⃗) is an occurrence of an
(L ∖ LPA)-function f inside an atomic subformula ψ(f(s⃗), . . .), where s⃗ are LPA-terms, then we rewrite
it as ∃u ≤ t(s⃗) (θ(s⃗, u) ∧ ψ(u, . . .)), where t is a bounding LPA-term for f , and θ is a ∆0 definition of
the graph of f ; likewise if f(s⃗) appears in a quantifier bound Qx ≤ t′(f(s⃗), . . .)ψ(x, . . .). Each such
replacement decreases the number of occurrences of the new function symbols, hence we will eventually
eliminate all of them.

Let us now go back to LPA-definability of computation. The main tool we are missing yet is encoding
of finite sequences: we need to be able to express that x is accepted by a Turing machine M iff there
exists a sequence of configurations of M with certain properties, and so on.

It is straightforward to encode sequences of fixed length, which can be reduced to ordered pairs:

Lemma 3.15. The LPA-term [x, y] = (x+ y)2 + x is a pairing function: i.e.,

N ⊨ ∀x, y, x′, y′ ([x, y] = [x′, y′]→ x = y ∧ x′ = y′).

Proof. We have (x+ y)2 ≤ [x, y] < (x+ y+1)2. Thus, if [x, y] = [x′, y′], then (x+ y)2 = (x′+ y′)2, which
implies x+ y = x′ + y′, which implies x = x′, whence y = y′.

It is much less obvious how to encode sequences of variable length. There are several strategies how
to accomplish that; we will use an elegant definition due to Gödel based on the idea that a number x
can encode the sequence ⟨rem(x,m0), rem(x,m1), . . .⟩ for suitable moduli m0,m1, (Some alternative
sequence encoding schemes are introduced in Exercises 37–41.)

What makes Gödel’s encoding work is the Chinese remainder theorem: this is a well-known result in
elementary number theory/algebra, but we include a short proof for completeness.

Part 3. Arithmetic 41

Lemma 3.16 (Chinese remainder theorem). If m0,m1, . . . ,mk−1 are pairwise coprime natural numbers,
then for every x0, x1, . . . , xk−1 ∈ N, there exists x ∈ N such that

x ≡ xi (mod mi) for all i < k.

Proof. Put m =
∏

i<kmi, and consider the abelian group homomorphism f : Z/mZ →
∏

i<k Z/miZ
given by f(x) = ⟨x mod mi : i < k⟩. We see that f is injective: x ∈ ker(f) only if x is divisible by
all mi, which—in view of their being pairwise coprime—means that x is divisible by m. But Z/mZ
and

∏
i<k Z/miZ are finite sets of the same size, viz. m, hence the injectivity of f implies that it is

surjective.

In order to apply the Chinese remainder theorem, we also need a suitable definable sequence of
pairwise coprime moduli:

Lemma 3.17. If 1, . . . , k | m, then {1 + im : i ≤ k} are pairwise coprime.

Proof. If i < j ≤ k and p | 1 + im, 1 + jm is prime, then p | (i − j)m implies p | m2, whence p | m and
thus p | 1: a contradiction.

Definition 3.18. Gödel’s β-function is β(x,m, i) = rem
(
x, 1 + (i+ 1)m

)
.

Theorem 3.19 (Sequence encoding). β(x,m, i) is a ∆0 function such that for any k ∈ N and any
x0, . . . , xk−1 ∈ N, there are x,m ∈ N that encode this sequence via β in the following sense:

β(x,m, i) = xi for all i < k.

Proof. We have β(x,m, i) ≤ x, and the graph of β is definable by the ∆0 formula

β(x,m, i) = y ⇐⇒ ∃q ≤ x x = y + q · S(S(i) ·m).

Thus, β is a ∆0 function.
Let k and x0, . . . , xk−1 be given. Fix some m such that 1, . . . , k | m and m ≥ xi for all i < k. Since

1 +m, . . . , 1 + km are coprime by Lemma 3.17, the Chinese remainder theorem tells us there is some x
such that

x ≡ xi (mod 1 + (1 + i)m) for all i < k.

Also xi < 1 + (1 + i)m, thus xi = rem(x, 1 + (1 + i)m) = β(x,m, i).

Example 3.20. Sequence encoding allows us to express recursive definitions in the language of arith-
metic. For instance, (the graph of) the powering function xy is Σ1-definable as

xy = z ⇐⇒ ∃x,m
(
β(x,m, 0) = 1 ∧ β(x,m, y) = z ∧ ∀i < y β(x,m, i+ 1) = x · β(x,m, i)

)
.

As defined, Gödel’s β-function requires a pair of numbers x,m to encode a sequence x0, . . . , xk−1,
and even so it does not determine the length of the sequence (i.e., k). Thus, we introduce a slightly more
convenient variant of the function that uses the number [[x,m], k] as the code:

Definition 3.21. We introduce ∆0 functions seq and len by

seq(w, i) = y ⇐⇒ ∃x,m, k ≤ w (w = [[x,m], k] ∧ i < k ∧ β(x,m, i) = y),

len(w) = k ⇐⇒ ∃x,m ≤ w w = [[x,m], k].

The intention is that w encodes a sequence of length len(w) whose ith entry is seq(w, i) for i < len(w).
(The functions as defined are partial—w only codes a sequence if it is of the form [[x,m], k] for some
x,m, k. This will not be a concern.)

Theorem 3.22. Every semidecidable set of natural numbers X ⊆ N is Σ1-definable; i.e., there exists a
Σ1 formula σ(x) such that

n ∈ X ⇐⇒ N ⊨ σ(n) for all n ∈ N.

42 Mathematical Logic

Proof. Fix a Turing machine M = ⟨Q,Σ,Γ, q0, qacc, qrej, δ⟩ that semidecides X, or more precisely, the set
of strings {w ∈ {1, 2}∗ : ⌜w⌝ ∈ X} (see Definition 2.21). Thus, Σ = {1, 2}; we assume w.l.o.g. that the
elements of Q and Γ are natural numbers as well (in particular, we identify with some natural number
̸= 1, 2).

We represent configurations of M by natural numbers using sequence encoding. We cannot literally
follow Definition 2.2 as we cannot encode infinite sequences, thus we represent a configuration as (a code
of) a sequence ⟨q, h, w0, . . . , ws⟩ where q ∈ Q is the current state, h is the head position, wi is the content
of ith cell of the tape, and s ≥ h is such that wi = for all i > s. Note that the representation of a
given configuration is non-unique, because the representation may use arbitrarily large s, and regardless
of that, a given finite sequence can be coded by infinitely many different numbers.

Working with this representation, we will present formulas Initial(u, x) expressing “u is the initial
configuration on input x”, Accepting(u) expressing “u is an accepting configuration”, and Yields(u, v)
expressing “u yields v”. Then we can define X by the formula

σ(x) = ∃w
[
len(w) ≥ 1 ∧ Initial

(
seq(w, 0), x

)
∧Accepting

(
seq(w, len(w) −̇ 1)

)
∧ ∀i < len(w) −̇ 1 Yields

(
seq(w, i), seq(w, i+ 1)

)]
expressing Definition 2.3. Note that the ∆0 functions seq, len, and −̇ can be eliminated by Lemma 3.14;
thus, we can write σ(x) as a Σ1 formula as long as Initial and Accepting are Σ1 formulas (whose initial
existential quantifiers can be prenexed out of the square bracket), and Yields is a ∆0 formula.

It remains to define the formulas Initial, Accepting, and Yields with the properties above. Again, we
can use ∆0 functions such as seq and len freely.

We can define

Accepting(u) ≡ seq(u, 0) = qacc,

Yields(u, v) ≡
∨

⟨q,a⟩∈Q×Γ

δ(q,a)=⟨q′,a′,t⟩

Nextq,a,q′,a′,t(u, v),

where Nextq,a,q′,a′,t(u, v) denotes

seq(u, 0) = q ∧ seq(u, seq(u, 1) + 2) = a

∧ len(v) ≥ max{len(u), seq(v, 1) + 3}

∧ ∀i < len(v) seq(v, i) =

q′ i = 0,

seq(u, 1) + 1 i = 1 ∧ t = R,

seq(u, 1) −̇ 1 i = 1 ∧ t = L,

a′ i = seq(u, 1) + 2,

seq(u, i) 2 ≤ i < len(u) ∧ i ̸= seq(u, 1) + 2,

i ≥ len(u)

(the last expression can be written using disjunctions and conjunctions as there are only a fixed number
of cases).

The main problem with description of the initial configuration is to check that the digits ai ∈ {1, 2}
on the tape form the bijective base-2 representation

x =
∑
j<k

2jaj

of the given input x ∈ N. In order to do this, we use an auxiliary sequence w with values

seq(w, i) =
∑

j<k−i

2jai+j

Part 3. Arithmetic 43

for i ≤ k, which satisfies the backwards recurrence

seq(w, k) = 0, seq(w, i) = 2 seq(w, i+ 1) + ai,

and we check that seq(w, 0) = x. Below, ai = seq(u, i+ 2) and k = len(u)− 2 = len(w)− 1:

Initial(u, x) ≡ seq(u, 0) = q0 ∧ seq(u, 1) = 0

∧ ∃w
(
len(w) ≥ 1 ∧ len(u) ≥ max{len(w) + 1, 3}
∧ seq(w, 0) = x

∧ seq(w, len(w) −̇ 1) = 0

∧ ∀i < len(w) −̇ 1
(
1 ≤ seq(u, i+ 2) ≤ 2

∧ seq(w, i) = 2 seq(w, i+ 1) + seq(u, i+ 2)
)

∧ ∀i < len(u)
(
len(w) + 1 ≤ i→ seq(u, i) =

))

We mention that conversely, any Σ1-definable subset of N is semidecidable (Exercise 36).

3.4 Undecidability and incompleteness

We have now everything in place to prove the main results of Part 3, but we need one more technical
assumption.

Definition 3.23. An LPA-theory T is Σ1-sound if all Σ1 sentences σ provable in T are true; i.e.,

T ⊢ σ =⇒ N ⊨ σ.

Observe that any sound theory (Definition 3.1) such as Q or PA is Σ1-sound, and any Σ1-sound theory
is consistent.

Although the following statement is often lumped together with Gödel’s first incompleteness theorem,
it is more properly called the undecidability theorem:

Theorem 3.24 (Kleene’s undecidability theorem). Every Σ1-sound theory T ⊇ Q is undecidable.

Proof. Let X ⊆ N be an undecidable but semidecidable set, which exists by Theorem 2.25 and Defi-
nition 2.21, and let σ(x) be a Σ1-definition of X, which exists by Theorem 3.22. Then n 7→ σ(n) is a
computable function (cf. Lemma 2.31) that provides a many-one reduction of X to Thm(T), as

n ∈ X ⇐⇒ N ⊨ σ(n) ⇐⇒ T ⊢ σ(n).

In the second equivalence, “⇒” follows from the Σ1-completeness of Q ⊆ T , and “⇐” from the Σ1-
soundness of T . Thus, Thm(T) is undecidable by Lemma 2.29.

Theorem 3.25 (Gödel’s first incompleteness theorem).
Every Σ1-sound, recursively axiomatizable theory T ⊇ Q is incomplete.

Proof. If T were complete, then T would be decidable by Lemma 2.33, contradicting Theorem 3.24.

Let us recall our motivating problem from the beginning of Part 2:

Definition 3.26. The Entscheidungsproblem for a given finite language L is

{φ : φ is an L-sentence, ⊨ φ} = Thm(∅)

(where ∅ denotes the L-theory with an empty set of nonlogical axioms).

44 Mathematical Logic

Theorem 3.27 (Church). The Entscheidungsproblem for LPA is undecidable.

Proof. By Theorem 3.25 and Lemma 2.35 applied with T = ∅ and X = Q.

Remark 3.28. While we will not go into the details, it is good to mention that the undecidability and
incompleteness theorems above can be sharpened in various ways:

(i) The assumption of Σ1-soundness in Theorems 3.24 and 3.25 may be simplified to plain consistency;
this is the Gödel–Rosser theorem. Explicitly, every consistent extension of Q is undecidable, and
therefore incomplete if recursively axiomatizable.

Even better, in view of Lemma 2.35, we see that a theory T in a language L ⊇ LPA is undecidable,
and thus incomplete if recursively axiomatizable, whenever it is consistent with Q (i.e., T + Q is
consistent).

A useful tool for proving this is the concept of representation of computable sets and functions,
see Exercises 42–43, upgrading the notion of definability in N from Theorem 3.22.

(ii) The results from the previous point even hold when Q is replaced with the weaker theory R
mentioned in Remark 3.6. (Since R is not finitely axiomatizable, the fact that mere consistency of
T + R suffices for undecidability is not automatic from Lemma 2.35; this is a nontrivial result of
Cobham.)

(iii) We are interested not just in theories in the language of arithmetic, but for example in foundational
theories in the language of set theory such as ZFC. The Gödel–Kleene–Rosser theorems can be
applied to ZFC in the following way: given an LPA-sentence φ, we define its translation φω into
the language of set theory by restricting all quantifiers to ω and replacing arithmetical functions
and predicates such as +, ·,≤ with their set-theoretical definitions. (We need to expand compound
terms similarly to the proof of Lemma 3.14.) Then T = {φ : ZFC ⊢ φω} is an extension of Q
(or even PA), which is consistent if ZFC is, whence T is undecidable. The function φ 7→ φω

is computable, and it provides a many-one reduction of Thm(T) to Thm(ZFC), hence ZFC is
undecidable as well. Moreover, T is semidecidable, thus recursively axiomatizable by Remark 2.34;
thus it is incomplete. If φ is a sentence independent of T (i.e., neither provable nor refutable), then
φω is a sentence independent of ZFC.

This approach can be generalized using the notion of (relative) interpretation. The details are
somewhat technical, but the basic idea is as follows. A translation ∗ of a language L0 to a lan-
guage L1 is specified by an L1-formula δ∗(x) that defines the domain of the objects of L1 (e.g.,
“x ∈ ω” in the interpretation of PA in ZFC above), an L1-formula x =∗ y, L1-formulas R∗(x⃗) for
each L0-predicate R(x⃗), and L1-formulas F ∗(x⃗, y) for each L0-function F (representing the graph
of F). Given an L0-sentence φ, we define its translation φ∗ by restricting all quantifiers with δ∗,
and replacing = and all predicate and function symbols with their ∗-ed definitions (again, we need
to quantify over intermediate results to expand compound terms). If the languages are finite, then
φ 7→ φ∗ is a computable function. (Sometimes even more complicated translations are considered:
e.g., we may represent objects of L0 by k-tuples of objects of L1 for a fixed k ≥ 1, thus each variable
translates to a k-tuple of variables. This is useful e.g. to interpret plane geometry in Th(R).)

Then ∗ is an interpretation of an L0-theory T0 in an L1-theory T1 if it is a translation of L0 to L1

such that T1 proves ∃x δ∗(x) and the translations of axioms of T0 and axioms of equality. It follows
that T0 ⊢ φ =⇒ T1 ⊢ φ∗ for all L0-sentences φ. Thus, if L0 is finite, φ 7→ φ∗ provides a many-one
reduction of Thm(T) to Thm(T1), where T = {φ : T1 ⊢ φ∗} ⊇ T0.

We obtain the following generalization of the undecidability and incompleteness theorems: if T is
a consistent theory such that Q (or just R) is interpretable in T , then T is undecidable, and it is
incomplete if recursively axiomatizable.

Part 3. Arithmetic 45

(iv) (Szmielew, Tarski) As a ready-made application of the previous point to set theories, the adjunctive
set theory (AST) with axioms

∃z ∀t t /∈ z,
∀x ∀y ∃z ∀t (t ∈ z ↔ t ∈ x ∨ t = y)

(postulating that ∅ and x ∪ {y} exist) interprets Q. Thus, every theory consistent with AST is
undecidable, and it is incomplete if recursively axiomatizable.

The even weaker Vaught set theory (VS), axiomatized by the schema

∀x0, . . . , xn−1 ∃z ∀t
(
t ∈ z ↔

∨
i<n

t = xi

)
for n ∈ N (including n = 0, which gives the axiom of empty set), interprets Robinson’s theory R.
Thus, again, every theory consistent with VS is undecidable, and it is incomplete if recursively
axiomatizable.

(v) Replacing Q with AST in the proof of Theorem 3.27, we see that the Entscheidungsproblem is
undecidable for a language with just one binary predicate (and therefore for a language with a
binary function, or with a predicate or function symbol of higher arity).

In fact, an exact characterization is known: the Entscheidungsproblem for a finite language L is
undecidable iff L contains at least one at least binary symbol (predicate or function), or at least
two unary functions.

3.5 Unprovability of consistency

While Theorem 3.25 shows that any sufficiently strong theory (and in particular, any theory that could
serve as the foundation of mathematics) is incomplete, it does not exhibit an explicit statement inde-
pendent of the theory. This is remedied by Gödel’s second incompleteness theorem:

Theorem 3.29. If T is a consistent recursively axiomatized theory extending PA, then T does not prove
the sentence ConT expressing its own consistency.

In a way, this is still not entirely satisfactory, as the true but unprovable sentence ConT it provides
is not something that would be recognized as an arithmetical result by a number theorist; rather, it is a
statement of logic encoded in the first-order language of arithmetic. Nevertheless, it is a statement with
an intuitively clear concrete meaning, and one whose unprovability is of independent interest (for one
thing, it dooms Hilbert’s program to failure).

We are not going to prove Theorem 3.29 as there is not enough time in the course to do it properly;
however, we will outline the main ideas that go into it and explain where the difficulties are.

Before we can even start to think about the proof, the first difficulty is the actual statement of the
theorem: what is ConT , really?

Since the consistency of T means that T does not prove ⊥, a natural definition of ConT is

ConT = ¬PrT (⌜⊥⌝)

where PrT (x) is a provability predicate for T : a formula expressing “(the sentence encoded by) x is
provable in T”. But this just shifts the problem to what is PrT .

We know from Theorem 3.22 that Thm(T) is definable in N by a Σ1 formula, and we may consider
taking any such formula as PrT . But a moment’s reflection shows that even though this is a useful and
perhaps desirable property for PrT to have, it is far from sufficient to establish Theorem 3.29: e.g., if
σ(x) is any Σ1 formula that defines Thm(T), then σ(x) ∧ x ̸= ⌜⊥⌝ is also a Σ1 formula that defines
Thm(T) (as T is, in fact, consistent), and the consistency of the latter provability predicate is trivially
provable.

46 Mathematical Logic

Rather than relying on the “extensional” definability of Thm(T) by PrT , we should construct an
“intensional” definition that closely mimics the actual definition of provability from Section 1.4. Going
in a top-down fashion, we put

PrT (x) = ∃p ProofT (p, x)

where ProofT (p, x) is supposed to describe “p is a proof of x”. In turn, we can define ProofT (p, x) using
sequence encoding as

len(p) > 0 ∧ seq(p, len(p) −̇ 1) = x

∧ ∀i < len(p)
(
τ(seq(p, i))

∨AxP(seq(p, i)) ∨AxQ(seq(p, i)) ∨AxE(seq(p, i))

∨ ∃j, k < iMP(seq(p, i), seq(p, j), seq(p, k))

∨ ∃j < iGen(seq(p, i), seq(p, j))
)
,

where τ(x) is fixed Σ1 formula that defines the set of axioms of T ; AxP(x), AxQ(x), and AxE(x) mean
“x is a propositional axiom”, “x is a quantifier axiom”, and “x is an axiom of equality”, respectively;
MP(x, y, z) means “x is inferred from y and z by modus ponens”, and Gen(x, y) “x is inferred from y by
a generalization rule”.

We proceed to define the formulas AxP etc. in a similar fashion; in the process, we will need to define
formulas expressing things like “x is a term”, “x is a formula”, “w is the result of substitution of free
occurrences of variable x for a term y in a formula z”. It is reasonably obvious that we can express
all such things using sequence encoding to mimic the definitions from the real world, but it should be
equally obvious that carrying this out down to the last iota is quite tedious.

Note that our definition of PrT and ConT depends on the choice of the formula τ describing the axiom
set of T , not just on T itself; thus, we should indicate this in the notation more properly by writing Prτ
and Conτ . But we will not bother with this.

With some effort, it can be checked that PrT is (provably equivalent to) a Σ1 formula, and by
construction, it defines Thm(T) in N. But it has many other natural properties as well. In particular,
the proof of Theorem 3.29 essentially relies on the following statement, which is, in fact, the most difficult
and most technical part of the proof.

Theorem 3.30. If PrT is the provability predicate of a recursively axiomatized theory T ⊇ PA constructed
as outlined above, then PrT satisfies the following Hilbert–Bernays–Löb derivability conditions for all
sentences φ and ψ:

(D1) If T proves φ, then T proves PrT (⌜φ⌝).

(D2) T proves PrT (⌜φ⌝)→ PrT (⌜PrT (⌜φ⌝)⌝).

(D3) T proves PrT (⌜φ→ ψ⌝) ∧ PrT (⌜φ⌝)→ PrT (⌜ψ⌝).

Proof sketch.
(D1) follows from the Σ1-completeness of T ⊇ Q: if T proves φ, then PrT (⌜φ⌝) is a true Σ1 sentence.
(D3) is a formalization of the closure of provability under modus ponens, and it is fairly straightfor-

ward: we take the proofs of φ→ ψ and φ, concatenate them (as sequences), add ψ at the end, and argue
that this is a proof of ψ.

(D2) is the most difficult part. It is, in effect, a formalization of (D1) inside T itself as a meta-
theory; since (D1) was proved by appealing to Σ1-completeness, (D2) can be proved as a special case of
formalized Σ1-completeness3: T proves

σ(u)→ PrT (⌜σ(u̇)⌝)

for every Σ1 formula σ(x) (here, the deceptively simple notation ⌜σ(u̇)⌝ hides the rather complicated
operation that given a number u, we construct (the Gödel number of) the closed term u, and substitute

3We apply formalized Σ1-completeness with σ being the sentence PrT (⌜φ⌝), but the version with free variables is needed
for the inductive proof.

Part 3. Arithmetic 47

it into σ for x, taking the Gödel number of the resulting sentence). This can be shown by induction on
the complexity of σ, but we have to basically formalize the whole proof of Lemma 3.9 in T .

The original proof of Gödel’s first incompleteness theorem did not rely on results from computability
theory as we have done (Gödel did not have a general definition of computability), but it proceeded by
syntactic manipulations using the provability predicate. The rôle played by the diagonal argument in
the proof of Theorem 2.25 was taken by the so-called Gödel’s diagonal lemma:

Lemma 3.31. For every LPA-formula φ(x), there is an LPA-sentence α such that Q proves α↔ φ(⌜α⌝).

Proof. Exercise 44.

Using the diagonal lemma, we can construct Gödel’s sentence ν that satisfies

Q ⊢ ν ↔ ¬PrT (⌜ν⌝)

(i.e., ν says “I am unprovable in T”). If T is consistent, then ν is unprovable:

T ⊢ ν =⇒ T ⊢ PrT (⌜ν⌝) =⇒ T ⊢ ¬ν =⇒ T ⊢ ⊥

using Σ1-completeness (i.e., (D1)) and the definition of ν. (Thus also, if T is consistent, then N ⊨
¬PrT (⌜ν⌝), hence N ⊨ ν, hence T ⊬ ¬ν if T is Σ1-sound. This provides an alternative proof of Theo-
rem 3.25.)

Now, the proof of Gödel’s second incompleteness theorem is essentially a formalization of this argu-
ment in T itself. More precisely, we have:

Theorem 3.32. Let T be a consistent extension of Q, and PrT a provability predicate for T that satisfies
the Hilbert–Bernays–Löb derivability conditions. Then T ⊬ ¬PrT (⌜⊥⌝).

Proof. Let ν be as above. Since T proves PrT (⌜ν⌝)→ (ν → ⊥), it proves

PrT (⌜PrT (⌜ν⌝)→ (ν → ⊥)⌝),

PrT (⌜PrT (⌜ν⌝)⌝)→ PrT (⌜ν → ⊥⌝),

PrT (⌜PrT (⌜ν⌝)⌝)→
(
PrT (⌜ν⌝)→ PrT (⌜⊥⌝)

)
by applying (D1) and (D3) twice. Using also (D2), we obtain

T ⊢ PrT (⌜ν⌝)→ PrT (⌜⊥⌝).

Assuming for contradiction that T ⊢ ¬PrT (⌜⊥⌝), we infer T ⊢ ¬PrT (⌜ν⌝), whence T ⊢ ν by the
definition of ν, and T ⊢ PrT (⌜ν⌝) by (D1), thus T is inconsistent.

Remark 3.33. (For those familiar with modal logic.) The proof of Theorem 3.32 does not overtly use
any quantifiers; it essentially looks like a proof in a propositional modal logic where PrT plays the rôle
of the necessity modal operator □. Elaboration of this idea leads to so-called provability logic.

Remark 3.34. As with Gödel’s first incompleteness theorem, we can apply the second incompleteness
theorem to theories in other languages than LPA by means of interpretations. But surprisingly, this idea
can can be used to significantly improve the statement of the incompleteness theorem even for theories
of arithmetic, by exploiting the fact that Q interprets some weak fragments of PA such as induction for
∆0 formulas (“bounded arithmetic”), that are nevertheless strong enough to carry out some form of the
proof of Theorem 3.30. We can obtain the following elegant formulation that applies to theories in any
language, and brings the base theory down from PA to Q, even though Q is too weak to directly prove
the Hilbert–Bernays–Löb derivability conditions:

Theorem 3.35 (Pudlák). If T is a consistent recursively axiomatized theory, then T cannot interpret
Q+ConT .

48 Mathematical Logic

Exercises

We have seen in the lecture that the De Morgan language {∧,∨,¬,⊤,⊥} is functionally complete, and
specifically, that every Boolean function can be represented by a CNF or DNF of size O(2nn).

1. Prove that {∨,¬}, {→,⊥}, and {↑} are functionally complete, where x ↑ y denotes the Sheffer
stroke ¬(x ∧ y).

2. Prove that {→}, {∧,∨,⊤,⊥}, and {↔,⊤,⊥} are not functionally complete.
[Hint: Find a nontrivial property of Boolean functions which is preserved by composition, and holds for
functions in the given basis.]

3. For any Boolean function f : {0, 1}n → {0, 1}, the following are equivalent:

(i) {f} is functionally complete.

(ii) f(0, . . . , 0) = 1, f(1, . . . , 1) = 0, and there exists an assignment ⟨e0, . . . , en−1⟩ ∈ {0, 1}n such that
f(e0, . . . , en−1) = f(¬e0, . . . ,¬en−1).

[Hint: For (ii)→ (i), look at functions obtained from f by identifying some of the variables.]

4. For any n ∈ N, the parity function
⊕

i<n xi : {0, 1}n → {0, 1} is defined as
(∑

i<n xi
)
mod 2.

Show that any DNF or CNF representing
⊕

i<n xi has size Ω(2nn). [Hint: What terms of the form∧
i∈I x

ei
i can imply one of

⊕
i<n xi = 0 or

⊕
i<n xi = 1? Here, I ⊆ [n], ei ∈ {0, 1}, x1 = x, x0 = ¬x.]

5. There are formulas representing
⊕

i<n xi of size O(nc) for some constant c.
[Hint: Consider a balanced tree of binary parities. You may get it down to c = 2.]

6. Any DNF equivalent to the CNF
∧

i<n(xi ∨ yi) has size Ω(2nn).

7. Every Boolean function f : {0, 1}n → {0, 1} can be represented by a formula of size O(2n).
[Hint: Inductively express a formula in n+ 1 variables as a combination of formulas in n variables.]

8. Prove the propositional soundness theorem: for all Γ ⊆ PropA and φ ∈ PropA, if Γ ⊢ φ, then
Γ ⊨ φ.

9. Let Γ,∆ ⊆ PropA and φ,ψ ∈ PropA. Show that if Γ ⊢ φ and ∆, φ ⊢ ψ, then Γ,∆ ⊢ ψ.
10. For every φ ∈ PropA, its De Morgan dual φd ∈ PropA is obtained by exchanging ∧ with ∨, and
⊤ with ⊥ inside φ. Formally, we define φd by induction on the complexity of φ:

ad = a, a ∈ A, (¬φ)d = ¬(φd),

⊤d = ⊥, ⊥d = ⊤,
(φ ∧ ψ)d = (φd ∨ ψd), (φ ∨ ψ)d = (φd ∧ ψd).

Show that for all assignments v : A → {0, 1}, v(φd) = v¬(¬φ), where v¬ : A → {0, 1} is the assignment
defined by v¬(a) = 1− v(a) for each a ∈ A.
11. Let φ,ψ ∈ PropA.

(i) φ ≡ ψ if and only if φd ≡ ψd.

(ii) φ ⊨ ψ if and only if ψd ⊨ φd.

49

50 Mathematical Logic

In the lecture, we have proved completeness of a proof system using connectives {→,⊥}. A complete
system using the De Morgan language {∧,∨,¬,⊤,⊥} is given in the van den Dries lecture notes, but the
next exercise shows how to construct one mechanically.

12. For any {→,⊥}-formula φ, let φ∗ denote the De Morgan formula such that p∗ = p for atoms p,
⊥∗ = ⊥, and (φ→ ψ)∗ = (¬φ∗ ∨ψ∗). Similarly, given a De Morgan formula ψ, let ψ# be its translation
to a {→,⊥}-formula using fixed {→,⊥}-translations of all De Morgan connectives. Let ⊢0 denote a
sound and complete Hilbert-style proof system for {→,⊥}-formulas such as the one given in the lecture,
and let ⊢1 be the Hilbert-style proof system in the De Morgan language that has inference rule schemata
φ∗
1, . . . , φ

∗
k / φ∗

0 for each rule schema φ1, . . . , φk / φ0 of ⊢0 (where axioms are treated as rules with
k = 0), and axiom schemata ¬c(φ0, . . . , φk−1)∨c#∗(φ0, . . . , φk−1), ¬c#∗(φ0, . . . , φk−1)∨c(φ0, . . . , φk−1)
for each k-ary De Morgan connective c. Then ⊢1 is a sound and complete proof system in the De Morgan
language. [Hint: You will need to show ⊢1 ¬ψ ∨ ψ#∗, ⊢1 ¬ψ#∗ ∨ ψ for all De Morgan formulas ψ.]

13. (If you are familiar with topology.) Give a direct proof of the propositional compactness theorem,
not using the completeness theorem.
[Hint: Consider the product topology on the set {0, 1}A of all assignments.]

14. A set of propositional or first-order sentences S is independent if S is not equivalent to S′ for any
proper subset S′ ⊊ S.

(i) S is independent iff S ∖ {φ} ⊭ φ for all φ ∈ S.

(ii) Show that every countable theory T has an independent axiomatization, i.e., an independent set
of sentences S equivalent to T . [Hint: Try to generalize the fact that {φ,ψ} ≡ {φ,ψ ∨ ¬φ}.]

(Uncountable theories have independent axiomatizations as well by a theorem of I. Reznikoff, but this
is more difficult to prove.)

15. Prove Lemma 1.51: if a term t(x0, . . . , xn−1, y) is free for y in a formula φ(x0, . . . , xn−1, y), then
for all terms s0, . . . , sn−1, r, the formula

(
φ(t/y)

)
(s0/x0, . . . , sn−1/xn−1, r/y) is syntactically identical to

the formula φ
(
s0/x0, . . . , sn−1/xn−1, t(s0/x0, . . . , sn−1/xn−1, r/y)/y

)
.

16. Let A be an L-structure, t a closed L-term such that tA = a ∈ A, and φ(x) an L-formula. Show
that A ⊨ φ(t) iff A ⊨ φ(a).

17. Consider a modification of the first-order proof system given in the lecture such that the axioms
of equality are replaced with the axiom x = x and the axiom schema t = s ∧ φ(t/x) → φ(s/x) for all
formulas φ and terms t, s free for x in φ. Show that this is equivalent to the original proof system.

18. For any formula φ(x) and variable y free for x in φ, show that the formula ∃y (∃xφ(x) → φ(y))
is provable.

19. Using Vaught’s test, show the completeness of the theory of a successor: it has a language with
one unary function symbol s, and axioms s(x) = s(y) → x = y, ∀x∃y s(y) = x, and sn(x) ̸= x for each
n ∈ N>0, where s

n denotes the n-fold iteration of s (i.e., s0(x) is x, and sn+1 is s(sn(x))).

20. For each n ∈ N, let Pn denote the path graph of length n, i.e., the structure ⟨[n], En⟩, where
[n] = {0, . . . , n− 1} and En = {⟨i, j⟩ ∈ [n]2 : |i− j| = 1}. Show that there is no sentence φ such that for
all n ∈ N, Pn ⊨ φ iff n is odd. [Hint: Adapt the previous exercise.]

21. Fix a field F . The theory of vector spaces over F has a language consisting of the language
{+,−, 0} of abelian groups and unary functions a · x for each a ∈ F ; it has the usual algebraic axioms
(axioms of abelian groups, ab ·x = a ·(b ·x), 1 ·x = x, (a+b) ·x = a ·x+b ·x, a ·(x+y) = a ·x+a ·y). Show
that the theory of infinite vector spaces over F (i.e., with additional axioms ∃x0 . . . ∃xn

∧
i<j xi ̸= xj

for n ∈ N) is complete and κ-categorical for all infinite κ > |F |. [Hint: Every vector space has a basis.]

22. An atom in a Boolean algebra A = ⟨A, 0, 1,∧,∨,−,≤⟩ is an element a ∈ A such that a > 0, but
0 < x < a for no x ∈ A; A is atomless if 0 ̸= 1 and A has no atoms. Show that the theory of atomless
Boolean algebras is ℵ0-categorical, hence complete.
[Hint: Construct an isomorphism between two countable atomless Boolean algebras A and B by a back-
and-forth argument, as a union of a sequence of isomorphisms between finite subalgebras. It might help
to observe that if A0 is a finite subalgebra of A, and A1 is the algebra generated by A0 ∪ {b} for some
b ∈ A, then each atom of A0 either remains an atom in A1, or splits into two atoms.]

Exercises 51

23. Show that the functions +: N2 → N and · : N2 → N are computable when the input and output
are represented in unary.

24. The same when the input and output are represented in binary.

25. Show that there are computable functions converting natural numbers from one representation
to another (unary, ordinary base-k, bijective base-k, considering also different ks).

26. Fix an alphabet Σ.

(i) The following functions are computable: the constant function ε; the functions sa : Σ
∗ → Σ∗ for

a ∈ Σ, defined by sa(x) = x⌣a; the projections πn
i : (Σ∗)n → Σ∗, πn

i (x0, . . . , xn−1) = xi.

(ii) If f : (Σ∗)n → Σ∗ and gi : (Σ
∗)m → Σ∗, i < n, are computable functions, their composition

h : (Σ∗)m → Σ∗, h(x⃗) = f(g0(x⃗), . . . , gn−1(x⃗)), is computable.

(iii) If fε : (Σ
∗)n → Σ∗ and fa : (Σ

∗)n+2 → Σ∗, a ∈ Σ, are computable, the function h : (Σ∗)n+1 → Σ∗

defined from them by the recursion

h(x⃗, ε) = fε(x⃗),

h(x⃗, y⌣a) = fa(x⃗, y, h(x⃗, y))

is computable.

Functions in the smallest class that contains the functions from (i) and that is closed under the operations
(ii) and (iii) are called primitive recursive. (Usually, the definition of primitive recursive functions is
stated for functions Nn → N, corresponding to our definition with |Σ| = 1 and the integers represented
in unary. Our more general definition is equivalent up to the bijective base-|Σ| numeration.)

27. The set of well bracketed strings over the alphabet Σ = {(i,)i : i < k} is the smallest set of
strings such that the empty string ε is well bracketed, and if x and y are well bracketed and i < k, then
xy and (ix)i are well bracketed. E.g., (3(1)1(2()0)2(1)1)3(2)2 is well bracketed. Show that the set of well
bracketed strings is decidable.

The next exercise is to prove Lemma 2.31:

28. Let L be a finite first-order language. Show that the following sets and functions are computable:

(i) The set of L-terms.

(ii) The set of L-formulas.

(iii) The set of pairs ⟨φ, x⟩ where x is a free variable of an L-formula φ.

(iv) The substitution function: given an L-formula φ, a variable x, and an L-term t, compute φ(t/x).

(v) The set of triples ⟨Γ, φ, π⟩ where π is a proof of an L-formula φ from a finite set of L-formulas Γ.

29. A language X ⊆ Σ∗ is semidecidable iff it can be represented as ∃w ∈ Σ′∗ P (x,w) for a finite
alphabet Σ′ (which we might take to be Σ itself if |Σ| ≥ 2) and a decidable predicate P .
[Hint: Consider a description of an accepting run of a Turing machine, or—if you are already familiar
with the section on arithmetic—a Σ1-formula that defines X in N.]
30. (Craig’s trick.) Every semidecidable theory is recursively axiomatizable. [Hint: Express Thm(T)

as ∃wP (φ,w) with P decidable. Given φ and w, devise a sentence equivalent to φ that encodes w.]

31. Show that every decidable consistent theory T has a decidable complete extension.
[Hint: Consider a completion procedure that enumerates sentences φ one by one, and extends the current
list of axioms with φ or ¬φ, whichever maintains consistency with T .]

32. Prove Q ⊢ ∀x (x ≤ n ∨ n ≤ x) for each n ∈ N.
33. Q proves x · y = 0→ x = 0∨ y = 0, and more generally, x · y = n→ x = 0∨ y ≤ n for each n ∈ N.

52 Mathematical Logic

34. The standard model N extends to an LPA-structure N∞ with domain N ∪ {∞}, ∞ /∈ N, so that
N∞ ⊨ Q. Moreover, we are free to choose (0 · ∞)N

∞
in an arbitrary way (while the rest of the model is

uniquely determined by the axioms of Q). Conclude that Q does not prove any of the formulas S(x) ≰ x,
x · y = y · x, or 0 · x ̸= 1.

35. Q does not prove x+ y = y + x or 0 + (x+ y) = (0 + x) + y.
[Hint: Modify the previous exercise to a model with two “infinities”.]

36. All Σ1-definable sets are semidecidable.

In the lecture, we developed an encoding of sequences in the language of arithmetic using Gödel’s
β-function. In the next three exercises, you will devise an alternative sequence encoding scheme due to
E. Nelson, as simplified by P. Pudlák.

37. The set {x : ∃n ∈ Nx = 2n} of powers of 2 is definable by a ∆0 formula, not using the 2n function.
[Hint: Consider the divisors of x.]

38. Consider an encoding of finite sets X ⊆ N by pairs [r, w] where the binary expansion of w is a
concatenation of binary expansions of elements of X, and the binary expansion of r acts as a “ruler” such
that the positions of 1s mark where the individual elements of X start in w. Show that the predicate “x
is in the set encoded by [r, w]” is ∆0-definable.

39. Construct a ∆0 encoding of finite sequences based on Exercise 38.

As yet another alternative, we will look at a representation of binary strings introduced by A. A.
Markov Jr., who attributes it to J. Nielsen. The idea of using it for encoding strings in weak theories of
arithmetic is due to J. Murwanashyaka; the extension to sequences of integers is due to A. Visser.

40. Let ⟨SL2(N), I, ·⟩ denote the monoid of non-negative integer matrices
(
a b
c d

)
∈ N2×2 of determi-

nant 1, with · being matrix multiplication and I =
(
1 0
0 1

)
. Put A0 =

(
1 1
0 1

)
and A1 =

(
1 0
1 1

)
.

(i) Given i = 0, 1, which M ∈ SL2(N) are of the form NAi for N ∈ SL2(N)? [Hint: Focus on
comparisons between the entries of M .]

(ii) Using (i), show that each M ∈ SL2(N)∖ {I} can be written in a unique way as NA0 or NA1 with
N ∈ SL2(N).

(iii) Conclude that SL2(N) ≃ ⟨{0, 1}∗, ε,⌣⟩.

41. Develop a ∆0 encoding of finite sequences based on the previous exercise. [Hint: You may
represent {n0, . . . , nk−1} by An0

0 · · ·A1A
nk−1

0 A1, using A
n
0 =

(
1 n
0 1

)
. Then encode sequences by sets.]

A formula φ(x) represents a set X ⊆ N in a theory T if T ⊢ φ(n) for all n ∈ X, and T ⊢ ¬φ(x) for
all n ∈ N∖X.

A formula φ(x, y) represents in T a partial function f : N ⇀ N if T ⊢ ∀y (φ(n, y) ↔ y = m) for all
n,m ∈ N such that f(n) = m.

42. All decidable sets are Σ1-representable in Q.
[Hint: Starting with Σ1-definitions of X and N ∖X, write a Σ1 formula expressing “there is a witness
for x ∈ X smaller than any witness for x /∈ X”. Use Exercise 32 to show that it works.]

43. All partial computable functions are Σ1-representable in Q.
[Hint: Using a Σ1-definition of the graph of f , adapt the witness comparison argument from Exercise 42.]

44. Prove Gödel’s diagonal lemma (Lemma 3.31): for every formula φ(x), there exists a sentence α
such that Q ⊢ α↔ φ(⌜α⌝).
[Hint: Using representability of a suitable computable function, construct a formula ψ(x) such that

Q ⊢ ψ(⌜χ⌝)↔ φ(⌜χ(⌜χ⌝)⌝) for all χ(x).]

	Course overview
	Syntax and semantics of logic
	Propositional logic
	Completeness of propositional logic
	First-order logic
	First-order proof system
	Completeness of first-order logic
	Consequences of the completeness theorem

	Computability
	Turing machines
	Universal Turing machines and the halting problem
	Computability of logical syntax

	Arithmetic
	Robinson and Peano arithmetics
	1-completeness of Q
	Sequence encoding and definability of computation
	Undecidability and incompleteness
	Unprovability of consistency

	Exercises

