Exercises for Mathematical Logic (19 Oct 2022)

7. Prove the propositional soundness theorem: for all $\Gamma \subseteq \operatorname{Prop}(A)$ and $\varphi \in \operatorname{Prop}(A)$, if $\Gamma \vdash \varphi$, then $\Gamma \vDash \varphi$.

8. Let $\Gamma, \Delta \subseteq \operatorname{Prop}(A)$ and $\varphi, \psi \in \operatorname{Prop}(A)$. Show that if $\Gamma \vdash \varphi$ and $\Delta, \varphi \vdash \psi$, then $\Gamma, \Delta \vdash \psi$.

9. For every $\varphi \in \operatorname{Prop}(A)$, we define its *De Morgan dual* $\varphi^{d} \in \operatorname{Prop}(A)$ by induction on the complexity of φ :

$$\begin{split} a^{\mathrm{d}} &= a, \quad a \in A, \qquad \qquad (\neg \varphi)^{\mathrm{d}} = \neg (\varphi^{\mathrm{d}}), \\ \top^{\mathrm{d}} &= \bot, \qquad \qquad \bot^{\mathrm{d}} = \top, \\ (\varphi \wedge \psi)^{\mathrm{d}} &= (\varphi^{\mathrm{d}} \vee \psi^{\mathrm{d}}), \qquad \qquad (\varphi \vee \psi)^{\mathrm{d}} = (\varphi^{\mathrm{d}} \wedge \psi^{\mathrm{d}}). \end{split}$$

Show that for all assignments $v: A \to \{0, 1\}$, $v(\varphi^d) = v_\neg(\neg \varphi)$, where $v_\neg: A \to \{0, 1\}$ is the assignment defined by $v_\neg(a) = 1 - v(a)$ for each $a \in A$.

10. Let $\varphi, \psi \in \operatorname{Prop}(A)$.

- (i) $\varphi \equiv \psi$ if and only if $\varphi^{d} \equiv \psi^{d}$.
- (ii) $\varphi \vDash \psi$ if and only if $\psi^{d} \vDash \varphi^{d}$.