Exercises for Mathematical Logic (21 Dec 2022)

In the next three exercises, you will develop an alternative sequence encoding scheme due to Edward Nelson.
23. The set $\left\{x: \exists n \in \mathbb{N} x=2^{n}\right\}$ of powers of 2 is definable by a Δ_{0} formula, not using the 2^{n} function. [Hint: Consider the divisors of x.]
24. Consider an encoding of finite sets $X \subseteq \mathbb{N}$ by pairs $\langle r, w\rangle$ where the binary expansion of r acts as a "ruler" with marks at positions of 1 s , and the binary expansion of w is a concatenation of binary expansions of elements of X such that each element occupies the position between two ruler marks. Show that the predicate " x is in the set encoded by $\langle r, w\rangle$ " is Δ_{0}-definable.
25. Construct a Δ_{0} encoding of finite sequences based on the previous exercise.

A function $f: \mathbb{N} \rightharpoonup \mathbb{N}$ is represented by a formula $\varphi(x, y)$ in a theory T if $T \vdash \forall y(\varphi(\bar{n}, y) \leftrightarrow y=\bar{m})$ for all $n, m \in \mathbb{N}$ such that $f(n)=m$.
26. All partial computable functions are representable in Q. [Hint: Using Σ_{1}-definability of the graph of f, adapt the witness comparison argument from the proof of representability of decidable sets.]

