Exercises for Mathematical Logic (Fall 2022/23)

We have seen in the lecture that the De Morgan language $\{\land, \lor, \neg, \top, \bot\}$ is functionally complete (on $\{0, 1\}$), and specifically, that every Boolean function can be represented by a CNF or DNF of size $O(2^n n)$.

- **1.** Prove that $\{\lor, \neg\}$, $\{\to, \bot\}$, and $\{\uparrow\}$ are functionally complete, where $x \uparrow y$ denotes the Sheffer stroke $\neg(x \land y)$.
- **2.** Prove that $\{\rightarrow\}$, $\{\land,\lor,\top,\bot\}$, and $\{\leftrightarrow,\top,\bot\}$ are not functionally complete. [Hint: Find a nontrivial property of Boolean functions which is preserved by composition, and holds for functions in the given basis.]
 - **3.** For any Boolean function $f: \{0,1\}^n \to \{0,1\}$, the following are equivalent:
 - (i) $\{f\}$ is functionally complete.
 - (ii) $f(0,\ldots,0)=1, f(1,\ldots,1)=0$, and there exists an assignment $\langle e_0,\ldots,e_{n-1}\rangle\in\{0,1\}^n$ such that $f(e_0,\ldots,e_{n-1})=f(\neg e_0,\ldots,\neg e_{n-1}).$

[Hint: For (ii) \rightarrow (i), look at functions obtained from f by identifying some of the variables.]

- **4.** For any $n \in \mathbb{N}$, the parity function $\bigoplus_{i < n} x_i$: $\{0,1\}^n \to \{0,1\}$ is defined as $\sum_{i < n} x_i \mod 2$. Show that any DNF or CNF representing $\bigoplus_{i < n} x_i$ has size $\Omega(2^n n)$. [Hint: What terms of the form $\bigwedge_{i \in I} x_i^{e_i}$ can imply one of $\bigoplus_{i < n} x_i = 0$ or $\bigoplus_{i < n} x_i = 1$? Here, $I \subseteq [n]$, $e_i \in \{0,1\}$, $x^1 = x$, $x^0 = \neg x$.]
- **5.** There are formulas representing $\bigoplus_{i < n} x_i$ of size $O(n^c)$ for some constant c. [Hint: Consider a balanced tree of binary parities. You may get it down to c = 2.]
 - **6.** Any DNF equivalent to the CNF $\bigwedge_{i < n} (x_i \vee y_i)$ has size $\Omega(2^n n)$.
- 7. Prove the propositional soundness theorem: for all $\Gamma \subseteq \operatorname{Prop}(A)$ and $\varphi \in \operatorname{Prop}(A)$, if $\Gamma \vdash \varphi$, then $\Gamma \vDash \varphi$.
 - **8.** Let $\Gamma, \Delta \subseteq \operatorname{Prop}(A)$ and $\varphi, \psi \in \operatorname{Prop}(A)$. Show that if $\Gamma \vdash \varphi$ and $\Delta, \varphi \vdash \psi$, then $\Gamma, \Delta \vdash \psi$.
- **9.** For every $\varphi \in \text{Prop}(A)$, we define its *De Morgan dual* $\varphi^{d} \in \text{Prop}(A)$ by induction on the complexity of φ :

$$\begin{split} a^{\mathrm{d}} &= a, \quad a \in A, & (\neg \varphi)^{\mathrm{d}} &= \neg (\varphi^{\mathrm{d}}), \\ \top^{\mathrm{d}} &= \bot, & \bot^{\mathrm{d}} &= \top, \\ (\varphi \wedge \psi)^{\mathrm{d}} &= (\varphi^{\mathrm{d}} \vee \psi^{\mathrm{d}}), & (\varphi \vee \psi)^{\mathrm{d}} &= (\varphi^{\mathrm{d}} \wedge \psi^{\mathrm{d}}). \end{split}$$

Show that for all assignments $v: A \to \{0,1\}$, $v(\varphi^{\mathrm{d}}) = v_{\neg}(\neg \varphi)$, where $v_{\neg}: A \to \{0,1\}$ is the assignment defined by $v_{\neg}(a) = 1 - v(a)$ for each $a \in A$.

- 10. Let $\varphi, \psi \in \text{Prop}(A)$.
- (i) $\varphi \equiv \psi$ if and only if $\varphi^{d} \equiv \psi^{d}$.
- (ii) $\varphi \vDash \psi$ if and only if $\psi^{d} \vDash \varphi^{d}$.
- 11. (If you are familiar with topology.) Give a direct proof of the propositional compactness theorem, not using the completeness theorem.

[Hint: Consider the product topology on the set $\{0,1\}^A$ of all assignments.]

- 12. Prove that if a term $t(x_0, \ldots, x_{n-1})$ is free for y in a formula $\varphi(x_0, \ldots, x_{n-1}, y)$, then for all terms s_0, \ldots, s_{n-1} , the formula $(\varphi(t/y))(s_0/x_0, \ldots, s_{n-1}/x_{n-1})$ is syntactically identical to the formula $\varphi(s_0/x_0, \ldots, s_{n-1}/x_{n-1}, t(s_0/x_0, \ldots, s_{n-1}/x_{n-1})/y)$.
- 13. A set of propositional or first-order sentences S is *independent* if S is not equivalent to S' for any proper subset $S' \subseteq S$.
 - (i) S is independent iff $S \setminus \{\varphi\} \nvDash \varphi$ for all $\varphi \in S$.
 - (ii) Show that every countable theory T has an independent axiomatization, i.e., an independent set of sentences S equivalent to T. [Hint: Try to generalize the fact that $\{\varphi, \psi\} \equiv \{\varphi, \psi \lor \neg \varphi\}$.]

(Uncountable theories have independent axiomatizations as well by a theorem of I. Reznikoff, but this is more difficult to prove.)

- 14. Consider a modification of the first-order proof system given in the lecture such that the axioms of equality are replaced with the axiom x = x and the axiom schema $t = s \land \varphi(t/s) \rightarrow \varphi(s/x)$ for all formulas φ and terms t, s free for x in φ . Show that this is equivalent to the original proof system.
- **15.** For any formula $\varphi(x)$ and variable y free for x in φ , show that the formula $\exists y (\exists x \varphi(x) \to \varphi(y))$ is provable.
- **16.** Using Vaught's test, show the completeness of the theory of a successor: it has a language with one unary function symbol s, and axioms $s(x) = s(y) \to x = y$, $\forall x \exists y \, s(y) = x$, and $s^n(x) \neq x$ for each $n \in \mathbb{N}_{>0}$, where s^n denotes the n-fold iteration of s (i.e., $s^0(x)$ is x, and s^{n+1} is $s(s^n(x))$).
- **17.** For each $n \in \mathbb{N}$, let P_n denote the path graph of length n, i.e., the structure $\langle [n], E_n \rangle$, where $[n] = \{0, \ldots, n-1\}$ and $E_n = \{\langle i, j \rangle \in [n]^2 : |i-j|=1\}$. Show that there is no sentence φ such that for all $n \in \mathbb{N}$, $P_n \models \varphi$ iff n is odd. [Hint: Adapt the previous exercise.]
- 18. Fix a field F. The theory of vector spaces over F has a language consisting of the language $\{+,-,0\}$ of abelian groups and unary functions $a \cdot x$ for each $a \in F$; it has the usual algebraic axioms (axioms of abelian groups, $ab \cdot x = a \cdot (b \cdot x)$, $1 \cdot x = x$, $(a+b) \cdot x = a \cdot x + b \cdot x$, $a \cdot (x+y) = a \cdot x + a \cdot y$). Show that the theory of infinite vector spaces over F (i.e., with additional axioms $\exists x_0 \ldots \exists x_n \bigwedge_{i < j} x_i \neq x_j$ for $n \in \mathbb{N}$) is complete and κ -categorical for all infinite $\kappa > |F|$. [Hint: Every vector space has a basis.]
- **19.** Prove $Q \vdash \forall x (x \leq \overline{n} \lor \overline{n} \leq x)$ for each $n \in \mathbb{N}$.
- **20.** Q proves $x \cdot y = 0 \to x = 0 \lor y = 0$, and more generally, $x \cdot y = \overline{n} \to x = 0 \lor y \le \overline{n}$ for each $n \in \mathbb{N}$.
- **21.** The standard model \mathbb{N} extends to an L_{PA} -structure \mathbb{N}^{∞} with domain $\mathbb{N} \cup \{\infty\}$, $\infty \notin \mathbb{N}$, so that $\mathbb{N}^{\infty} \models \mathsf{Q}$. Moreover, we are free to choose $(0 \cdot \infty)^{\mathbb{N}^{\infty}}$ in an arbitrary way (while the rest of the model is uniquely determined by the axioms of Q). Conclude that Q does not prove any of the formulas $S(x) \nleq x$, $x \cdot y = y \cdot x$, or $0 \cdot x \neq 1$.
- **22.** Q does not prove x + y = y + x or 0 + (x + y) = (0 + x) + y. [Hint: Modify the previous exercise to a model with two "infinities".]

In the next three exercises, you will develop an alternative sequence encoding scheme due to Edward Nelson.

- **23.** The set $\{x : \exists n \in \mathbb{N} \ x = 2^n\}$ of powers of 2 is definable by a Δ_0 formula, not using the 2^n function. [Hint: Consider the divisors of x.]
- **24.** Consider an encoding of finite sets $X \subseteq \mathbb{N}$ by pairs $\langle r, w \rangle$ where the binary expansion of r acts as a "ruler" with marks at positions of 1s, and the binary expansion of w is a concatenation of binary expansions of elements of X such that each element occupies the position between two ruler marks. Show that the predicate "x is in the set encoded by $\langle r, w \rangle$ " is Δ_0 -definable.

- **25.** Construct a Δ_0 encoding of finite sequences based on the previous exercise.
- A function $f: \mathbb{N} \to \mathbb{N}$ is represented by a formula $\varphi(x, y)$ in a theory T if $T \vdash \forall y \, (\varphi(\overline{n}, y) \leftrightarrow y = \overline{m})$ for all $n, m \in \mathbb{N}$ such that f(n) = m.
- **26.** All partial computable functions are representable in Q. [Hint: Using Σ_1 -definability of the graph of f, adapt the witness comparison argument from the proof of representability of decidable sets.]
- **27.** All Σ_1 -definable sets are semidecidable.
- **28.** (Craig's trick.) Every semidecidable theory is recursively axiomatizable. [Hint: Express Thm(T) as $\exists y \ P(x,y)$ with P decidable. Given $x = \lceil \varphi \rceil$ and y, devise a sentence equivalent to φ that encodes y.]
- **29.** Show that every decidable consistent theory T has a decidable completion. [Hint: Consider a completion procedure that enumerates sentences φ one by one, and extends the current list of axioms with φ or $\neg \varphi$, whichever maintains consistency with T.]
- **30.** Prove Gödel's diagonal lemma: for every formula $\varphi(x)$, there exists a sentence α such that $Q \vdash \alpha \leftrightarrow \varphi(\overline{\ulcorner \alpha \urcorner})$. [Hint: Using representability of a suitable computable function (see Exer. 26), construct a formula $\psi(x)$ such that $Q \vdash \psi(\overline{\ulcorner \chi \urcorner}) \leftrightarrow \varphi(\overline{\ulcorner \chi(\overline{\ulcorner \chi \urcorner}) \urcorner})$ for all $\chi(x)$.]