Exercises for Mathematical Logic (10 Oct 2023)

- 7. Prove the propositional soundness theorem: for all $\Gamma \subseteq \operatorname{Prop}(A)$ and $\varphi \in \operatorname{Prop}(A)$, if $\Gamma \vdash \varphi$, then $\Gamma \vDash \varphi$.
 - **8.** Let $\Gamma, \Delta \subseteq \operatorname{Prop}(A)$ and $\varphi, \psi \in \operatorname{Prop}(A)$. Show that if $\Gamma \vdash \varphi$ and $\Delta, \varphi \vdash \psi$, then $\Gamma, \Delta \vdash \psi$.
- **9.** For every $\varphi \in \text{Prop}(A)$, we define its $De\ Morgan\ dual\ \varphi^{d} \in \text{Prop}(A)$ by induction on the complexity of φ :

$$\begin{split} a^{\mathrm{d}} &= a, \quad a \in A, \\ \top^{\mathrm{d}} &= \bot, \\ (\varphi \wedge \psi)^{\mathrm{d}} &= (\varphi^{\mathrm{d}} \vee \psi^{\mathrm{d}}), \end{split} \qquad \begin{split} (\neg \varphi)^{\mathrm{d}} &= \neg (\varphi^{\mathrm{d}}), \\ \bot^{\mathrm{d}} &= \top, \\ (\varphi \wedge \psi)^{\mathrm{d}} &= (\varphi^{\mathrm{d}} \wedge \psi^{\mathrm{d}}). \end{split}$$

Show that for all assignments $v: A \to \{0,1\}$, $v(\varphi^{\mathrm{d}}) = v_{\neg}(\neg \varphi)$, where $v_{\neg}: A \to \{0,1\}$ is the assignment defined by $v_{\neg}(a) = 1 - v(a)$ for each $a \in A$.

- **10.** Let $\varphi, \psi \in \text{Prop}(A)$.
- (i) $\varphi \equiv \psi$ if and only if $\varphi^{d} \equiv \psi^{d}$.
- (ii) $\varphi \vDash \psi$ if and only if $\psi^{d} \vDash \varphi^{d}$.