Exercises for Mathematical Logic (17 Oct 2023)

11. (If you are familiar with topology.) Give a direct proof of the propositional compactness theorem, not using the completeness theorem.

[Hint: Consider the product topology on the set $\{0,1\}^A$ of all assignments.]

In the lecture, we have proved completeness of a proof system using connectives $\{\rightarrow, \perp\}$. A complete system using the De Morgan language $\{\land, \lor, \neg, \bot, \top\}$ is given in the van den Dries lecture notes, but the next exercise shows how to construct one mechanically.

12. For any $\{\rightarrow, \bot\}$ -formula φ , let φ^* denote the De Morgan formula such that $p^* = p$ for atoms p, $\bot^* = \bot$, and $(\varphi \rightarrow \psi)^* = (\neg \varphi^* \lor \psi^*)$. Similarly, given a De Morgan formula ψ , let $\psi^{\#}$ be its translation to a $\{\rightarrow, \bot\}$ -formula using fixed $\{\rightarrow, \bot\}$ -translations of all De Morgan connectives. Let \vdash_0 denote a sound and complete Hilbert-style proof system for $\{\rightarrow, \bot\}$ -formulas such as the one given in the lecture, and let \vdash_1 be the Hilbert-style proof system in the De Morgan language that has inference rule schemata $\varphi_1^*, \ldots, \varphi_k^* / \varphi_0^*$ for each rule schema $\varphi_1, \ldots, \varphi_k / \varphi_0$ of \vdash_0 (where axioms are treated as rules with k = 0), and axiom schemata $\neg c(\varphi_0, \ldots, \varphi_{k-1}) \lor c^{\#*}(\varphi_0, \ldots, \varphi_{k-1}), \neg c^{\#*}(\varphi_0, \ldots, \varphi_{k-1}) \lor c(\varphi_0, \ldots, \varphi_{k-1})$ for each k-ary De Morgan connective c. Then \vdash_1 is a sound and complete proof system in the De Morgan language. [Hint: You will need to show $\vdash_1 \neg \psi \lor \psi^{\#*}, \vdash_1 \neg \psi^{\#*} \lor \psi$ for all De Morgan formulas ψ .]

13. A set of propositional or first-order sentences S is *independent* if S is not equivalent to S' for any proper subset $S' \subsetneq S$.

- (i) S is independent iff $S \setminus \{\varphi\} \nvDash \varphi$ for all $\varphi \in S$.
- (ii) Show that every countable theory T has an independent axiomatization, i.e., an independent set of sentences S equivalent to T. [Hint: Try to generalize the fact that $\{\varphi, \psi\} \equiv \{\varphi, \psi \lor \neg \varphi\}$.]

(Uncountable theories have independent axiomatizations as well by a theorem of I. Reznikoff, but this is more difficult to prove.)