Exercises for Mathematical Logic (19 Dec 2023)

22. Let L be a finite first-order language. Show that the following sets and functions are computable:

- (i) The set of *L*-terms.
- (ii) The set of *L*-formulas.
- (iii) The set of pairs (φ, x) where x is a free variable of an L-formula φ .
- (iv) The substitution function: given an L-formula φ , a variable x, and an L-term t, compute $\varphi(t/x)$.
- (v) The set of triples (Γ, φ, π) where π is a proof of an *L*-formula φ from a finite set of *L*-formulas Γ .
- **23.** Prove $\mathbf{Q} \vdash \forall x \ (x \leq \overline{n} \lor \overline{n} \leq x)$ for each $n \in \mathbb{N}$.

24. Q proves $x \cdot y = 0 \rightarrow x = 0 \lor y = 0$, and more generally, $x \cdot y = \overline{n} \rightarrow x = 0 \lor y \le \overline{n}$ for each $n \in \mathbb{N}$.

25. The standard model \mathbb{N} extends to an L_{PA} -structure \mathbb{N}^{∞} with domain $\mathbb{N} \cup \{\infty\}$, $\infty \notin \mathbb{N}$, so that $\mathbb{N}^{\infty} \models \mathbb{Q}$. Moreover, we are free to choose $(0 \cdot \infty)^{\mathbb{N}^{\infty}}$ in an arbitrary way (while the rest of the model is uniquely determined by the axioms of \mathbb{Q}). Conclude that \mathbb{Q} does not prove any of the formulas $S(x) \nleq x$, $x \cdot y = y \cdot x$, or $0 \cdot x \neq 1$.

26. Q does not prove x + y = y + x or 0 + (x + y) = (0 + x) + y. [Hint: Modify the previous exercise to a model with two "infinities".]