Exercises for Mathematical Logic (19 Dec 2023)

22. Let L be a finite first-order language. Show that the following sets and functions are computable:
(i) The set of L-terms.
(ii) The set of L-formulas.
(iii) The set of pairs (φ, x) where x is a free variable of an L-formula φ.
(iv) The substitution function: given an L-formula φ, a variable x, and an L-term t, compute $\varphi(t / x)$.
(v) The set of triples (Γ, φ, π) where π is a proof of an L-formula φ from a finite set of L-formulas Γ.
23. Prove $\mathrm{Q} \vdash \forall x(x \leq \bar{n} \vee \bar{n} \leq x)$ for each $n \in \mathbb{N}$.
24. Q proves $x \cdot y=0 \rightarrow x=0 \vee y=0$, and more generally, $x \cdot y=\bar{n} \rightarrow x=0 \vee y \leq \bar{n}$ for each $n \in \mathbb{N}$.
25. The standard model \mathbb{N} extends to an $L_{\text {PA }}$-structure \mathbb{N}^{∞} with domain $\mathbb{N} \cup\{\infty\}, \infty \notin \mathbb{N}$, so that $\mathbb{N}^{\infty} \vDash \mathrm{Q}$. Moreover, we are free to choose $(0 \cdot \infty)^{\mathbb{N}^{\infty}}$ in an arbitrary way (while the rest of the model is uniquely determined by the axioms of Q). Conclude that Q does not prove any of the formulas $S(x) \not \leq x$, $x \cdot y=y \cdot x$, or $0 \cdot x \neq 1$.
26. Q does not prove $x+y=y+x$ or $0+(x+y)=(0+x)+y$.
[Hint: Modify the previous exercise to a model with two "infinities".]
