Exercises for Mathematical Logic (Fall 2023/24)

We have seen in the lecture that the De Morgan language $\{\wedge, \vee, \neg, \top, \perp\}$ is functionally complete, and specifically, that every Boolean function can be represented by a CNF or DNF of size $O\left(2^{n} n\right)$.

1. Prove that $\{\vee, \neg\},\{\rightarrow, \perp\}$, and $\{\uparrow\}$ are functionally complete, where $x \uparrow y$ denotes the Sheffer stroke $\neg(x \wedge y)$.
2. Prove that $\{\rightarrow\},\{\wedge, \vee, \top, \perp\}$, and $\{\leftrightarrow, \top, \perp\}$ are not functionally complete.
[Hint: Find a nontrivial property of Boolean functions which is preserved by composition, and holds for functions in the given basis.]
3. For any Boolean function $f:\{0,1\}^{n} \rightarrow\{0,1\}$, the following are equivalent:
(i) $\{f\}$ is functionally complete.
(ii) $f(0, \ldots, 0)=1, f(1, \ldots, 1)=0$, and there exists an assignment $\left\langle e_{0}, \ldots, e_{n-1}\right\rangle \in\{0,1\}^{n}$ such that $f\left(e_{0}, \ldots, e_{n-1}\right)=f\left(\neg e_{0}, \ldots, \neg e_{n-1}\right)$.
[Hint: For (ii) \rightarrow (i), look at functions obtained from f by identifying some of the variables.]
4. For any $n \in \mathbb{N}$, the parity function $\bigoplus_{i<n} x_{i}:\{0,1\}^{n} \rightarrow\{0,1\}$ is defined as $\sum_{i<n} x_{i}$ mod 2. Show that any DNF or CNF representing $\bigoplus_{i<n} x_{i}$ has size $\Omega\left(2^{n} n\right)$. [Hint: What terms of the form $\bigwedge_{i \in I} x_{i}^{e_{i}}$ can imply one of $\bigoplus_{i<n} x_{i}=0$ or $\bigoplus_{i<n} x_{i}=1$? Here, $I \subseteq[n], e_{i} \in\{0,1\}, x^{1}=x, x^{0}=\neg x$.]
5. There are formulas representing $\bigoplus_{i<n} x_{i}$ of size $O\left(n^{c}\right)$ for some constant c.
[Hint: Consider a balanced tree of binary parities. You may get it down to $c=2$.]
6. Any DNF equivalent to the CNF $\bigwedge_{i<n}\left(x_{i} \vee y_{i}\right)$ has size $\Omega\left(2^{n} n\right)$.
7. Prove the propositional soundness theorem: for all $\Gamma \subseteq \operatorname{Prop}(A)$ and $\varphi \in \operatorname{Prop}(A)$, if $\Gamma \vdash \varphi$, then $\Gamma \vDash \varphi$.
8. Let $\Gamma, \Delta \subseteq \operatorname{Prop}(A)$ and $\varphi, \psi \in \operatorname{Prop}(A)$. Show that if $\Gamma \vdash \varphi$ and $\Delta, \varphi \vdash \psi$, then $\Gamma, \Delta \vdash \psi$.
9. For every $\varphi \in \operatorname{Prop}(A)$, we define its $D e$ Morgan dual $\varphi^{\mathrm{d}} \in \operatorname{Prop}(A)$ by induction on the complexity of φ :

$$
\begin{aligned}
a^{\mathrm{d}} & =a, \quad a \in A, & (\neg \varphi)^{\mathrm{d}} & =\neg\left(\varphi^{\mathrm{d}}\right), \\
\top^{\mathrm{d}} & =\perp, & \perp^{\mathrm{d}} & =\top, \\
(\varphi \wedge \psi)^{\mathrm{d}} & =\left(\varphi^{\mathrm{d}} \vee \psi^{\mathrm{d}}\right), & (\varphi \vee \psi)^{\mathrm{d}} & =\left(\varphi^{\mathrm{d}} \wedge \psi^{\mathrm{d}}\right) .
\end{aligned}
$$

Show that for all assignments $v: A \rightarrow\{0,1\}, v\left(\varphi^{\mathrm{d}}\right)=v_{\neg}(\neg \varphi)$, where $v_{\neg}: A \rightarrow\{0,1\}$ is the assignment defined by $v_{\neg}(a)=1-v(a)$ for each $a \in A$.
10. Let $\varphi, \psi \in \operatorname{Prop}(A)$.
(i) $\varphi \equiv \psi$ if and only if $\varphi^{\mathrm{d}} \equiv \psi^{\mathrm{d}}$.
(ii) $\varphi \vDash \psi$ if and only if $\psi^{\mathrm{d}} \vDash \varphi^{\mathrm{d}}$.
11. (If you are familiar with topology.) Give a direct proof of the propositional compactness theorem, not using the completeness theorem.
[Hint: Consider the product topology on the set $\{0,1\}^{A}$ of all assignments.]
In the lecture, we have proved completeness of a proof system using connectives $\{\rightarrow, \perp\}$. A complete system using the De Morgan language $\{\wedge, \vee, \neg, \perp, \top\}$ is given in the van den Dries lecture notes, but the next exercise shows how to construct one mechanically.
12. For any $\{\rightarrow, \perp\}$-formula φ, let φ^{*} denote the De Morgan formula such that $p^{*}=p$ for atoms p, $\perp^{*}=\perp$, and $(\varphi \rightarrow \psi)^{*}=\left(\neg \varphi^{*} \vee \psi^{*}\right)$. Similarly, given a De Morgan formula ψ, let $\psi^{\#}$ be its translation to a $\{\rightarrow, \perp\}$-formula using fixed $\{\rightarrow, \perp\}$-translations of all De Morgan connectives. Let \vdash_{0} denote a sound and complete Hilbert-style proof system for $\{\rightarrow, \perp\}$-formulas such as the one given in the lecture, and let \vdash_{1} be the Hilbert-style proof system in the De Morgan language that has inference rule schemata $\varphi_{1}^{*}, \ldots, \varphi_{k}^{*} / \varphi_{0}^{*}$ for each rule schema $\varphi_{1}, \ldots, \varphi_{k} / \varphi_{0}$ of \vdash_{0} (where axioms are treated as rules with $k=0$), and axiom schemata $\neg c\left(\varphi_{0}, \ldots, \varphi_{k-1}\right) \vee c^{\# *}\left(\varphi_{0}, \ldots, \varphi_{k-1}\right), \neg c^{\# *}\left(\varphi_{0}, \ldots, \varphi_{k-1}\right) \vee c\left(\varphi_{0}, \ldots, \varphi_{k-1}\right)$ for each k-ary De Morgan connective c. Then \vdash_{1} is a sound and complete proof system in the De Morgan language. [Hint: You will need to show $\vdash_{1} \neg \psi \vee \psi^{\# *}, \vdash_{1} \neg \psi^{\# *} \vee \psi$ for all De Morgan formulas ψ.]
13. A set of propositional or first-order sentences S is independent if S is not equivalent to S^{\prime} for any proper subset $S^{\prime} \subsetneq S$.
(i) S is independent iff $S \backslash\{\varphi\} \not \models \varphi$ for all $\varphi \in S$.
(ii) Show that every countable theory T has an independent axiomatization, i.e., an independent set of sentences S equivalent to T. [Hint: Try to generalize the fact that $\{\varphi, \psi\} \equiv\{\varphi, \psi \vee \neg \varphi\}$.]
(Uncountable theories have independent axiomatizations as well by a theorem of I. Reznikoff, but this is more difficult to prove.)
14. Prove that if a term $t\left(x_{0}, \ldots, x_{n-1}, y\right)$ is free for y in a formula $\varphi\left(x_{0}, \ldots, x_{n-1}, y\right)$, then for all terms $s_{0}, \ldots, s_{n-1}, r$, the formula $(\varphi(t / y))\left(s_{0} / x_{0}, \ldots, s_{n-1} / x_{n-1}, r / y\right)$ is syntactically identical to the formula $\varphi\left(s_{0} / x_{0}, \ldots, s_{n-1} / x_{n-1}, t\left(s_{0} / x_{0}, \ldots, s_{n-1} / x_{n-1}, r / y\right) / y\right)$.
15. Consider a modification of the first-order proof system given in the lecture such that the axioms of equality are replaced with the axiom $x=x$ and the axiom schema $t=s \wedge \varphi(t / s) \rightarrow \varphi(s / x)$ for all formulas φ and terms t, s free for x in φ. Show that this is equivalent to the original proof system.
16. For any formula $\varphi(x)$ and variable y free for x in φ, show that the formula $\exists y(\exists x \varphi(x) \rightarrow \varphi(y))$ is provable.
17. Let \mathcal{A} be an L-structure, t a closed L-term such that $t^{\mathcal{A}}=a \in A$, and $\varphi(x)$ an L-formula. Show that $\mathcal{A} \vDash \phi(t)$ iff $\mathcal{A} \vDash \phi(\underline{a})$.
18. Using Vaught's test, show the completeness of the theory of a successor: it has a language with one unary function symbol s, and axioms $s(x)=s(y) \rightarrow x=y, \forall x \exists y s(y)=x$, and $s^{n}(x) \neq x$ for each $n \in \mathbb{N}_{>0}$, where s^{n} denotes the n-fold iteration of s (i.e., $s^{0}(x)$ is x, and s^{n+1} is $s\left(s^{n}(x)\right)$).
19. For each $n \in \mathbb{N}$, let P_{n} denote the path graph of length n, i.e., the structure $\left\langle[n], E_{n}\right\rangle$, where $[n]=\{0, \ldots, n-1\}$ and $E_{n}=\left\{\langle i, j\rangle \in[n]^{2}:|i-j|=1\right\}$. Show that there is no sentence φ such that for all $n \in \mathbb{N}, P_{n} \vDash \varphi$ iff n is odd. [Hint: Adapt the previous exercise.]
20. Fix a field F. The theory of vector spaces over F has a language consisting of the language $\{+,-, 0\}$ of abelian groups and unary functions $a \cdot x$ for each $a \in F$; it has the usual algebraic axioms (axioms of abelian groups, $a b \cdot x=a \cdot(b \cdot x), 1 \cdot x=x,(a+b) \cdot x=a \cdot x+b \cdot x, a \cdot(x+y)=a \cdot x+a \cdot y$). Show that the theory of infinite vector spaces over F (i.e., with additional axioms $\exists x_{0} \ldots \exists x_{n} \bigwedge_{i<j} x_{i} \neq x_{j}$ for $n \in \mathbb{N}$) is complete and κ-categorical for all infinite $\kappa>|F|$. [Hint: Every vector space has a basis.]
21. An atom in a Boolean algebra $\mathbf{A}=\langle A, 0,1, \wedge, \vee,-, \leq\rangle$ is an element $a \in A$ such that $a>0$, but $0<x<a$ for no $x \in A ; \mathbf{A}$ is atomless if $0 \neq 1$ and \mathbf{A} has no atoms. Show that the theory of atomless Boolean algebras is \aleph_{0}-categorical, hence complete.
[Hint: Construct an isomorphism between two countable atomless Boolean algebras A and B by a back-and-forth argument, as a union of a sequence of isomorphisms between finite subalgebras. It might help to observe that if \mathbf{A}_{0} is a finite subalgebra of \mathbf{A}, and \mathbf{A}_{1} is the algebra generated by $A_{0} \cup\{b\}$ for some $b \in A$, then each atom of \mathbf{A}_{0} either remains an atom in \mathbf{A}_{1}, or splits into two atoms.]
22. Let L be a finite first-order language. Show that the following sets and functions are computable:
(i) The set of L-terms.
(ii) The set of L-formulas.
(iii) The set of pairs (φ, x) where x is a free variable of an L-formula φ.
(iv) The substitution function: given an L-formula φ, a variable x, and an L-term t, compute $\varphi(t / x)$.
(v) The set of triples (Γ, φ, π) where π is a proof of an L-formula φ from a finite set of L-formulas Γ.
23. Prove $\mathrm{Q} \vdash \forall x(x \leq \bar{n} \vee \bar{n} \leq x)$ for each $n \in \mathbb{N}$.
24. Q proves $x \cdot y=0 \rightarrow x=0 \vee y=0$, and more generally, $x \cdot y=\bar{n} \rightarrow x=0 \vee y \leq \bar{n}$ for each $n \in \mathbb{N}$.
25. The standard model \mathbb{N} extends to an $L_{\text {PA }}$-structure \mathbb{N}^{∞} with domain $\mathbb{N} \cup\{\infty\}, \infty \notin \mathbb{N}$, so that $\mathbb{N}^{\infty} \vDash$ Q. Moreover, we are free to choose $(0 \cdot \infty)^{\mathbb{N}^{\infty}}$ in an arbitrary way (while the rest of the model is uniquely determined by the axioms of Q). Conclude that Q does not prove any of the formulas $S(x) \not \leq x$, $x \cdot y=y \cdot x$, or $0 \cdot x \neq 1$.
26. Q does not prove $x+y=y+x$ or $0+(x+y)=(0+x)+y$.
[Hint: Modify the previous exercise to a model with two "infinities".]
27. All Σ_{1}-definable sets are semidecidable.
28. (Craig's trick.) Every semidecidable theory is recursively axiomatizable. [Hint: Express Thm (T) as $\exists y P(x, y)$ with P decidable. Given $x=\ulcorner\varphi\urcorner$ and y, devise a sentence equivalent to φ that encodes y.]
29. Show that every decidable consistent theory T has a decidable completion. [Hint: Consider a completion procedure that enumerates sentences φ one by one, and extends the current list of axioms with φ or $\neg \varphi$, whichever maintains consistency with T.]

In the next three exercises, you will develop an alternative sequence encoding scheme due to Edward Nelson.
30. The set $\left\{x: \exists n \in \mathbb{N} x=2^{n}\right\}$ of powers of 2 is definable by a Δ_{0} formula, not using the 2^{n} function. [Hint: Consider the divisors of x.]
31. Consider an encoding of finite sets $X \subseteq \mathbb{N}$ by pairs $\langle r, w\rangle$ where the binary expansion of r acts as a "ruler" with marks at positions of 1 s , and the binary expansion of w is a concatenation of binary expansions of elements of X such that each element occupies the position between two ruler marks. Show that the predicate " x is in the set encoded by $\langle r, w\rangle$ " is Δ_{0}-definable.
32. Construct a Δ_{0} encoding of finite sequences based on the previous exercise.

