Exercises for Mathematical Logic (Fall 2023/24)

We have seen in the lecture that the De Morgan language {A,V,—, T, L} is functionally complete, and
specifically, that every Boolean function can be represented by a CNF or DNF of size O(2"n).

1. Prove that {Vv,—}, {—, L}, and {1} are functionally complete, where = 1y denotes the Sheffer
stroke =(x A y).

2. Prove that {—}, {A,V, T, L}, and {«>, T, L} are not functionally complete.
[Hint: Find a nontrivial property of Boolean functions which is preserved by composition, and holds for
functions in the given basis.]

3. For any Boolean function f: {0,1}™ — {0,1}, the following are equivalent:

(i) {f} is functionally complete.

(ii) f(0,...,0) =1, f(1,...,1) =0, and there exists an assignment (eg,...,e,—1) € {0,1}" such that
f(e()a ey 671—1) = f(_'607 RN} _'en—l)-

[Hint: For (ii) — (i), look at functions obtained from f by identifying some of the variables.]

4. For any n € N, the parity function @, _, x;: {0,1}" — {0,1} is defined as ), _, x; mod 2. Show
that any DNF or CNF representing @, _,, ; has size Q(2"n). [Hint: What terms of the form A;_; z§*
can imply one of @,_,, x; =0 or @,_, x; = 17 Here, I C [n], ¢; € {0,1}, 2! =z, 20 = —z]

5. There are formulas representing €, _,, z; of size O(n°) for some constant c.

[Hint: Consider a balanced tree of binary parities. You may get it down to ¢ = 2.]

6. Any DNF equivalent to the CNF A,_, (z; V ;) has size Q(2"n).

7. Prove the propositional soundness theorem: for all I' C Prop(A) and ¢ € Prop(A4), if I' F ¢, then
T'Eoe.

8. Let I'' A C Prop(A) and ¢, % € Prop(A). Show that if ' - ¢ and A, ¢ 9, then I', A = 4.

9. For every ¢ € Prop(A), we define its De Morgan dual % € Prop(A) by induction on the complexity

of ¢:
al=a, acA, (=) = = (),
Td=1, 19=T,
(e A )t = (% v ), (e V)t = (e Ay

Show that for all assignments v: A — {0,1}, v(¢?) = v_(—¢), where v_: A — {0,1} is the assignment
defined by v-(a) =1 —v(a) for each a € A.

10. Let ¢,v¢ € Prop(A).
(i) ¢ = if and only if ¢ = .

(ii) o E ¢ if and only if 4 F 9.

11. (If you are familiar with topology.) Give a direct proof of the propositional compactness theorem,
not using the completeness theorem.
[Hint: Consider the product topology on the set {0,1}# of all assignments.]

In the lecture, we have proved completeness of a proof system using connectives {—, L}. A complete
system using the De Morgan language {A,V,—, L, T} is given in the van den Dries lecture notes, but the
next exercise shows how to construct one mechanically.



12. For any {—, L}-formula ¢, let ¢* denote the De Morgan formula such that p* = p for atoms p,
1* = 1, and (¢ — ¥)* = (=p* V1p*). Similarly, given a De Morgan formula v, let 1)# be its translation
to a {—, L}-formula using fixed {—, L}-translations of all De Morgan connectives. Let o denote a
sound and complete Hilbert-style proof system for {—, L }-formulas such as the one given in the lecture,
and let -, be the Hilbert-style proof system in the De Morgan language that has inference rule schemata
01,08 | @b for each rule schema ¢1,..., 9 / o of Fo (where axioms are treated as rules with
k = 0), and axiom schemata —c(¢o, - ., Pr—1)V (@0, - -, PE—1), " *(Po, ..., r—1)Ve(@os - - Pr_1)
for each k-ary De Morgan connective ¢. Then t; is a sound and complete proof system in the De Morgan
language. [Hint: You will need to show F; =) V o#* -1 =p#* v/ 9 for all De Morgan formulas )]

13. A set of propositional or first-order sentences S is independent if S is not equivalent to S’ for any
proper subset S’ C S.

(i) S is independent iff S\ {¢} ¥ ¢ for all ¢ € S.

(ii) Show that every countable theory T has an independent axiomatization, i.e., an independent set
of sentences S equivalent to T'. [Hint: Try to generalize the fact that {p, ¥} = {p, ¥ V —p}.]

(Uncountable theories have independent axiomatizations as well by a theorem of I. Reznikoff, but this
is more difficult to prove.)

14. Prove that if a term t(xg,...,zp—1,y) is free for y in a formula ¢(zg,...,zn_1,y), then for all
terms so,...,Sp—1,7, the formula (p(t/y))(so/0,- -, Sn—1/Tn-1,7/y) is syntactically identical to the
formula go(so/:vg, ooy Sp—1/Tn—1,t(s0/xq, ..., sn_l/xn_l,r/y)/y).

15. Consider a modification of the first-order proof system given in the lecture such that the axioms
of equality are replaced with the axiom z = z and the axiom schema ¢ = s A p(t/s) = ¢(s/x) for all
formulas ¢ and terms t, s free for = in ¢. Show that this is equivalent to the original proof system.

16. For any formula ¢(z) and variable y free for x in ¢, show that the formula Jy (3z p(z) — ¢(y)) is
provable.

17. Let A be an L-structure, t a closed L-term such that t4 = a € A, and ©(x) an L-formula. Show
that A E ¢(t) iff AFE ¢(a).

18. Using Vaught’s test, show the completeness of the theory of a successor: it has a language with
one unary function symbol s, and axioms s(z) = s(y) — « =y, Vo Iy s(y) = z, and s"(x) # x for each
n € N5, where s denotes the n-fold iteration of s (i.e., s°(z) is z, and s"*1 is s(s"(2))).

19. For each n € N, let P, denote the path graph of length n, i.e., the structure ([n], E,), where
[n] ={0,...,n—1} and E, = {(i,j) € [n]? : |i — j| = 1}. Show that there is no sentence ¢ such that for
all n € N, P, E ¢ iff n is odd. [Hint: Adapt the previous exercise.]

20. Fix a field F. The theory of vector spaces over F' has a language consisting of the language
{+, —,0} of abelian groups and unary functions a -  for each a € F; it has the usual algebraic axioms
(axioms of abelian groups, ab-z =a-(b-z), 1.z =z, (a+b)-x =a-x+b-z,a-(x+y) = a-xz+a-y). Show
that the theory of infinite vector spaces over F (i.e., with additional axioms 3xq ... 3z, /\i<j T # xj
for n € N) is complete and -categorical for all infinite x > |F|. [Hint: Every vector space has a basis.]

21. An atom in a Boolean algebra A = (A,0,1,A,V,—, <) is an element a € A such that a > 0, but

0<z<afornox e A; Ais atomless if 0 # 1 and A has no atoms. Show that the theory of atomless
Boolean algebras is Ny-categorical, hence complete.
[Hint: Construct an isomorphism between two countable atomless Boolean algebras A and B by a back-
and-forth argument, as a union of a sequence of isomorphisms between finite subalgebras. It might help
to observe that if Ay is a finite subalgebra of A, and A is the algebra generated by Ay U {b} for some
b € A, then each atom of A either remains an atom in Ay, or splits into two atoms.]



22. Let L be a finite first-order language. Show that the following sets and functions are computable:

(i) The set of L-terms.

(ii) The set of L-formulas.

)

)
(iii) The set of pairs (¢, x) where x is a free variable of an L-formula ¢.
(iv) The substitution function: given an L-formula ¢, a variable z, and an L-term ¢, compute ¢(t/x).
)

(v) The set of triples (I', ¢, 7) where 7 is a proof of an L-formula ¢ from a finite set of L-formulas T'.

23. Prove QFVz (z <m V7@ < x) for each n € N.

24. Qprovesz-y=0—2=0Vy =0, and more generally, z-y=7n—x=0Vy <7 for each n € N.

25. The standard model N extends to an Lpa-structure N> with domain N U {oo}, co ¢ N, so that
N> E Q. Moreover, we are free to choose (0-00)Y" in an arbitrary way (while the rest of the model is
uniquely determined by the axioms of Q). Conclude that Q does not prove any of the formulas S(z) £ ,
r-y=y-x,or0-z#1.

26. Qdoesnot provex+y=y+zor0+ (z+y)=(0+2z)+y.

[Hint: Modify the previous exercise to a model with two “infinities”.

27. All ¥;-definable sets are semidecidable.

28. (Craig’s trick.) Every semidecidable theory is recursively axiomatizable. [Hint: Express Thm(7T)
as Jy P(x,y) with P decidable. Given z = "¢ and y, devise a sentence equivalent to ¢ that encodes y.]

29. Show that every decidable consistent theory T has a decidable completion. [Hint: Consider a
completion procedure that enumerates sentences ¢ one by one, and extends the current list of axioms
with ¢ or =g, whichever maintains consistency with 7'

In the next three exercises, you will develop an alternative sequence encoding scheme due to Edward
Nelson.

30. The set {x : In € Nz = 2™} of powers of 2 is definable by a A formula, not using the 2™ function.
[Hint: Consider the divisors of x.]

31. Consider an encoding of finite sets X C N by pairs (r,w) where the binary expansion of r acts
as a “ruler” with marks at positions of 1s, and the binary expansion of w is a concatenation of binary
expansions of elements of X such that each element occupies the position between two ruler marks. Show
that the predicate “z is in the set encoded by (r,w)” is Ag-definable.

32. Construct a Ag encoding of finite sequences based on the previous exercise.



