Exercises for Mathematical Logic (8 Oct 2024)

7. Every Boolean function $f: \{0,1\}^n \to \{0,1\}$ can be represented by a formula of size $O(2^n)$. [Hint: Inductively express a formula in n + 1 variables as a combination of formulas in n variables.]

8. Prove the propositional soundness theorem: for all $\Gamma \subseteq \operatorname{Prop}_A$ and $\varphi \in \operatorname{Prop}_A$, if $\Gamma \vdash \varphi$, then $\Gamma \vDash \varphi$.

9. Let $\Gamma, \Delta \subseteq \operatorname{Prop}_A$ and $\varphi, \psi \in \operatorname{Prop}_A$. Show that if $\Gamma \vdash \varphi$ and $\Delta, \varphi \vdash \psi$, then $\Gamma, \Delta \vdash \psi$.

10. For every $\varphi \in \operatorname{Prop}_A$, its *De Morgan dual* $\varphi^d \in \operatorname{Prop}_A$ is obtained by exchanging \wedge with \vee , and \top with \perp inside φ . Formally, we define φ^d by induction on the complexity of φ :

Show that for all assignments $v: A \to \{0, 1\}$, $v(\varphi^d) = v_\neg(\neg \varphi)$, where $v_\neg: A \to \{0, 1\}$ is the assignment defined by $v_\neg(a) = 1 - v(a)$ for each $a \in A$.

11. Let $\varphi, \psi \in \operatorname{Prop}_A$.

- (i) $\varphi \equiv \psi$ if and only if $\varphi^{d} \equiv \psi^{d}$.
- (ii) $\varphi \vDash \psi$ if and only if $\psi^{d} \vDash \varphi^{d}$.