Exercises for Mathematical Logic (3 Oct 2025)

1. For every $\varphi \in \operatorname{Prop}_A$, its $\operatorname{De\ Morgan\ dual\ } \varphi^{\operatorname{d}} \in \operatorname{Prop}_A$ is obtained by exchanging \wedge with \vee and \vee with \perp inside φ . Formally, we define $\varphi^{\operatorname{d}}$ by induction on the complexity of φ :

$$\begin{split} a^{\mathrm{d}} &= a, \quad a \in A, \\ \top^{\mathrm{d}} &= \bot, \\ (\varphi \wedge \psi)^{\mathrm{d}} &= (\varphi^{\mathrm{d}} \vee \psi^{\mathrm{d}}), \end{split} \qquad \begin{split} (\neg \varphi)^{\mathrm{d}} &= \neg (\varphi^{\mathrm{d}}), \\ \bot^{\mathrm{d}} &= \top, \\ (\varphi \wedge \psi)^{\mathrm{d}} &= (\varphi^{\mathrm{d}} \wedge \psi^{\mathrm{d}}). \end{split}$$

Show that for all assignments $\alpha \colon A \to \{0,1\}$, $\hat{\alpha}(\varphi^{\mathrm{d}}) = \hat{\alpha}_{\neg}(\neg \varphi)$, where $\alpha_{\neg} \colon A \to \{0,1\}$ is the assignment defined by $\alpha_{\neg}(a) = 1 - \alpha(a)$ for each $a \in A$.

- **2.** Let $\varphi, \psi \in \text{Prop}_A$.
- (i) $\varphi \equiv \psi$ if and only if $\varphi^{d} \equiv \psi^{d}$.
- (ii) $\varphi \vDash \psi$ if and only if $\psi^{d} \vDash \varphi^{d}$.