Exercises for Mathematical Logic (10 Oct 2025)

We have seen in the lecture that the De Morgan language $\{\land, \lor, \neg, \top, \bot\}$ is functionally complete, and specifically, that every Boolean function can be represented by a CNF or DNF of size $O(2^n n)$.

- **3.** Prove that $\{\lor, \neg\}$, $\{\to, \bot\}$, and $\{\uparrow\}$ are functionally complete, where $x \uparrow y$ denotes the Sheffer stroke $\neg(x \land y)$.
- **4.** Prove that $\{\rightarrow\}$, $\{\land, \lor, \top, \bot\}$, and $\{\leftrightarrow, \top, \bot\}$ are not functionally complete. [Hint: Find a nontrivial property of Boolean functions which is preserved by composition, and holds for functions in the given basis.]
 - **5.** For any Boolean function $f: \{0,1\}^n \to \{0,1\}$, the following are equivalent:
 - (i) $\{f\}$ is functionally complete.
 - (ii) $f(0,\ldots,0)=1, f(1,\ldots,1)=0$, and there exists an assignment α such that $\hat{\alpha}(f)=\hat{\alpha}_{\neg}(f)$ (where α_{\neg} is defined in Exer. 1).

[Hint: For (ii) \rightarrow (i), look at functions obtained from f by identifying some of the variables.]

- **6.** For any $n \in \mathbb{N}$, the parity function $\bigoplus_{i < n} x_i : \{0, 1\}^n \to \{0, 1\}$ is defined as $(\sum_{i < n} x_i) \mod 2$. Show that any DNF or CNF representing $\bigoplus_{i < n} x_i$ has size $\Omega(2^n n)$. [Hint: What terms of the form $\bigwedge_{i \in I} x_i^{e_i}$ can imply one of $\bigoplus_{i < n} x_i = 0$ or $\bigoplus_{i < n} x_i = 1$? Here, $I \subseteq [n]$, $e_i \in \{0, 1\}$, $x^1 = x$, $x^0 = \neg x$.]
- 7. There are formulas representing $\bigoplus_{i < n} x_i$ of size $O(n^c)$ for some constant c. [Hint: Consider a balanced tree of binary parities. You may get it down to c = 2.]
 - **8.** Any DNF equivalent to the CNF $\bigwedge_{i < n} (x_i \vee y_i)$ has size $\Omega(2^n n)$.
- **9.** Every Boolean function $f: \{0,1\}^n \to \{0,1\}$ can be represented by a formula of size $O(2^n)$. [Hint: Inductively express a formula in n+1 variables as a combination of formulas in n variables.]
- 10. Let $\Gamma, \Delta \subseteq \operatorname{Prop}_A$ and $\varphi, \psi \in \operatorname{Prop}_A$. Show that \vdash satisfies Tarski's conditions for an abstract consequence relation:
 - (i) If $\varphi \in \Gamma$, then $\Gamma \vdash \varphi$.
 - (ii) If $\Gamma \vdash \varphi$ and $\Gamma \subseteq \Delta$, then $\Delta \vdash \varphi$.
- (iii) If $\Gamma \vdash \varphi$ and $\Delta \vdash \psi$ for each $\psi \in \Gamma$, then $\Delta \vdash \varphi$.
- **11.** Prove the propositional soundness theorem: for all $\Gamma \subseteq \operatorname{Prop}_A$ and $\varphi \in \operatorname{Prop}_A$, if $\Gamma \vdash \varphi$, then $\Gamma \vDash \varphi$.