## Exercises for Mathematical Logic (14 Nov 2025)

- **22.** Using Vaught's test, show the completeness of the theory of a successor: it has a language with one unary function symbol S, and axioms  $S(x) = S(y) \to x = y$ ,  $\forall x \exists y S(y) = x$ , and  $S^n(x) \neq x$  for each  $n \in \mathbb{N}_{>0}$ , where  $S^n$  denotes the n-fold iteration of S (i.e.,  $S^0(x)$  is x, and  $S^{n+1}(x)$  is  $S(S^n(x))$ ).
- **23.** For each  $n \in \mathbb{N}$ , let  $\mathcal{P}_n$  denote the path graph of length n, i.e., the structure  $\langle [n], E_n \rangle$ , where  $[n] = \{0, \ldots, n-1\}$  and  $E_n = \{\langle i, j \rangle \in [n]^2 : |i-j|=1\}$ . Show that there is no sentence  $\varphi$  such that for all  $n \in \mathbb{N}$ ,  $\mathcal{P}_n \models \varphi$  iff n is odd. [Hint: Adapt the previous exercise.]
- **24.** Fix a field F. The theory of vector spaces over F has a language consisting of the language  $\{+,-,0\}$  of abelian groups and unary functions  $a \cdot x$  for each  $a \in F$ ; it has the usual algebraic axioms (axioms of abelian groups,  $ab \cdot x = a \cdot (b \cdot x)$ ,  $1 \cdot x = x$ ,  $(a+b) \cdot x = a \cdot x + b \cdot x$ ,  $a \cdot (x+y) = a \cdot x + a \cdot y$ ). Show that the theory of infinite vector spaces over F (i.e., with additional axioms  $\exists x_0 \ldots \exists x_n \bigwedge_{i < j} x_i \neq x_j$  for  $n \in \mathbb{N}$ ) is complete and  $\kappa$ -categorical for all infinite  $\kappa > |F|$ . [Hint: Every vector space has a basis.]
- **25.** An *atom* in a Boolean algebra  $\mathcal{A} = \langle A, 0, 1, \wedge, \vee, -, \leq \rangle$  is an element  $a \in A$  such that a > 0, but 0 < x < a for no  $x \in A$ ;  $\mathcal{A}$  is *atomless* if  $0 \neq 1$  and  $\mathcal{A}$  has no atoms. Show that the theory of atomless Boolean algebras is  $\aleph_0$ -categorical, hence complete.

[Hint: Construct an isomorphism between two countable atomless Boolean algebras  $\mathcal{A}$  and  $\mathcal{B}$  by a backand-forth argument, as a union of a sequence of isomorphisms between finite subalgebras. It might help to observe that if  $\mathcal{A}_0$  is a finite subalgebra of  $\mathcal{A}$ , and  $\mathcal{A}_1$  is the algebra generated by  $A_0 \cup \{b\}$  for some  $b \in A$ , then each atom of  $\mathcal{A}_0$  either remains an atom in  $\mathcal{A}_1$ , or splits into two atoms.]