Exercises for Mathematical Logic (21 Nov 2025)

- **26.** Prove that for every $k \ge 1$, the bijective base-k numeration is a bijection between \mathbb{N} and $\{1, \ldots, k\}^*$.
- **27.** Show that the functions $+: \mathbb{N}^2 \to \mathbb{N}$ and $\cdot: \mathbb{N}^2 \to \mathbb{N}$ are computable when the input and output are represented in unary.
- 28. The same when the input and output are represented in binary.
- **29.** Show that there are computable functions converting natural numbers from one representation to another (unary, ordinary base-k, bijective base-k, considering also different k's).
- **30.** Fix an alphabet Σ .
- (i) The following functions are computable: the constant function ε ; the functions $s_a : \Sigma^* \to \Sigma^*$ for $a \in \Sigma$, defined by $s_a(x) = x \cup a$; the projections $\pi_i^n : (\Sigma^*)^n \to \Sigma^*$, $\pi_i^n(x_0, \dots, x_{n-1}) = x_i$.
- (ii) If $f: (\Sigma^*)^n \to \Sigma^*$ and $g_i: (\Sigma^*)^m \to \Sigma^*$, i < n, are computable functions, their composition $h: (\Sigma^*)^m \to \Sigma^*$, $h(\vec{x}) = f(g_0(\vec{x}), \dots, g_{n-1}(\vec{x}))$, is computable.
- (iii) If $f_{\varepsilon} : (\Sigma^*)^n \to \Sigma^*$ and $f_a : (\Sigma^*)^{n+2} \to \Sigma^*$, $a \in \Sigma$, are computable, the function $h : (\Sigma^*)^{n+1} \to \Sigma^*$ defined from them by the recursion

$$h(\vec{x}, \varepsilon) = f_{\varepsilon}(\vec{x}),$$

$$h(\vec{x}, y \cup a) = f_{a}(\vec{x}, y, h(\vec{x}, y))$$

is computable.

Functions in the smallest class that contains the functions from (i) and that is closed under the operations (ii) and (iii) are called *primitive recursive*. (Usually, the definition of primitive recursive functions is stated for functions $\mathbb{N}^n \to \mathbb{N}$, corresponding to our definition with $|\Sigma| = 1$ and the integers represented in unary. Our more general definition is equivalent up to the bijective base- $|\Sigma|$ numeration.)