Exercises for Mathematical Logic (28 Nov 2025)

- **31.** Assume $|\Sigma| \geq 2$. Prove that the problem $H_{\Sigma} = \{\langle M \rangle x : M \text{ halts on input } x\} \subseteq \Sigma^*$ is many-one equivalent to A_{Σ} .
- **32.** The set of well bracketed strings over the alphabet $\Sigma = \{(i,)_i : i < k\}$ is the smallest set of strings such that the empty string ε is well bracketed, and if x and y are well bracketed and i < k, then xy and $(ix)_i$ are well bracketed. E.g., $(3(1)_1(2(0)_2(1)_1)_3(2)_2$ is well bracketed. Show that the set of well bracketed strings is decidable.
- **33.** Let L be a finite first-order language. Show that the following sets and functions are computable:
- (i) The set of *L*-terms.
- (ii) The set of L-formulas.
- (iii) The set of pairs $\langle \varphi, x \rangle$ where x is a free variable of an L-formula φ .
- (iv) The substitution function: given an L-formula φ , a variable x, and an L-term t, compute $\varphi(t/x)$.
- (v) The set of triples $\langle \Gamma, \varphi, \pi \rangle$ where π is a proof of an L-formula φ from a finite set of L-formulas Γ .
- **34.** A language $X \subseteq \Sigma^*$ is semidecidable iff it can be represented as $\exists w \in \Sigma'^* P(x, w)$ for a finite alphabet Σ' (which we might take to be Σ itself if $|\Sigma| \geq 2$) and a decidable predicate P. [Hint: Consider a description of an accepting run of a Turing machine, or—if you are already familiar with the section on arithmetic—a Σ_1 -formula that defines X in \mathbb{N} .]
- **35.** (Craig's trick.) Every semidecidable theory is recursively axiomatizable. [Hint: Express Thm(T) as $\exists w P(\varphi, w)$ with P decidable. Given φ and w, devise a sentence equivalent to φ that encodes w.]
- **36.** Show that every decidable consistent theory T has a decidable complete extension. [Hint: Consider a completion procedure that enumerates sentences φ one by one, and extends the current list of axioms with φ or $\neg \varphi$, whichever maintains consistency with T.]