

Exercises for Mathematical Logic (9 Jan 2026)

49. Prove Gödel's diagonal lemma: for every formula $\varphi(x)$, there exists a sentence α such that $Q \vdash \alpha \leftrightarrow \varphi(\overline{\Gamma\alpha})$. [Hint: Using representability of a suitable computable function (see Exer. 48), construct a formula $\psi(x)$ such that $Q \vdash \psi(\overline{\Gamma\chi}) \leftrightarrow \varphi(\overline{\Gamma\chi(\overline{\Gamma\chi})})$ for all $\chi(x)$.]

50. (Löb's theorem.) Let T be an extension of Q , and Pr_T a provability predicate for T that satisfies the Hilbert–Bernays–Löb derivability conditions. Then for any sentence φ , if $T \vdash \text{Pr}_T(\overline{\Gamma\varphi}) \rightarrow \varphi$, then $T \vdash \varphi$. [Hint: Generalize the proof of Gödel's second incompleteness theorem. Alternatively, show that $\text{Pr}_T(\Gamma(\neg\varphi \rightarrow \dot{x}))$ is a Hilbert–Bernays–Löb proof predicate for $T + \neg\varphi$, and apply the second incompleteness theorem directly.]

51. (Tarski's theorem on undefinability of truth.) Let T be a consistent recursively axiomatizable extension of Q . Then there is no formula $\text{Tr}(x)$ such that $T \vdash \text{Tr}(\overline{\Gamma\varphi}) \leftrightarrow \varphi$ for all sentences φ . [Hint: Construct a liar sentence.]