Exercises for Mathematical Logic (Fall 2025/26)

1. For every ¢ € Prop,, its De Morgan dual ¢ € Prop 4 is obtained by exchanging A with V and T
with L inside ¢. Formally, we define ¢9 by induction on the complexity of :

a'=a, a€A, (=)t = (),
Td=1, 19=T,
(e A9 = (et V), (Vi) = (p? AYT).

Show that for all assignments a: A — {0, 1}, a(¢?) = a-(—yp), where a—: A — {0,1} is the assignment
defined by a~(a) =1 — a(a) for each a € A.

2. Let ¢,9 € Propy,.
(i) ¢ = if and only if p? = 9.

ii E ¢ if and only if ¥ E 9.
(ii) ¢ y @

We have seen in the lecture that the De Morgan language {A,V,—, T, L} is functionally complete,
and specifically, that every Boolean function can be represented by a CNF or DNF of size O(2"n).

3. Prove that {Vv,—}, {—, L}, and {1} are functionally complete, where = 1y denotes the Sheffer
stroke =(z A y).

4. Prove that {—}, {A,V, T, L}, and {<», T, L} are not functionally complete.
[Hint: Find a nontrivial property of Boolean functions which is preserved by composition, and holds for
functions in the given basis.]

5. For any Boolean function f: {0,1}" — {0, 1}, the following are equivalent:

(i) {f} is functionally complete.

(ii) f(0,...,0) =1, f(1,...,1) = 0, and there exists an assignment « such that &(f) = a~(f) (where
o, is defined in Exer. 1).

[Hint: For (ii) — (i), look at functions obtained from f by identifying some of the variables.]

ien @it {0,1}" — {0,1} is defined as (},_,, z;) mod 2. Show

x; has size Q(2"n). [Hint: What terms of the form A, ; x}*
0

6. For any n € N, the parity function @
that any DNF or CNF representing @, _,,
can imply one of @,_,, x; =0 or @,_, x; = 17 Here, I C [n], ¢; € {0,1}, 2! =z, 20 = —z]

7. There are formulas representing €, _,,
[Hint: Consider a balanced tree of binary parities. You may get it down to ¢ = 2.]

8. Any DNF equivalent to the CNF A.__(x; V y;) has size Q(2"n).

9. Every Boolean function f: {0,1}" — {0,1} can be represented by a formula of size O(2").
[Hint: Inductively express a formula in n + 1 variables as a combination of formulas in n variables.]

x; of size O(n®) for some constant c.

i<n

10. Let I' A C Prop, and ¢,% € Prop,. Show that F satisfies Tarski’s conditions for an abstract
consequence relation:

(i) fp e, thenT F ¢.
(ii) KT F @ and T' C A, then A+ .

(iii) I I'F @ and A F 1) for each ¢ € I', then A F .



11. Prove the propositional soundness theorem: for all I' C Prop, and ¢ € Prop,, if I' - ¢, then
T'E e
In the lecture, we have proved completeness of a proof system using connectives {—, L }. A complete
system using the De Morgan language {A,V, -, L, T} is given in the van den Dries lecture notes, but the
next exercise shows how to construct one mechanically.

12. For any {—, L}-formula ¢, let ¢* denote the De Morgan formula such that p* = p for atoms p,
1* =1, and (¢ = ¥)* = (=p* V¢*). Similarly, given a De Morgan formula 1, let 1)# be its translation
to a {—, L}-formula using fixed {—, L}-translations of all De Morgan connectives. Let ko denote a
sound and complete Hilbert-style proof system for {—, L }-formulas such as the one given in the lecture,
and let 1 be the Hilbert-style proof system in the De Morgan language that has inference rule schemata
0l ...,k | ¢ for each rule schema ¢1,...,¢r / @o of Fo (where axioms are treated as rules with
k = 0), and axiom schemata —c(¢o, - - -, 0r—1) V. * (@0, - - - Pk—1), 27 * (Lo, - -, 1) Ve(@os - - > Pr_1)
for each k-ary De Morgan connective c¢. Then - is a sound and complete proof system in the De Morgan
language. [Hint: You will need to show b =) VV 4%, -1 —¢p#* \/ o) for all De Morgan formulas 1.]

13. Show that I' C Prop, is a maximal consistent set iff I' is a complete theory, i.e., a consistent
deductively closed set such that I' - ¢ or I' - ¢ — L for every ¢ € Propy,.

14. (If you are familiar with topology.) Give a direct proof of the propositional compactness theorem,
not using the completeness theorem.
[Hint: Consider the product topology on the set {0,1} of all assignments.]

15. A set of formulas S is independent if S is not equivalent to S’ for any proper subset S’ C S.

(i) S is independent iff S\ {p} ¥ ¢ for all p € S.

(ii) Show that every countable set of formulas T has an independent axiomatization, i.e., an indepen-
dent set of formulas S equivalent to 7. [Hint: Generalize the fact that {¢, ¥} = {¢, ¥ V —p}]

(This works for first-order theories just the same. Uncountable theories have independent axiomatiza-
tions, too, by a theorem of I. Reznikoff, but this is more difficult to prove.)

16. Devise an inductive definition of the set FV(¢) of free variables of a formula ¢, of substitution
s(to/zoy -« ytn—1/Tn—1) and ©(to/xo, ..., tn—1/Tn_1), and of the notion of ¢ being free for z in .

17. Prove that if a term t(xo,...,2n—1,y) is free for y in a formula p(zg,...,z,—1,y), then for all
terms sq,...,S8,_1,7, the formula (gp(t/y))(so/xo, ooy Sn—1/Tpn_1,7/y) is syntactically identical to the
formula go(so/xo, ooy Sp—1/Tn—1,t(s0/x0q, ..., sn,l/xn,l,r/y)/y).

18. Let A be an L-structure, t a closed L-term such that t* = a € A, and () an L-formula. Show
that A E ¢(t) iff AF ¢(a).

19. Consider a modification of the first-order proof system given in the lecture such that the axioms
of equality are replaced with the axiom = = z and the axiom schema ¢ = s A p(t/z) — ¢(s/z) for all
formulas ¢ and terms ¢, s free for x in ¢. Show that this is equivalent to the original proof system.

20. For any formula ¢(x) and variable y free for x in ¢, show that the formula 3y (3z p(z) — p(y)) is
provable.

21. Without using the completeness theorem, prove the following conservation property: Let T be an
L-theory, ¢ an L-formula, and L’ a language extending L. If ¢ has a proof from T using L’-formulas,
then T F ¢ (i.e., ¢ has a proof from T using only L-formulas).

[Hint: Generalize the proof of the lemma on constants.]

22. Using Vaught’s test, show the completeness of the theory of a successor: it has a language with
one unary function symbol S, and axioms S(z) = S(y) — = =y, Ve Iy S(y) = z, and S"(z) # z for
each n € N5, where S™ denotes the n-fold iteration of S (i.e., S°(x) is z, and S"T1(z) is S(S™(x))).



23. For each n € N, let P, denote the path graph of length n, i.e., the structure ([n], E,), where
[n] ={0,...,n—1} and E,, = {(i,j) € [n)? : |i — j| = 1}. Show that there is no sentence ¢ such that for
alln € N, P, E ¢ iff n is odd. [Hint: Adapt the previous exercise.]

24. Fix a field F. The theory of vector spaces over F' has a language consisting of the language
{+, —, 0} of abelian groups and unary functions a - z for each a € F'; it has the usual algebraic axioms
(axioms of abelian groups, ab-z = a-(b-z), 1-z =z, (a+b)-x =a-x+b-z,a-(x+y) =a-z+a-y). Show
that the theory of infinite vector spaces over F' (i.e., with additional axioms Jz¢ ... 3z, /\i<j T # xj
for n € N) is complete and x-categorical for all infinite x > |F|. [Hint: Every vector space has a basis.]

25. An atom in a Boolean algebra A = (A4,0,1,A,V,—, <) is an element a € A such that a > 0, but

0<x<afornozxe A; Ais atomless if 0 # 1 and A has no atoms. Show that the theory of atomless
Boolean algebras is Ny-categorical, hence complete.
[Hint: Construct an isomorphism between two countable atomless Boolean algebras A and B by a back-
and-forth argument, as a union of a sequence of isomorphisms between finite subalgebras. It might help
to observe that if A is a finite subalgebra of A, and A; is the algebra generated by Ag U {b} for some
b € A, then each atom of Ag either remains an atom in A;, or splits into two atoms.]

26. Prove that for every k > 1, the bijective base-k numeration is a bijection between N and {1, ..., k}*.

27. Show that the functions +: N> — N and -: N> — N are computable when the input and output
are represented in unary.

28. The same when the input and output are represented in binary.

29. Show that there are computable functions converting natural numbers from one representation to
another (unary, ordinary base-k, bijective base-k, considering also different &’s).

30. Fix an alphabet 3.

(i) The following functions are computable: the constant function e€; the functions s,: ¥* — X* for
a € X, defined by s,(x) = x_a; the projections «?* : (X*)" — X*, n"(zg, ..., Tn-1) = ;.

(ii) If f: (Z*)" — X* and g¢;: (%)™ — ¥*, ¢ < n, are computable functions, their composition
h: (%)™ = X%, h(Z) = f(go(D),- .., gn-1(ZF)), is computable.

(iii) If fe: (Z*)" — % and f,: (X*)"T? — £* a € %, are computable, the function h: (X*)" Tt — X*
defined from them by the recursion

is computable.

Functions in the smallest class that contains the functions from (i) and that is closed under the operations
(ii) and (iii) are called primitive recursive. (Usually, the definition of primitive recursive functions is
stated for functions N — N, corresponding to our definition with |X| = 1 and the integers represented
in unary. Our more general definition is equivalent up to the bijective base-|¥| numeration.)

31. Assume |X| > 2. Prove that the problem Hy = {(M)z : M halts on input } C ¥* is many-one
equivalent to Asy.

32. The set of well bracketed strings over the alphabet ¥ = {(;,); : ¢ < k} is the smallest set of strings
such that the empty string € is well bracketed, and if  and y are well bracketed and i < k, then xy
and (;x); are well bracketed. E.g., (3(1)1(20)0)2(1)1)3(2)2 is well bracketed. Show that the set of well
bracketed strings is decidable.



33. Let L be a finite first-order language. Show that the following sets and functions are computable:

(i) The set of L-terms.

(ii) The set of L-formulas.

)

)
(iii) The set of pairs (@, x) where x is a free variable of an L-formula ¢.
(iv) The substitution function: given an L-formula ¢, a variable z, and an L-term ¢, compute @(t/x).
)

(v) The set of triples (I', ¢, 7) where 7 is a proof of an L-formula ¢ from a finite set of L-formulas T'.

34. A language X C ¥* is semidecidable iff it can be represented as Jw € ¥'* P(z,w) for a finite
alphabet ¥’ (which we might take to be X itself if |[X| > 2) and a decidable predicate P.
[Hint: Consider a description of an accepting run of a Turing machine, or—if you are already familiar
with the section on arithmetic—a 3;-formula that defines X in N/

35. (Craig’s trick.) Every semidecidable theory is recursively axiomatizable. [Hint: Express Thm(T)
as Jw P(p,w) with P decidable. Given ¢ and w, devise a sentence equivalent to ¢ that encodes w.]

36. Show that every decidable consistent theory T has a decidable complete extension.
[Hint: Consider a completion procedure that enumerates sentences ¢ one by one, and extends the current
list of axioms with ¢ or -, whichever maintains consistency with 7'

37. Prove QFVz(z <mVvm < x) for each n € N.
38. Qprovesz-y=0—2=0Vy =0, and more generally, -y =m — x =0V y <7 for each n € N.

39. The standard model N extends to an Lpa-structure N> with domain N U {oo}, co ¢ N, so that
N> [ Q. Moreover, we are free to choose (0-00)N" in an arbitrary way (while the rest of the model is
uniquely determined by the axioms of Q). Conclude that Q does not prove any of the formulas S(z) £ ,
r-y=y-x,or0-x#1.

40. Q does not provex +y=y+zor 0+ (z +y) = (04 ) + y.

[Hint: Modify the previous exercise to a model with two “infinities”.

41. All ¥ -definable sets X C N are semidecidable.

In the lecture, we developed an encoding of sequences in the language of arithmetic using Godel’s
B-function. In the next three exercises, you will devise an alternative sequence encoding scheme due to
E. Nelson, as simplified by P. Pudldk.

42. The set { : In € Nz = 2"} of powers of 2 is definable by a A formula, not using the 2™ function.
[Hint: Consider the divisors of x.]

43. Consider an encoding of finite sets X C N by pairs [r, w] where the binary expansion of w is a
concatenation of binary expansions of elements of X, and the binary expansion of r acts as a “ruler” such
that the positions of 1’s mark where the individual elements of X start in w. Show that the predicate
“x is in the set encoded by [r,w]” is Ag-definable.

44. Construct a Ag encoding of finite sequences based on the previous exercise.
As yet another alternative, we will look at a representation of binary strings introduced by A. A.
Markov Jr., who attributes it to J. Nielsen. The idea of using it for encoding strings in weak theories of
arithmetic is due to J. Murwanashyaka; the extension to sequences of integers is due to A. Visser.

45. Let (SLy(N),I,-) denote the monoid of non-negative integer matrices (¢ Z) € N2X2 of determi-

nant 1, with - being matrix multiplication and I = ((1) 2) Put Ay = (é 1) and A1 = G 2)

(i) Given ¢ = 0,1, which M € SLy(N) are of the form NA; for N € SLy(N)? [Hint: Focus on
comparisons between the entries of M.]



(ii) Using (i), show that each M € SLa(N) ~ {I} can be written in a unique way as N Ay or NA; with
N € SLy(N).

(iii) Conclude that SLo(N) ~ ({0,1}*,¢, ).

46. Develop a A encoding of finite sequences based on the previous exercise. [Hint: You may represent
{no,...,mg_1} by Ag° -+ A1 Ag* " Ay, using A = (é ™). Then encode sequences by sets.]
A formula ¢(x) represents a set X C N in a theory T if T + (1) for all n € X, and T F —p(7) for
alln e N\ X.

A formula o(z,y) represents in T a partial function f: N —= N if T+ Vy (p(7,y) < y = m) for all
n,m € N such that f(n) = m.

47. All decidable sets are Xi-representable in Q.
[Hint: Starting with 3, definitions of X and N\ X, write a ¥; formula expressing “there is a witness
for x € X smaller than any witness for x ¢ X”. Use Exer. 37 to show that it works.]

48. All partial computable functions are 3-representable in Q.
[Hint: Using a ¥ definition of the graph of f, adapt the witness comparison argument from Exer. 47.]

49. Prove Godel’s diagonal lemma: for every formula ¢(x), there exists a sentence « such that @ F

a <> p(Ta). [Hint: Using representability of a suitable computable function, construct a formula (z)

such that Q F ¥(Tx7) < o("x(Tx ")) for all x(z).]

50. (Lob’s theorem.) Let T be an extension of Q, and Prr a provability predicate for T that satisfies
the Hilbert-Bernays-Lob derivability conditions. Then for any sentence ¢, if T Prp(T¢ ') — ¢, then
T  ¢. [Hint: Generalize the proof of Gddel’s second incompleteness theorem. Alternatively, show
that Prp("(—¢ — &)7) is a Hilbert-Bernays—Lob proof predicate for T+ —¢p, and apply the second

incompleteness theorem directly.

51. (Tarski’s theorem on undefinability of truth.) Let T be a consistent recursively axiomatizable

extension of Q. Then there is no formula Tr(z) such that T F Tr("¢ ") +> ¢ for all sentences .
[Hint: Construct a liar sentence.]



