import Mathlib #check True ∨ False -- type check expression #eval True ∨ False -- evaluate expression /- prove the commutativity of ∧ -/ #check and_comm theorem my_and_comm : (p : Prop) → (q : Prop) → p ∧ q → q ∧ p := by sorry --intro p q --intro h --obtain ⟨hp, hq⟩ := h --exact ⟨hq, hp⟩ theorem my_and_comm' (p : Prop) (q : Prop) (h : p ∧ q) : q ∧ p := by sorry --obtain ⟨hp, hq⟩ := h --exact ⟨hq, hp⟩ theorem my_and_comm'' (p : Prop) (q : Prop) (h : p ∧ q) : q ∧ p := ⟨h.right, h.left⟩ -- any two proofs of the same proposition are automatically equal theorem same_thm : my_and_comm = my_and_comm' := rfl -- a thing is equal to itself #check and_comm #print axioms my_and_comm #print axioms my_and_comm' #check 2 + 1 #eval 2 + 1 #check 3 = 2 + 1 #eval 3 = 2 + 1