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Michal Kř́ıžek1, Filip Kř́ıžek2, Lawrence Somer3
1 Institute of Mathematics, Czech Academy of Sciences, Žitná 25, CZ-115 67 Prague 1,
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Abstract. We suggest that nonbaryonic dark matter need not be taken into account
to explain the observed rapid rotation of spiral galaxies. The main reason is a special
form of the gravitational potential of a flat disk which guarantees large orbital velocities
of stars at the galaxy edge. In particular, we prove that a star orbiting a central mass
point along a circular trajectory of radius R has a smaller speed than if it were to orbit a
flat disk of radius R and the same mass with an arbitrary rotationally symmetric density
distribution.
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1. Introduction

The term dark matter first appeared in Jan Oort’s paper (Oort, 1932,
p. 285). One year latter Fritz Zwicky used this term in (Zwicky, 1933, p. 125)
to explain large velocities of several galaxies in the Coma cluster A1656.
With the help of classical Newtonian mechanics he derived a very simple
relation for the virial mass of the cluster which gave him much larger values
than could be accounted for by just the observed luminous mass. However,
his detailed calculation in (Zwicky, 1937) is based on many simplifications.
For instance, he assumed that galaxies are distributed uniformly, that the
Virial Theorem holds exactly, and that gravitation has an infinite speed of
propagation. He substituted a spacetime curved by more than one thou-
sand galaxies by Euclidean space. He replaced galaxies of diameter about
1010 au by mass points. Such approximations do not allow one to con-
sider angular momenta of rotating galaxies that surely contribute to the
total angular momentum. Tidal forces among galaxies were not included
as well. Further simplifications are listed in (Kř́ıžek, Kř́ıžek, Somer, 2014).
Moreover, Zwicky’s observational data were not relevant, since he largely
underestimated the number of stars in galaxies and their distances from
the Earth. For present data the discrepancy between the virial mass and
luminosity mass is not so obvious. We showed that the nonuniformity of
galaxy distribution, relativistic effects of high velocities, gravitational red-
shift, the selflensing effect, the decreasing Hubble parameter, dark energy,
and some other phenomena can essentially reduce the virial mass and thus
nonbaryonic dark matter may not exist.

The existence of nonbaryonic dark matter was also postulated from the
Friedmann equation. However, this equation was derived by means of exces-
sive extrapolations as we will explain in the last section, see also (Kř́ıžek,
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Somer, 2014). Therefore, we will investigate other methods which look for
dark matter and which are independent of the Friedmann equation. This pa-
per can be regarded as a natural continuation of our previous work (Kř́ıžek,
Kř́ıžek, Somer, 2014) on this topic.

Vera Rubin’s greatest discovery was the fact that spiral galaxies have
“flat” rotation curves (Rubin et al., 1962). On that basis, in the 70’s of the
last century she developed her own theory of rotation curves of galaxies.
From the high orbital speed of stars she concluded that galaxies should
contain much more nonluminous than luminous matter to be kept together
by gravity — see e.g. her review articles (Rubin, 1983) and (Rubin, 2003)
on dark matter.

In this article we shall look more closely at her hypothesis. Consider a
test particle of mass m (typically this will be a star) and let M ≫ m be
the mass of some body generating the central force field. Assume that the
test particle revolves about the center along a circular orbit with radius r
and speed v. Then from Newton’s law of gravitation and the relation for
centripetal force Rubin easily obtained that, see (Rubin, 1983),

G
Mm

r2
=

mv2

r
, i.e. v =

√

GM

r
. (1)

The velocity v of a particle on a circular orbit is thus proportional to r−1/2.
Such orbits are called Keplerian (see Fig. 1).

Rubin states that, see (Rubin et al., 1962, p. 491),

the stellar curve does not decrease as is expected for Keplerian orbits.

v
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200
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Fig. 1. The dashed line shows the rate of decrease of velocities for Keplerian orbits
that depend on the distance r from the center of a spiral galaxy. The solid line shows
an idealized rotation curve whose shape was derived by Rubin by means of a variety of
measurements.

To explain this discrepancy, it is important to realize that spiral galaxies
do not have a central force field except within a close neighborhood of the
center, where e.g. in the Milky Way stars S1, S2, . . . orbit the central black
hole according to Kepler’s laws with velocities up to 7000 km/s. The mass
of this black hole is roughly 3.5 million solar masses, which is less than
0.01 % of the total mass of our Galaxy (cf. (5)). In the Solar system, on
the contrary, 99.85 % of the mass is concentrated at the Sun. The planets
barely interact gravitationally among themselves and their movements are
determined mainly by the central force of the Sun. On the other hand,
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trajectories of stars in a galactic disk are substantially influenced mainly by
neighboring stars, because the central bulge contains only about 10 % of all
mass of a galaxy. Let us recall the following famous statement:

Newton’s First Theorem. If the density distribution of a ball of mass
M is spherically symmetric, then the size of the force between the ball and
a point mass m, that lies outside the interior of the ball, is given by the
left-hand side of (1), where r is the distance between the point and the
center of the ball.

In Section 2, we outline why the force of a disk-shaped galaxy acting on
a test particle is much larger than it would be if its whole mass were to be
concentrated at one central point (cf. Newton’s First Theorem). Therefore,
the speed v of stars on circular orbits in a spiral galaxy should be higher
than for Keplerian orbits (see Fig. 1).

In nearby spiral galaxies Rubin found, see (Rubin, 2003) and also (Rubin
et al., 1980, p. 480), that all stars of these galaxies move at almost the
same constant speed of order v ≈ 200 km/s for r > r0, where r0 > 0
approximately corresponds to the radius of the central bulge and is typically
equal to a few kpc (see Fig. 1). On the other hand, she observed that for
r ≤ r0 the inside of the spiral galaxy (including a possible bar) rotates with
roughly constant angular speed in a manner like that of a DVD record,
i.e., the speeds of these stars are approximately linearly proportional to
their distance from the center (see Fig. 1). An exception is a very close
neighborhood of the central black hole. In Section 3, we show that large
orbital velocities of stars (cf. (4) and (6)) can also be explained by presently
measured mass distribution.

The average thickness of the disk (except for the bulge) of spiral galaxies
varies from 300 pc to 1 kpc. It is therefore about 30 to 100 times thinner
than the diameter of the visible part of the galaxy. This is easily seen when
galaxies are observed edge-on. Moreover, the gas and dust are mainly found
close to the plane of symmetry of the disk (Pohen et al., 2010). Conse-
quently, in Section 4 we will treat the disk just as a two-dimensional body,
which is obviously a better approximation than a central mass point. The
gravitational field of spiral galaxies will therefore be approximated by the
gravitational field of a flat disk with rotationally symmetric mass density
distribution.

In Section 5, we include the bulge and halo. Finally, Section 6 is devoted
to discussion on the existence of nonbaryonic dark matter.

2. Forces acting on a flat disk

The equation on the right of (1) provides only a rough estimate for express-
ing orbital velocities of stars in a spiral galaxy. Let us therefore show now
that a test particle (star) orbiting a ball of radius r with arbitrary spher-
ically symmetric mass density distribution has a lower speed than when
orbiting a disk of the same radius r and the same mass. In doing so, we
will consider a special distribution of the density of the disk, which arises
as projection of the original ball perpendicularly to the horizontal xy plane
of the disk.
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Fig. 2. A ball with symmetrically distributed mass with respect to the horizontal
plane acts on a test particle by a smaller force than the mass projected perpendicularly
to the horizontal plane of the disk — dashed.

To be convinced of this assertion, just consider two arbitrary mass points
with masses m1 = m2 located inside a ball placed symmetrically with re-
spect to the horizontal xy plane (see Fig. 2). Then the total force F of both
mass points acting on the test particle of mass m, will be less than the force
F of both mass points projected perpendicularly to the disk and acting on
m. Let d be the distance between m1 and m. Denoting by b its orthogonal
projection on the horizontal xy plane, we find that

F = G
2m1m

d2
· b
d

and F = G
2m1m

b2
.

Thus we see that the ratio of forces F and F is equal to the third power of
the fraction d/b, namely,

F =
(d

b

)3

F ≥ F. (2)

By (1) this cubic nonlinearity causes a greater attractive gravitational force
by the disk than by the ball, and thus also a higher orbital speed around
the disk. A more detailed estimate will be given in Section 4. An analytical
expression of the gravitational influence of the entire disk on an outer test
particle leads to elliptic integrals (Binney, Tremaine, 1987, p. 73).

3. Orbital velocity around a spherically symmetric body

In this section we introduce a rough conservative estimate for the orbital
velocities of stars for the case in which all baryonic matter (i.e. mainly
protons and neutrons) of the Milky Way is replaced by a ball with spherically
symmetric mass density distribution. In the next section we will focus on a
flat disk with arbitrary rotationally symmetric mass density distribution.

The radius of the visible part of the disk of our Galaxy is estimated by

rG = 16 kpc = 4.938 · 1020 m. (3)

Our Sun has the mass
M⊙ = 2 · 1030 kg
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and orbits the center of the Milky Way with the speed (cf. Fig. 1)

v⊙ = 230 km/s (4)

on a path of radius r⊙ = 8.3 kpc, i.e. it is found about halfway out from the
center of the Galaxy, where the density of stars is relatively small. Note that
most sources give the speed of the Sun v⊙ as being in the range of 220 to
240 km/s. Stars orbiting the center of our Galaxy at a distance r > r0 ≈ 3
kpc should have a speed similar to v⊙ due to the expected flat rotation
curve (see Fig. 1).

Denote by M(r) the mass of baryonic matter within the ball of radius r
and center placed at the center of gravity of our Galaxy. To estimate M(rG)
for rG given by (3) we will use the distribution of stars from Table 1, see
e.g. (Mikulášek, Krtička, 2005, p. 394). It is based on Hipparcos’ data taken
from our close neighborhood up to a distance of several hundreds parsecs.
The Harvard Spectral Classification shows a similar relative representation
of stars that will be further improved by data from the Gaia satellite. Gaia
is able to look at the center of our Galaxy and in the opposite direction also
at its boundary. However, the accuracy of measurements depends essentially
on the magnitude and extinction. The mass distributions of stars in disk
galaxies (initial mass function) have been studied extensively also by other
authors. Let us mention e.g. the seminal works (Kroupa, 2001, 2002) and
(Chabrier, 2003).

Table 1. Distribution of stars in our Galaxy according to their spectral classes. The
second line shows the corresponding mass of a typical star in units of the solar mass M⊙.
The third line indicates the number of stars of a particular spectral class divided by 109.
The last line presents the calculated mass of all the stars in a particular spectral class in
billions of solar masses. The last column corresponds to white dwarfs (WD).

Spectral class O B A F G K M WD

Mass in M⊙ 25 5 1.7 1.2 0.9 0.5 0.25 0.7

Number in billions 10−5 0.3 3 12 26 52 270 35

Product ≈ 0 1.5 5.1 14.4 23.4 26 67.5 24.5

From the third line of Table 1, we see that our Galaxy contains approxi-
mately 400 billion stars. While at the end of the last century it was thought
that red dwarfs of spectral class M form only 3 % of the total number of
stars, see (Binney, Merrifield, 1998, p. 93), at present it is estimated from
Table 1 that they are in the vast majority — about 70 %. To support this
statement it should be noted that among the 20 nearest stars to our Sun, 13
red dwarfs are currently known. Note that the mass of a red dwarf ranges
from 0.08M⊙ to 0.45M⊙. From the last line of Table 1 it is evident that the
spectral class M contributes the most to the total mass of our Galaxy of all
the spectral classes. The mass of the most common star is about 0.4M⊙. Ru-
bin, of course, could not know about the existence of so many red dwarfs in
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this smallest weight category. This growth is due to the continual improve-
ments of the sensitivity of space telescopes. In this way, the estimated mass
of the baryonic matter in our Galaxy has considerably increased. Summing
up the numbers in the last row of Table 1, we get

M(rG) ≥ 162.4 · 109M⊙ = 3.25 · 1041 kg.

The amount of stars in the left part of Table 1 is so small, because
they live very briefly. On the other hand, there may exist many superdense
compact remnants left by these stars in the Galaxy. Unfortunately, we can-
not so far reliably determine the contribution to M(rG) from black holes,
neutron stars, infrared dwarfs, exoplanets, etc., whose luminosity is small.
The three new spectral classes for small cold stars include: L (red-brown
dwarfs), T (brown dwarfs), and Y (black dwarfs). Their total mass is prob-
ably also non-negligible. For instance, in 2013 Kevin Luhman discovered a
pair of brown dwarfs only 6.5 ly from the Sun. Another brown dwarf WISE
J085510.83-071442.5 is located 7.2 ly from us.

According to (Mikulášek, Krtička, 2005, p. 393), the mass of the baryonic
matter of all the stars in the Galaxy is about

175 · 109M⊙ = 3.5 · 1041 kg,

including further stars of the luminosity classes I–IV (i.e. supergiants, giants,
and subgiants). The disk and bulge contains also a large amount of non-
luminous baryonic matter in the form of dust, gas, and plasma (Pohlen,
2010). It is well known that atomic hydrogen contributes substantially to
the observed rotation curves. Radio observations of many spiral show that
it extends far beyond the stellar disk.

In (Mikulášek, Krtička, 2005, p. 353), the amount of interstellar matter
(without hypothetical nonbaryonic dark matter) is estimated at about 10%
of the total mass of the Milky Way’s stars. Sparse non-luminous baryonic
matter is also spread in a spherical galactic halo, as can be determined from
radio waves of 21 cm, corresponding to spin flip in the hydrogen atom, see
(Rubin et at., 1980, p. 485). Therefore, for the total mass of baryonic matter
inside the considered ball of radius rG we have a lower estimate

M(rG) ≥ 3.85 · 1041 kg. (5)

By astronomical tables (Lang, 2006, p. 127) the total mass of the Galaxy
is MG = 1012M⊙ = 2 · 1042 kg. Another source (Irrgang et al., 2014) even
reports a three times greater value amounting to 200 kpc from the center.

According to (Mikulášek, Krtička, 2005), the mass density distribution
ρ = ρ(r) beyond the visible edge decreases faster than r−2; otherwise the in-
tegral

∫

∞

rG
ρ(r)4πr2dr would diverge. However, the Shell Theorem indicates

that this matter (including possible nonbaryonic dark matter) has no effect
on the movement of stars, if the mass distribution is spherically symmetric.
By Newton’s First Theorem, we may concentrate all baryonic matter inside
the ball of radius rG at one central point. Then from relations (1), (3), and
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(5) we find that the orbital velocity of stars on the radius rG of the visible
disk is

v =

√

GM(rG)

rG
≥

√

6.674 · 10−11 · 3.85 · 1041

4.938 · 1020
= 228 · 103 m/s, (6)

This value is indeed comparable to the measured speed (4). Although rela-
tion (6) is only approximate, to postulate the existence of 5–6 times more
nonbaryonic dark matter than baryonic matter, see e.g. (Bosma, 2003) and
(Planck, 2014), to hold the Galaxy together by gravity seems to be some-
what overestimated due to (2). Now we will elaborate it on more details.

4. Orbital velocity around a flat disk

Of course, one can raise the objection that relationship (6) was derived just
in the case of a central force for a given mass point (that is equivalent to
a ball with a spherically symmetric mass density distribution) which may
lead to a large modeling error. In this section we will therefore approximate
the gravitational field of a spiral galaxy by the gravitational field of a flat
disk with rotationally symmetric mass density distribution.

Theorem 2. A particle orbiting a central mass point along a circular
trajectory of radius R has a smaller speed than if it were to orbit a flat disk
of radius R and the same mass with an arbitrary rotationally symmetric
density distribution.

P r o o f . A greater attractive force has to be balanced by a larger orbital
speed if the testing particle should stay on a circular trajectory. Therefore,
we only need to compare the force of the central mass point with the force
of a disk of the same mass. Under the assumptions of Theorem 2 the areal
density of the disk ρ = ρ(r) ≥ 0 depends only on the distance from its
center. First, we will investigate the gravitational influence of a fixed one-
dimensional homogeneous ring of radius r ∈ (0, R) on a test particle of
mass m, whose distance from the center is R. The total mass of the ring
equals M = 2πrρ, where ρ is the length density (i.e. one-dimensional mass
density). Concentrating the mass of the ring at its center, the corresponding
force acting on a test particle is equal to

F = G
2πrρm

R2
. (7)

Our goal will be to show that F is smaller than the force of the ring
acting on the test particle. The statement of Theorem 2 will then follow by
integration along r.

In polar coordinates (r, ϕ), consider two equal length elements of the
ring

dl = r dϕ (8)

located symmetrically with respect to the horizontal axis at a distance s
from the test particle as shown in Fig. 3. Then according to the law of
cosines, we have

s2 = r2 + R2 − 2rR cosϕ (9)
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and the force with which this pair acts on the test particle equals

dF = G
2dl ρm

s2
cosα. (10)

From the law of sines r sinϕ = s sinα it follows that

cosα =

√

1 − sin2 α =
1

s

√

s2 − r2 sin2 ϕ. (11)

R

l

dl

s

d

ϕ α m

r

Fig. 3. A homogeneous ring acts gravitationally on an outer particle by a larger force
than if the total mass were to be concentrated at the center of the ring.

Without loss of generality we may further assume that the gravitational
constant G = 1, R = 1, m = 1, and that the length density of the ring is
ρ = 1. Then for r ∈ (0, 1) and ϕ ∈ [0, π], by substituting (8), (9), and (11)
into (10), we get

dF =
2 dl

s2
1

s

√

r2 + 1 − 2r cosϕ− r2 sin2 ϕ =
2r dϕ

s3

√

(1 − r cosϕ)2

= 2r
1 − r cosϕ

(r2 + 1 − 2r cosϕ)3/2
dϕ,

because 1 > r cosϕ. Thus the total gravitational force of the ring of radius
r that acts on the test particle is

F (r) = 2r

∫ π

0

f(r, ϕ)dϕ = 2r

∫ π

0

1 − r cosϕ

(r2 + 1 − 2r cosϕ)3/2
dϕ, (12)

where for a fixed r ∈ (0, 1) the integrated function

ϕ 7→ f(r, ϕ) =
1 − r cosϕ

(r2 + 1 − 2r cosϕ)3/2

is positive, continuous, and decreasing. Since the values at the endpoints
f(r, 0) = (1 − r)−2 and f(r, π) = (1 + r)−2 are finite numbers, the integral
in (12) is finite as well (see Fig. 4).
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Fig. 4. On the left there is a graph of the integrated function (13) for r = 0.5 on the
interval [0, π]. On the right there are numerically calculated values of the integral I(r)
for r ∈ [0, 1).

The integral

I(r) =

∫ π

0

1 − r cosϕ

(r2 + 1 − 2r cosϕ)3/2
dϕ (13)

appearing in equation (12) unfortunately has no known analytical expression
for r ∈ (0, 1). However, we can find that I = I(r) is an increasing function
and may analytically evaluate its limits. The function I is even strictly
convex and İ(0) = 0. For r = 0 we see that the integrated function is equal
to one, and thus (see Fig. 4)

I(0) = π. (14)

Consider now the point r = 1. By the Taylor expansion we get

cosϕ = 1 − ϕ2

2!
+

ϕ4

4!
− ϕ6

6!
+ · · · ≥ 1 − ϕ2

2
.

Hence,
ϕ2 ≥ 2 − 2 cosϕ, (15)

and therefore we obtain (see Fig. 4)

2I(1) =

∫ π

0

2 − 2 cosϕ

(2 − 2 cosϕ)3/2
dϕ =

∫ π

0

dϕ√
2 − 2 cosϕ

≥
∫ π

0

dϕ

ϕ
= ∞, (16)

that is
I(1) = ∞. (17)

A similar trick with the lower estimate can be used to replace the co-
sine function in (13) by quadratic polynomials in ϕ, which can already be
calculated analytically and leads to the required inequality

F (r) = 2rI(r) > F = 2rI(0) for r ∈ (0, 1], (18)
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where the forces are defined in (12) and (7) for G = 1, R = 1, m = 1, and
ρ = 1. Q.E.D.

Note that for a spherically symmetric mass distribution of the halo we
may neglect by the Shell Theorem the influence of dark and baryonic matter
outside a ball that contains the galactic disc. For simplicity, assume that
the areal mass density σ = σ(r) of the galactic disk decreases as r−1. Then
the total mass of the disk inside the circle of radius r is

M(r) = 2π

∫ r

0

σ(s)s ds = Cr,

where s is the Jacobian of the polar coordinates and C > 0 is a constant of
proportionality. Substituting M(r) into (cf. (1) and (6))

v =

√

GM(r)

r
,

we find that v is constant. This is, of course, only a very rough estimate,
but it suggests why the real velocities are almost constant for r > r0.

5. Orbital velocity around a galaxy with bulge and halo

The gravitational force of a galaxy acting on its star is approximately the
sum of the gravitational effects of the bulge, flat disk, and halo for r ≤ rG
if the outside of the galaxy is spherically symmetric. The bulge of spiral
galaxies is usually spherically symmetric. For instance, the neighboring An-
dromeda galaxy M31 has a clear bulge making up to 20–25 % of its radius
(see Remark below). The gravitational influence of the spherical bulge on
outer stars can be approximated by the central force of a mass point, into
which the whole mass of the bulge is concentrated. By the Shell Theorem
we may neglect the gravitational influence of the halo r > rG.

Theorem 2 can be modified to the case of a ring with inner radius 20–
25 % of R and outer radius R, since the mass density function ρ = ρ(r) ≥ 0 is
arbitrary. The gravitational force of the ring on the test particle on the outer
edge of the ring is again larger than when the total mass is concentrated
at the center. The velocity of stars at the edge of the Galaxy at distance R
from the center is therefore larger than in (6).

Remark. The observed orbital velocity of stars which are not close to
the center of M31 is again about 230 km/s according to (Rubin, 2003, p. 7).
The radius of M31 is rA ≈ 2rG (see (3)) and the total mass is estimated
to be MA ≈ 3MG. Then by (6) we even get a bigger disagreement with
the postulation of nonbaryonic dark matter in M31 than for our Galaxy.
Namely, the calculated velocity by (6) will be

√

3/2 times larger than the
observed orbital velocity. In this case, not a single gram of nobaryonic dark
matter is needed, since we even have a surplus of luminous matter.

The fact that rotation curves of spiral galaxies are flat does not imply
that there must exist some nonbaryonic dark matter concentrated around
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galaxies. It follows that the gravitational force between a two-dimensional
homogeneous sphere (shell) and a mass point lying on it is finite. On the
other hand, the force of a one-dimensional ring acting on a fixed point, which
lies on it, is infinite according to (12)–(17), since the function f = f(r, ϕ)
from (12) has a singularity for r → 1 and ϕ → 0. Thus we see that there is
a substantial difference between the two-dimensional and three-dimensional
model. From the two-dimensional model it is also evident why the stars
at the edge of the spiral galaxy orbit so rapidly. Therefore, we should not
exchange a gravitational field of a galaxy with the gravitational field of a
central mass point. The discrepancy in large velocities of stars observed by
Rubin thus may have a natural explanation.

6. Discussion

In previous sections as well as in (Kř́ıžek, Kř́ıžek, Somer, 2014, 2015) we in-
troduced several arguments showing that the amount of nonbaryonic dark
matter seems to be considerably overestimated. It is very probable that
Newton’s law of gravitation on galactic or even cosmological scales approx-
imates reality only very roughly, since it assumes an infinite speed of grav-
itational interaction.

Several modifications of Newtonian theory, e.g. MOND = Modified New-
tonian Dynamics (McGaugh, 2008), (Milgrom, 1983), (Sanders, McGaugh,
2002) and its relativistic generalization TeVeS = Tensor-Vector-Scalar (Beken-
stein, 2004) are at present being developed and studied. Effects that are
attributed to nonbaryonic dark matter are explained by a different form
of the law of gravitation, see also (Arbab, 2015) and (Brownstein, Mof-
fat, 2007). However, note that MOND assumes an infinite speed of gravity,
which surely contributes to a modeling error.

Missing dark matter in the local universe is demonstrated in (Karachent-
sev, 2012). Furthermore, in (Kroupa et al., 2010), (Kroupa et al., 2012), and
(Kroupa, 2015) several trustworthy arguments are presented that point to
the absence of nonbaryonic dark matter around our Galaxy. In (Pawlowski
et al., 2014) and (Pawlowski et al., 2015) it is claimed that dwarf galax-
ies orbiting the Milky Way are in conflict with the spherical distribution
of dominant nonbaryonic dark matter, since they are in almost one plane.
A number of other papers (Banhatti, 2008), (Feng, Gallo, 2014), (Feng,
Gallo, 2015), (Gallo, Feng, 2010), (Ja locha et al., 2008), (Kroupa, 2012),
(Moni Bidin et al., 2012), (Nicholson, 2007), (Sikora et al., 2012), and (Wu,
Kroupa, 2015) also confirm that on scales of galactic disks, Newton’s the-
ory of gravitation is still a fairly good approximation of reality and it is
not necessary to modify it, or to assume the existence of nonbaryonic dark
matter.

The observed oscillations of stars perpendicularly to the galactic plane
can be explained by classical Newtonian mechanics without nonbaryonic
dark matter (Flynn, Fuchs, 1994, p. 477) and (Moni Bidin et al., 2012). In
other words, nonbaryonic dark matter may be referred to as a modeling
error resulting from an incorrect cosmological model and misinterpretation
of measured data on extremely large scales.
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The influence of nonbaryonic dark matter in the Solar system has not
been observed (Moni Bidin et al., 2012), even though our Sun is a large
gravitational attractor. Thus it seems that nonbaryonic dark matter, if it
exists, is not able to dissipate its inner energy, and therefore cannot be
concentrated in the Sun’s neighborhood.

On the other hand, Douglas Clowe in his paper A direct empirical proof
of the existence of nonbaryonic dark matter proposes an example of the colli-
sion of two galaxy clusters MACS J0025.4-1222, where the intergalactic gas
is stopped, while the galaxies continue in an unchanged direction together
with nonbaryonic dark matter which is “detected" by gravitational lensing.
However, we are not able to measure tangential components of the velocities
of these clusters to prove that the collision really happened. Moreover, there
are several strange circumstances:

1. The clusters MACS J0025.4-1222 from (Clowe et al., 2006) have al-
most the same size and they lie on one line together with clouds of non-
baryonic dark matter (as also the Bullet cluster or the Musketball cluster).
This is very unlikely from a statistical point of view. The clusters should
have different sizes and their positions together with gas should not lie on
one line, since their initial velocities were not in one line, in general.

2. Due to the large density of galaxies, tidal tails and the effect of dy-
namical friction should be observed among galaxies, but they are not.

3. The proposed (not measured) infall velocity v ≈ 3000–4500 km/s
for this collision is at least 1 % of the speed of light and has the opposite
sign to the overall expansion speed of the universe. How could these two
galaxy clusters get such unlikely large velocities and thus also kinetic energy
proportional to v2 in an isotropic and homogeneous universe, where the local
peculiar speed of galaxies is usually only several hundreds km/s?

4. The regions with hypothetical nonbaryonic dark matter are artificially
colored on the basis of some numerical, not exactly explained simulations
based on gravitational lensing.

Now we present another argument against nonbaryonic dark matter.
Note that the Milky Way has a diameter of the order of 1010 astronom-
ical units. The size of our universe is at least five orders of magnitude
larger. Hence, the Friedman equation (Friedman, 1922) was derived under a
considerably unjustified extrapolation ignoring the modeling error (Kř́ıžek,
Somer, 2014). So it probably does not describe reality well. The validity of
Einstein’s equations is “tested" on much smaller scales. This seems to be
the main misconception of current cosmology.

Nowadays there is a large discussion on what nonbaryonic dark matter is.
The discrepancy of some model with reality does not mean that nonbary-
onic dark matter really exists, since the model can be wrong. Therefore,
direct proofs of the existence of nonbaryonic dark matter are being sought.
For this purpose many sophisticated detectors (CDMS, DAMA/LIBRA,
ADMX, . . . ) were constructed, but for the time being no particle of non-
baryonic dark matter has been detected. Also the Large Hadron Collider in
CERN has not found any signs of new physics that could explain nonbary-
onic dark matter.
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