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Abstract. In this paper we show that the di�erence between the Euclidean geometry
and Schwarzschild geometry curved by a tiny mass ball can be quite large on galactic and
cosmological scales. We also provide formulas for the proper (relativistic) radius and volume
of a homogeneous mass ball. For instance, the homogeneous ball, whose mass and radius is
the same as that of the Earth, has relativistic volume about 457 km3 larger than its Euclidean
volume. Similarly, the Euclidean circumference of the Sun is about 3 km shorter than its
relativistic circumference, provided the Sun would be homogeneous. Finally, we give some
cosmological applications. In particular, the most probable model of a homogeneous and
isotropic universe for a �xed time is a three-dimensional hypersphere, since a homogeneous
distribution of mass yields a positive curvature.
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Êîëè÷åñòâåíè ñâîéñòâà íà ìåòðèêàòà íà Øâàðöøèëä

Ìèõàë Êðèæåê, Ôèëèï Êðèæåê

Â òàçè ñòàòèÿ ñå ïîêàçâà, ÷å ðàçëèêàòà ìåæäó Åâêëèäîâîòî ïðîñòðàíñòâî è ãåîìåòðèÿòà
íà Øâàðöøèëä, èçêðèâåíà îò ìàëêà ìàñîâà òîïêà, ìîæå äà áúäå äîñòà ãîëÿìà ïðè
ãàëàêòè÷åñêè è êîñìîëîãè÷íè ìàùàáè.

Dedicated to Prof. Lawrence Somer on the occasion of his 70th birthday

1 Introduction

Consider a �xed nonrotating ball in vacuum with mass M > 0 and with a
spherically symmetric mass distribution. Denote by

S =
2MG

c2
(1)

its Schwarzschild gravitational radius, where G = 6.674 · 10−11 m3kg−1s−2 is
the gravitational constant and c = 299 792 458 m/s is the speed of light in
vacuum. Let R > S be the coordinate radius of the ball de�ned by

R =
o

2π
,

where o is its circumference.
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According to Birkho�'s theorem (see Birkho� 1923), the space outside the
mass ball is described by the exterior Schwarzschild metric (see e.g. Schwarz-
schild 1916a, Landau & Lifshitz 1975, Misner, Thorne & Wheeler 1997, Moore
2013)

dl2 =
r

r − S
dr2 + r2 sin2 θ dφ2 + r2dθ2 (2)

for a �xed time, where r > R, φ ∈ [0, 2π), and θ ∈ [0, π] are the standard spher-
ical coordinates (see Fig. 1). The corresponding metric tensor is the exact vacu-
um solution of Einstein's equations. If M → 0, then by (1) the Schwarzschild
metric (2) changes into the standard Euclidean metric.

Fig. 1. The point (x, y, z) in the standard spherical coordinates (r, φ, θ)

In Section 2, we investigate the exterior Schwarzschild metric correspond-
ing to a spherical shell outside a �xed ball with spherical mass distribution.
We prove that the di�erence between its relativistic volume and the Euclidean
volume is unbounded if the outer radius of the spherical shell tends to in-
�nity. In Section 3, we concentrate on the interior Schwarzschild metric of a
homogeneous mass ball and present several useful formulae for the relativistic
radius and volume. Finally, in Section 4 we give an application of the interior
Schwarzschild metric in cosmology.

2 An unexpected property of the exterior Schwarzschild
metric

For positive numbers R < Q consider a spherical shell with interior radius R
and exterior radius Q (see Fig. 2). Its volume in the Euclidean space E3 is
equal to

V =
4

3
π(Q3 −R3). (3)

Now we will derive a formula for the proper volume Ṽ of the spherical shell
with coordinate radii R < Q in a curved space around the mass ball with
coordinate radius R. Here the tilde indicates a curved space. By (2) we �nd
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that the exterior volume element is equal to

dṼ =

√
r

r − S
dr · (r sin θ dφ) · (r dθ).

Therefore, by Fubini's theorem the proper (relativistic) volume is de�ned as

Ṽ =

∫ Q

R
r2
√

r

r − S
dr ·

∫ π

0

(∫ 2π

0
sin θ dφ

)
dθ = 4π

∫ Q

R
r2
√

r

r − S
dr. (4)

Fig. 2. Spherical shell {(x, y, z) ∈ E3 |R2 ≤ x2+y2+z2 ≤ Q2} is the region
between two concentric spheres.

Theorem 1. If M > 0 and R > S are any �xed numbers satisfying (1),
then

Ṽ − V → ∞ as Q → ∞.

Proof. By di�erentiation, we can verify that (cf. Grad�stejn & Ry�zik 1971,
p. 97)∫

r2
√

r

r − S
dr =

(r2
3
+
5Sr

12
+
5S2

8

)√
r(r − S)+

5S3

16
ln(2

√
r(r − S)+2r−S).

From this, (4), and (3) we get

Ṽ − V = 4π

∫ Q

R
r2
√

r

r − S
dr − 4

3
π(Q3 −R3) = (5)

=
4π

3

[(
Q2 +

5SQ

4
+

15S2

8

)√
Q(Q− S) +

15S3

16
ln(2

√
Q(Q− S) + 2Q− S)

−
(
R2 +

5SR

4
+

15S2

8

)√
R(R− S)− 15S3

16
ln(2

√
R(R− S) + 2R− S)

−Q3 +R3
]
.
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The relation (5) was derived from the Schwarzschild metric (2) exactly
without any approximations. Since

Q > R > S

and since the logarithmic function is increasing, the di�erence of the two terms
containing ln in (5) is positive.3 Thus from the inequality√

Q(Q− S) > Q− S (6)

we get the following lower bound

Ṽ − V >
(
Q2 +

5SQ

4
+

15S2

8

)
(Q− S)−Q3 + C =

SQ2

4
+

5S2Q

8
+ C,

where C contains all remaining terms not depending on Q and where C =
C − 15S3/8. Letting Q → ∞, we obtain the statement of the theorem. �

We observe that the di�erence of volumes Ṽ − V increases over all limits
for Q → ∞, which is quite surprising property. Namely, Theorem 1 can be
applied for instance to a billiard ball or a small steel ball from a bearing (see
Example 1 below) or an imperceptible pinhead, since the mass M > 0 can be
arbitrarily small. Consequently, a natural question arises: How large can Q be
so that the relativistic relation (4) approximates reality well.

Example 1. Setting M = 0.033 kg, R = 0.01 m, and Q = 5 · 1020 m,
which is the radius of our Galaxy, we �nd that S = 5 · 10−29 m and by (5) the
di�erence

Ṽ − V ≈ 10 000 km3.

This is about 1019 times more than the volume of the ball itself. From this we
see that the use of Einstein's equations to galactic distances is questionable.
Their application to cosmological distances may yield, by Theorem 1, surprising
results, which may have nothing to do with reality (see also K�r���zek & Somer
2016).

Remark 1. If M > 0 and Q > S are any �xed numbers satisfying (1),

then by (5) we get Ṽ < ∞ for R → S+, i.e., there is no singularity in volume
near the Schwarzschild radius.

Remark 2. According to (2), the curved Schwarzschild space is in the
radial direction described by the metric

dρ =

√
r

r − S
dr.

By di�erentiation, we can check that∫ √
r

r − S
dr =

√
r(r − S) + S ln(

√
r +

√
r − S).

3 Since ln a− ln b = ln(a/b), the argument in parenthesis is dimensionless.



Quantitative properties 5

Replacing the volume V by V̂ = 4
3π((ρ(Q))3 − (ρ(R))3) in Theorem 1, we can

also derive that V̂ − Ṽ → ∞ as Q → ∞. To see this we �rst introduce the
following lower estimate

(ρ(Q))3 = (
√

Q(Q− S) + S ln(
√
Q+

√
Q− S))3

> Q(Q− S)
√

Q(Q− S) + 3SQ(Q− S) ln(
√

Q+
√

Q− S ),

> Q(Q− S)2 + 3SQ(Q− S) ln
√

Q,

where the last inequality is due to (6). From this and (5) we get

V̂ − Ṽ >Q(Q− S)2 + 3SQ(Q− S) ln
√

Q− C

−
(
Q2 +

5SQ

4
+

15S2

8

)
Q− 15S3

16
ln(2

√
Q(Q− S) + 2Q− S)

>SQ2
(
3 ln

√
Q− 13

4

)
− S2Q

(
3 ln

√
Q+

7

8

)
− S3 ln(4Q)− C → ∞

as Q → ∞, where C contains all remaining terms not depending on Q.
Remark 3. The classical tests of the validity of the General Theory of Rela-

tivity (bending of light near the Sun's surface and the Mercury's perihelion shift
(see Einstein 1915, K�r���zek 2017) are based just on the Schwarzschild metric (2).
The bending angle Φ = 1.75′′ is obtained from the relation Φ = 4GM/(c2R)
which is derived from (2) under several simpli�cations (see Stephani 2004).

3 The interior Schwarzschild metric

In 1916 Karl Schwarzschild (see Schwarzschild 1916b) found the �rst nonvacu-
um solution of Einstein's equations. He assumed that the ball with coordinate
radius R > 0 is formed by an ideal incompressible �uid to avoid a possible
internal mechanical stress in the solid that may have a nonnegligible in�uence
on the resulting gravitational �eld. Then by Ellis 2012 (see also Stephani 2004,
p. 213; Florides 1974, p. 529; wikipedia) the corresponding time independent
metric (i.e. dt = 0) is given by

dl2 =
R3

R3 − Sr2
dr2 + r2 sin2 θ dφ2 + r2dθ2, (7)

where r ∈ [0, R]. The relation (7) is called the interior Schwarzschild solution,
see Stephani 2004, p. 213. To avoid the division by zero in the �rst coe�cient
on the right-hand side of (7), we require

R3

R3 − Sr2
=

(
1− Sr2

R3

)−1
> 0 for all r ∈ [0, R],

that is
R > S.
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Moreover, we observe that for r = R the metric (7) for the interior of the ball
continuously matches the Schwarzschild metric (2) de�ned outside the ball.

Now let us calculate the proper radius of the ball. For dφ = 0 and dθ = 0
the equality (7) obviously reduces to

dl2 =
dr2

1− α2r2
, (8)

where

α =

√
S

R3
. (9)

For r ∈ [0, α−1) we can easily verify that

F (r) =
1

α
arcsin(αr) (10)

is a primitive function of

f(r) =
1√

1− α2r2
. (11)

From the inequality R > S and (9) we see that

R < R

√
R

S
= α−1.

Given (8), (10), and (11), we now de�ne the proper (relativistic) radius of the
homogeneous mass ball as

R̃ =

∫ R

0

dr√
1− α2r2

=
1

α
arcsin(αR). (12)

From this we �nd by l'Hospital's rule for �xed R > 0 that

R̃ → R for α → 0,

i.e., when M → 0, which follows from (1) and (9).
For a given circumference o of the ball there exists exactly one coordinate

radius R, whereas its proper radius R̃ is not uniquely determined. It depends
on the mass M . The larger M is, the larger is R̃.

Example 2. Consider a homogeneous ball with mass M = M⊙ = 2 · 1030
kg and coordinate radius R = R⊙ = 695 700 km corresponding to the Sun.
Then by (12) we have R̃⊙ − R⊙ = 492 m. Hence, the associated Euclidean

circumference is about 3 km shorter than 2πR̃⊙, where R̃⊙ is the proper radius.

Theorem 2. If M > 0 is �xed, then the function R 7→ R̃−R is decreasing
and strictly convex on the interval (S,∞).
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The proof follows easily from (9) and (10) under the condition R > S (cf.
Fig. 3).

 [m]R
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Fig. 3. Dependence of the di�erence R̃−R on the coordinate radius R for
the �xed mass M = M⊙ = 2 · 1030 kg (see Theorem 2). Here R⊙ = 695 700
km is the coordinate radius of the Sun. The radius R⊕ = 6378 km corresponds
approximately to a white dwarf and R◦ = 9 km to a hypothetical neutron star.

Further we derive a formula for the proper volume of a homogeneous mass
ball. By (7) and (8) the volume element reads

dṼ =
dr√

1− α2r2
· (r sin θ dφ) · (r dθ).

We can easily check that

H(r) =
1

2α3
arcsinαr − r

2α2

√
1− α2r2

is a primitive function of

h(r) =
r2√

1− α2r2

on the interval [0, α−1), cf. Peebles 1993, p. 298.
By Fubini's theorem for the proper (relativistic) volume of the homogeneous

ball is de�ned as

Ṽ =

∫ R

0

r2 dr√
1− α2r2

·
∫ π

0

(∫ 2π

0
sin θ dφ

)
dθ = H(R) · 4π

=
2π

α2

(arcsinαR
α

−R
√

1− α2R2
)
. (13)
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For �xed R > 0 it can be shown by l'Hospital's rule and the relation (9) that

Ṽ → V :=
4

3
πR3 for α → 0. (14)

Example 3. Consider a homogeneous ball with mass M = M⊕ = 5.97219 ·
1024 kg and coordinate radius R = R⊕ = 6378 km corresponding to the Earth.
Then by (13) we get a surprisingly large relativistic e�ect, namely,

Ṽ⊕ − V⊕ = 457 km3,

where
V⊕ ≈ 1012 km3. (15)

Theorem 3. If M > 0 is �xed, then the function R 7→ Ṽ /V is decreasing
and strictly convex on the interval (S,∞).

The proof follows from relations (9), (13), and the inequality R > S.

Remark 4. The convergence in (14) is monotonically decreasing. Hence,

the proper volume Ṽ is larger than the coordinate volume V for M > 0.
Moreover, the matter defends to gravitational compression in such a way that
it increases its proper volume Ṽ when R is �xed and M increases. In other
words, the larger M is, the larger is Ṽ for a �xed circumference and �xed V .

Example 4. For the Sun with coordinate radius R⊙ = 695 700 km we
obtain by (13) that (cf. (15))

Ṽ⊙ − V⊙ = 1.796 · 1012 km3, V ⊙ − Ṽ⊙ = 1.197 · 1012 km3,

where V⊙ = 4
3πR

3
⊙ and V ⊙ = 4

3πR̃
3
⊙ (cf. Example 2). For comparison, by (5)

we get

Ṽ − V = 4.49 · 1012 km3

for Q = R⊙ and R ↘ S⊙, where S⊙ = 2.953 km is the Schwarzschild radius.

4 Applications in cosmology

According to the Einstein cosmological principle, the �universe� is homoge-
neous and isotropic for large spatial scales and �xed time. The homogeneity is
expressed by a translation symmetry (i.e. the space has at any point the same
density, temperature, pressure, etc.), while isotropy is expressed by rotational
symmetry (i.e. there are no preferred directions at any point and an observer
is not able to distinguish a given direction from another direction by means of
local physical measurements).

First, let us present an argument that favours the bounded three-dimensional
hypersphere (see (16) below) as a model of our universe for a �xed time. As-
sume, to the contrary, that the universe is unbounded, i.e. in�nite. Then it
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would have everywhere on large scales the same density, temperature, pres-
sure,4 and so on, at a given time instant after the Big Bang as required by
the Einstein cosmological principle. In this case, information would have to be
transmitted at in�nite speed which is impossible. The popular theory of in�a-
tion cannot explain such a homogeneity and isotropy of an in�nite universe.
Moreover, the actual space could not �rst be �nite after its origin and then
change to in�nite.

Using (8), the metric (7) can be rewritten as

dl2 =
1

1− α2r2
dr2 + r2 sin2 θ dφ2 + r2dθ2,

where r ∈ [0, α−1), φ ∈ [0, 2π), θ ∈ [0, π], and α > 0 given by (9) is �xed. We
observe that it is similar to the well-known metric of the stationary homoge-
neous and isotropic universe

dl2 =
1

1− r2
dr2 + r2 sin2 θ dφ2 + r2dθ2, r ∈ [0, 1),

for a �xed time and the three-dimensional hypersphere

S3 = {(x, y, z, w) ∈ E4 |x2 + y2 + z2 + w2 = a2} (16)

with radius a = 1, see Stephani 2004, p. 214; Peebles 1993, p. 297; Friedman
1922; Weinberg 1972, p. 344. Such a maximally symmetric manifold has in all
its points a constant positive curvature that is equal to 1. The shortest paths
on S3 are arcs of the great circles. The sum of angles in a curved triangle, whose
sides are arcs of great circles, is greater than 180◦. Hence, the sum of angles of
a curved triangle, whose sides are geodesics, inside a homogeneous mass ball
will also be greater than 180◦. Thus, a homogeneous mass distribution causes a
positive curvature. (Note that Alexander Friedmann assumes a negative mass
density distribution to get a hyperbolic geometry with a negative curvature,
see Friedmann 1924.)

When the mass distribution of our universe was homogeneous and isotropic
at some �xed time instant t, its curvature had to be positive due to the above
similarity. The hypersphere (16) with radius a = a(t) is the only mathemat-
ical model of such a homogeneous universe, see K�r���zek & M�esz�aros 2016. Its
radius a = a(t) is an increasing function satisfying the Friedmann equation
(see Friedman 1922). Later, when the matter started to collapse locally due
to many gravitational perturbations, the global curvature had to remain posi-
tive. It could not jump to zero or negative curvature, since the corresponding
manifolds are in�nite and unbounded, whereas S3 is bounded.

There is also another argument against E3 being the correct model of our
universe. By Einstein's General theory of relativity, matter curves space. Nev-
ertheless, the zero curvature of E3 is independent of the decreasing mean mass
density ρ = ρ(t) > 0 with time.

4 Furthermore, these quantities should attain arbitrarily large values at all points just after
the Big Bang.
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