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Institute of Mathematics, Czech Academy of Sciences
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Abstract

We show that the Doppler effect and aberration of light can produce
more dominant and entirely opposite effects for relativistic speeds than
those predicted by the Special Theory of Relativity, in particular, time
dilatation and length contraction. For instance, an observer will always
measure a higher frequency of an approaching clock than the same clock
has at rest. We also show that under certain conditions, an approaching
bar on a photo may seem to have a larger length for a relativistic speed
than at rest.

Keywords: Lorentz transformation, theory of groups, inertial systems,
time dilatation, length contraction

1 Introduction

According to Newton’s first law of inertia, a body will remain at rest or in
uniform motion in a straight line unless acted upon by an external force. This
fundamental physical principle serves to introduce inertial systems in the Spe-
cial Theory of Relativity (STR), see [6, p. 211]. Consider a fixed coordinate
system S with orthogonal axes x, y, z containing a fixed system of hypothet-
ical synchronized clocks that define the time coordinate t ∈ (−∞,∞) of a
uniformly flowing time. This can be, in fact, interpreted so that all clocks are
synchronized by an infinite speed of signal. The coordinate system S is called
inertial if it obeys Newton’s first law of motion.
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Let S ′ be another coordinate system with orthogonal axes x′, y′, z′ which
are for simplicity parallel with x, y, z and have the same scale at rest, see [15].
The time t′ ∈ (−∞,∞) in S ′ is introduced similarly using a fixed system of
synchronized clocks in S ′ having also the same time scale at rest. Let the
origin of S ′ move along the x axis at a constant speed v ∈ (−c, c), where c is
the speed of light in vacuum, see Fig. 1.

The Lorentz transformation (see [10]) is a fundamental tool of the STR.
The parameter defined by

γv =
1√

1− v2

c2

≥ 1 (1)

is called the Lorentz factor. Note that its reciprocal value fulfills the equation
for the unit circle (v/c)2 + (1/γv)

2 = 1. Points of the spacetime R4 are called
events. Unless otherwise stated, we will restrict ourselves to one pair of the
above described inertial systems such that the encounter of the origins of S
and S ′ determines the beginning of time counting in the first and in the second
inertial system, respectively, i.e., t = 0 in S and t′ = 0 in S ′. In this special
case the Lorentz transformation [10, p. 185] has the form Lv : R4 → R4,

x′ = γv(x− vt), (2)

y′ = y,

z′ = z,

t′ = γv

(
t− v

c2
x
)
, (3)

where x, y, z, t ∈ (−∞,∞), and the last equality expresses how to transform a
uniformly flowing proper time during transition from S to S ′. Events which are
simultaneous in S are given by the identity t ≡ t0, where t0 is a fixed constant.
Let us emphasize that any two different events which are simultaneous in S are
not causally connected. Thus, one can verify that they were really simultaneous
only when their future light cones intersect.

Fig. 1. The inertial system S′ is moving at speed v ∈ (−c, c) with respect to the

system S.
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By (3) we see that the time t′ depends not only on t but also on the position
x, i.e., t′ is not constant and thus the corresponding events do not have to be
simultaneous in S ′ for v 6= 0.

Notice that the right-hand sides of relations (2) and (3) are linear functions
in variables x and t for any fixed v. Thus, for x = (ct, x, y, z) and x′ =
(ct′, x′, y′, z′) the Lorentz transformation can be rewritten into the matrix form

x′ = Lvx,

where

Lv =


γv −v

c
γv 0 0

−v
c
γv γv 0 0

0 0 1 0
0 0 0 1

 (4)

is a block diagonal symmetric and positive definite matrix. Note that the unit
of physical dimension of all entries of the vectors x and x′ is one meter.

The inverse matrix L−1v has a similar form as Lv, only the two minus signs
in (4) being replaced by plus sign. Therefore, the Lorentz transformation Lv

is a one-to-one mapping from R4 onto R4 for v ∈ (−c, c).
Let us point out that in the limiting case |v| = c, the matrix (4) becomes

singular, since its two first rows are linearly dependent. Consequently, the
Lorentz transformation should not be applied to the surface of the light cone.
Its inverse does not exist.

2 Time dilatation

The relation (3) is to be understood only as the time which we would record
at the moment when the two clocks in S and S ′ are passing each other at one
single x-coordinate (e.g. at the origin). By definition, all clocks in each inertial
system at rest show the same time in the whole infinite three-dimensional space
(e.g. at the beginning and at the end of a motionless bar). So, when we are
exactly in the middle between any two fixed clocks, they will show us the same
time.

Consider a fixed time interval

∆t′ = t′2 − t′1,

where t′i are space independent coordinates in S ′. For an arbitrary fixed point
x in S we determine the corresponding t2 and t1 from formulae

t′2 = γv

(
t2 −

v

c2
x
)
, t′1 = γv

(
t1 −

v

c2
x
)
,
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cf. (3), and we set ∆t = t2 − t1. From this we get the well-known time
dilatation (see e.g. [8, p. 430])

∆t′ = γv

(
t2 −

v

c2
x− t1 +

v

c2
x
)

= γv∆t. (5)

By (1) we see that ∆t′ > ∆t for any v 6= 0 independently of the sign of v. The
relation (5) actually expresses that the time, measured by a clock in a moving
system S ′, runs slower than the time measured by a clock that is at rest with
respect to S. Hence, the clock at rest is fastest.

Remark 1. The time dilatation is verified by means of the transverse
relativistic Doppler effect, see e.g. [3]. This effect was first measured by Ives
already in 1938, see [9]. In classical mechanics, this transverse effect does
not occur because it is given by time dilation (5) only. Note that the Hafele-
Keating experiment [7] with two atomic clocks in airplanes and one on Earth
is not too credible, since none of the corresponding three systems was inertial.

The non-relativistic longitudinal Doppler effect [4] is described by the re-
lation

fv =
c

c− v
f, (6)

where f is the source frequency at rest, v is the speed of the source approaching
an observer along the axis x, fv is the frequency measured by the observer,
and c is the speed of signal. For relativistic speeds this relationship needs to
be corrected by time dilation [6]. All physical processes including clock speed
in S ′ will run, by (3), slower when observed from S. Thus by (6), the new
relation will be of the form

fv =
c

c− v
f ′, (7)

where c is the speed of light and

f ′ = γ−1v f (8)

corresponds to the lower frequency calculated from (5). By (7), (8), and (1)
we obtain a relativistic Doppler relation for the frequency detected in S (see
[5]),

fv =
1

1− v

c

f ′ =
γ−1v

1− v

c

f =

√
1−

(v
c

)2
1− v

c

f =

√
c+ v

c− v
f. (9)

From this we immediately get the following theorem.

Theorem 1. For any v ∈ (0, c) we have that fv/f
′ > fv/f > 1. Moreover,

fv/f →∞ as v → c.

Consequently, the Doppler effect manifests more than the time dilation
itself, whenever the clock approaches the observer. Hence, the higher the
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speed v, the greater the Doppler effect. Special relativity effects for large v are
of higher order in v

c
than those arising from the Doppler effect.

It is therefore very important to distinguish consistently between recon-
structions (calculations by means of the Lorentz transformation) and obser-
vations (e.g., measurements, detections, photos, videos, and recording in gen-
eral). The notion “observer” in the STR is thus somewhat confusing. It should
not be a person who only applies relations (2)–(3). The observer performs real
observations and measurements including all effects together as it is usually
understood, i.e., the observer measures incoming frequencies, velocities, etc.

Example 1. Suppose that a clock will be approaching the origin of S at
relativistic speed v = 0.8c. Its proper time will pass slower than on clocks
fixed in the system S, since by (1) and (5) we have

γv =
1√

1− 0.64
=

5

3

and

∆t′ =
5

3
∆t.

However, substituting v = 0.8c into (9), we find that

fv = 3f and fv = 5f ′, (10)

i.e., the observer at the origin of S will detect a 3× higher (blue-shifted)
frequency than the same clock has at rest in the system S and even a 5×
higher frequency than the time dilatation predicts by (8). This may seem to
be paradoxical, since the observer sees an opposite effect than the STR
claims due to the Doppler phenomenon.

Remark 2. For a clock receding the origin by the speed (−v), the observer
will detect by (9) a 3× lower (red-shifted) frequency than f . So there is a
jump in these constant frequencies at the origin and only in this single point
an observer could theoretically detect the proper frequency f ′.

3 Length contraction

Lorentz’s length contraction is an immediate consequence of the Lorentz trans-
formation. On the horizontal axis x′ consider a fixed bar which is at rest in
the system S ′. Denote its length by

∆x′ = x′2 − x′1, (11)

where x′i are fixed time independent coordinates of its ends in S ′. For an
arbitrary fixed time instant t in S we determine the corresponding x2 and x1
from formulae

x′2 = γv(x2 − vt), x′1 = γv(x1 − vt),
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cf. (2), and we set ∆x = x2 − x1. Substituting this into (11), we obtain (cf.
(5))

∆x′ = γv(x2 − vt− x1 + vt) = γv∆x. (12)

Denoting `0 = ∆x′ and ` = ∆x, we get by (1) the well-known length contraction

` = `0

√
1− v2

c2
. (13)

Hence, the bar at rest has the greatest length.
In 1959, Roger Penrose published a paper [11] (inspired by [12]) describing

why we should see a quickly flying, non-rotating ball in a photo again like a ball.
In the same year, his thoughts were elaborated in more detail by James Terrell
[13] using light aberration. In the article [14], Weisskopf describes an apparent
deformation of a quickly flying cube on a photo. Here is a specific example
showing the substantial effect of light aberration for relativistic speeds.

Example 2. Consider a bar with length `0 = 1 m. Assume that it moves
from the left to the right along the axis x by the constant speed v = 0.8c and
that its front end just reached the origin of the coordinate system S. By (13),
the bar is shortened to

` = `0
√

1− 0.64 = 0.6 m,

and thus the length of the straight line segment AD in Fig. 2 is |AD| = 0.4 m.
We will photograph this bar from the axis z by a fixed nonrotating camera C
which is placed at the distance

d = 0.75 m (14)

from the origin. Using the similarity of right triangles from Fig. 2, we find that
|BD| = |AD|d/`0 = 0.3 m. Therefore,

|AB| =
√
|AD|2 + |BD|2 =

√
0.42 + 0.32 = 0.5

measured in meters. The segment on the hypotenuse from B to C has the
same length in meters as d in (14),

√
12 + 0.752 − |AB| = 1.25− 0.5 = d. (15)

To avoid blurred photos, we assume that our idealized camera can take
pictures within 1 picosecond. During this time period, the light will fly 0.3
mm only and a possible blurring will not play a significant role. For simplicity,
we shall analyze only that photo, in which the front end of the bar just reached
the coordinate origin of S. However, the rear end of the bar will be on the
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photo farther than `, since the light from the front end flies along a shorter
distance d than the light from the rear end (see Fig. 2).

A D

B

C

Fig. 2. The length of the legs of the larger (or smaller) right triangle is 1 and

0.75 (or 0.4 and 0.3) meters. The ratio between the lengths of sides of the both

triangles is 5 : 4 : 3. Due to light aberration the flying bar from the left to the

right at the speed 0.8c has the same length in the photo as the same bar at rest. A

photon emitted to the camera from the rear end of the moving bar will always have

the same x-coordinate as this rear end.

That is why there will be recorded photons on the photo from the rear end
of the bar that were emitted earlier than those from the front end. During
the time period, when the rear end of the bar moves from A to D, a photon
pointing from A to the camera C will travel the distance |AB|, since v/c =
|AD|/|AB| = 0.8. Hence, thanks to light aberration and (15), the moving bar
will have on the photo the same length as the fixed one meter long bar.

Let us point out that a photon will travel the distance d from the origin to
the camera C during the time period ∆t = d/c. During this period, the bar
will shift about v∆t = 0.8d = 0.6 m, i.e., it will be placed entirely to the right
of point 0 (see Fig. 3).

Now we shall look for such a position F of the front end of the bar that a
photon emitted from F arrives to the camera C at the same time as a photon
emitted from the rear end of the bar when it is at the origin 0. In other words,
we will determine the x-coordinate of F in Fig. 3 so that |CG| = d. Using the
Pythagorean theorem, we find that

x2 + d2 = (d+ |FG|)2. (16)

Moreover, we have

|FG| = c

v
|EF | = c

v
(`− x).

Substituting this into (16), we get the quadratic equation 3x2 − 20x + 9 = 0
whose admissible solution is x1 = 1

3
(10−

√
73) = 0.485 . . . measured in meters.

Hence, the bar on photo will be shorter than ` = 0.6 m.

Example 3. Let again `0 = 1 m and v = 0.8c. Hence, ` = 0.6 m. This
time, however, we place the camera C closer to the axis x, i.e. d < 0.75 m.
We shall again analyze the image where the right end of the bar is at the
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origin. The left end of the bar will shift from the point A = (−a, 0) to the
point (−`, 0) during the time period ∆t = (a − `)/v. During this period, a
photon will travel the distance c∆t from the point A to the camera. From
the Pythagorean theorem a2 + d2 = ((a− `)c/v + d)2 we can easily derive the
following inverse formula

d =
a2
(
v
c
− c

v

)
+ 2a` c

v
− `2 c

v

2(a− `)
.

For instance, when a = 2 m we obtain d = 15
56

= 0.26 . . . m. So if we place
the camera on the axis z at a distance of 26 cm from the origin, the one meter
flying bar will appear extended in the photo as two meters long. Similarly
for v = 0.9 and d = 4 cm we even get a = 4 m. The main reason for these
surprising phenomena is that photons, which simultaneously passed through
the lens, were not emitted simultaneously in S.

A D

B

Fig. 3. Left: The front end reaches the origin. Right: The rear end reaches the

origin.

Example 4. Now let us consider a 2m long moving bar (`0 = 2 m) again
with speed v = 0.8c, and let d = 15

26
= 0.26 . . . m as in Example 3. When the

bar is exactly symmetric with respect to the origin (cf. Fig. 3 for another value
of d), the length of its left part will be 2m on the photo due to Example 3.
Since its right part has positive length, we will see that the bar is longer
than 2m on the photo.

Approaching objects are manifested by blue shift (i.e. shortening the wave
length). However, due to aberration they may seem to be prolonged, which is
paradoxical. On the other hand, receding objects that are manifested by red
shift may seem to be shortened.

4 Concluding remarks

The Special Theory of Relativity has a number of unexpected claims that
contradict our intuition. According to the STR, no experiment can be made
to decide whether the body is at rest or moving. All inertial systems for
describing physical phenomena are equivalent and there is no preferred inertial
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system. However, at present we know that the cosmic microwave background
radiation (CMB) actually determines a certain kind of a fixed reference system
in our neighborhood. Thus there arise speculations whether the principle of
relativity in the real universe holds.

It is often said that the Lorentz transformation for low speeds, |v| � c,
changes into the Galileo transformation

x′ = x− vt,
y′ = y,

z′ = z,

t′ = t.

This is not true (see [2]), since for an arbitrarily small fixed v > 0 we can
always find x such that the term vx/c2 in (3) will dominate significantly over
t. However, from (2)–(3) it follows that the Lorentz transformation changes
into the Galileo transformation for a fixed v, if we treat c as a parameter and
assume that c→∞. However, for an infinite speed of light there would be no
Doppler effect nor aberration of light.

Remark 3. For ~x = (x, y, z) and a constant velocity vector ~v ∈ R3 with
length |~v| ∈ (0, c), the general Lorentz transformation is of the form (see e.g.
[8, p. 434])

~x ′ = ~x+

(
γ − 1

|~v|2
~v · ~x− γt

)
~v, (17)

t′ = γ

(
t− ~v · ~x

c2

)
. (18)

Here the Lorentz factor γ is defined similarly as in (1), only v2 needs to be
rewritten as |~v|2. It is easy to find that for nonzero ~v = (v, 0, 0), where v ∈
(−c, c), relations (17)–(18) change to (2)–(3). In general, the Einstein addition
of velocities is neither commutative nor associative [1, 16].

We conclude by stating that the longitudinal Doppler effect and aberration
of light may cause that we observe completely opposite phenomena than those
predicted by the Special Theory of Relativity by meas of (2)–(3). Note that
relations (2)–(3) represent only a transformation of spacetime coordinates of
points from one inertial system into spacetime coordinates of the second iner-
tial system. We saw that some other effects than time dilatation and length
contraction can manifest stronger and that they cannot be shielded in any
way. For a visualization of several further accompanying effects (like nonlinear
distortion) we refer to www.spacetimetravel.org.
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Gestirne des Himmels, Abh. böhm. Ges. Wiss. 2 (1842), 466–482.

[5] A. Einstein, Zur Elektrodynamik bewegter Körper, Ann. der Phys., 322
(10) (1905), 891–921. https://doi.org/10.1002/andp.19053221004

[6] J. Foster, J. D. Nightingale, A short course in general relativity (3rd
edition), Springer, New York, 2006. https://doi.org/10.1007/978-0-387-
27583-3

[7] J. C. Hafele, R. E. Keating, Around-the-world atomic clocks: predicted
relativistic time gains, Science, 177 (1972), 166–168.
https://doi.org/10.1126/science.177.4044.166

[8] Z. Horák, F. Krupka, Fyzika, sv. 2 (in Czech), SNTL, Praha, 1976.

[9] H. E. Ives, G. R. Stilwell, An experimental study of the rate of a moving
atomic clock, J. Optic. Soc. Amer., 28 (1938), 215–226.
https://doi.org/10.1364/josa.28.000215
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