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The twin paradox, a classical puzzle in Special Relativity (SR), is typically resolved by acknowledging the 
asymmetry introduced by the acceleration of one twin’s frame, associated with a rocket’s motion through space. A 
similar paradox arises without any accelerated system, involving three or more inertial systems. This is commonly 
resolved by employing the relativistic concepts of clock synchronization and simultaneity. Here, we reformulate 
the paradox for two free-falling systems, where the twins traverse identical circular orbits in opposite directions 
around a central mass with a spherically symmetric gravitational field. This redefined version of the paradox 
eliminates asymmetry inherent in the original problem. Since both frames are free-falling, they can be viewed 
as locally inertial according to Einstein’s Equivalence Principle. Additionally, no synchronization with clocks 
in other frames is needed. We explore a potential resolution to the paradox and highlight that there may be a 
misinterpretation of the Lorentz transformation in SR.
1. Introduction

The twin paradox (or clock paradox) has been a subject of great in-
terest and intense discussions for many decades [1–7]. It is one of the 
most famous paradoxes in Einstein’s Special Theory of Relativity (SR), 
exploring the effects of time dilation resulting from relative motion of 
inertial frames. The paradox is formulated as follows: we consider two 
identical twins, one staying at home and the other traveling in a rocket 
at relativistic velocity into space and then returning home. Due to their 
relative motion, each twin’s time should run at a different rate according 
to SR. When they meet again, each twin should observe the other as be-
ing younger. This is a direct consequence of the Lorentz transformation, 
which predicts reciprocal dilation of moving clocks.

The most widely accepted solution to this paradox is attributed to 
Paul Langevin [8], who noted the lack of fully symmetry in the situation, 
as the twin in the rocket experiences acceleration. Consequently, the 
traveling twin ages less than the twin at home [4,9,10].

To remove the effect of acceleration, various modifications of the 
twin paradox have been proposed. For instance, in a closed universe 
scenario, the acceleration of the traveling twin is avoided as the twin 
can return to Earth without changing direction [11–13]. Another modi-
fication is the ‘three brothers’ paradox, introducing a third clock carried 
by a third sibling. Instead of turning the corner and returning back, the 
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traveling twin’s clock is synchronized with a third clock already moving 
at the opposite velocity towards Earth [3].

The solution to these modified paradoxes without acceleration lies in 
understanding the differences in the synchronization concept between 
classical physics and SR. Specifically, the concept of simultaneity in SR 
is fundamentally different from that in classical physics. Consequently, 
in the ‘three brothers’ paradox, each inertial frame - stationary, depart-
ing and returning - experiences different simultaneity in SR, leading to 
differential aging [14,3,4].

Despite the widely accepted solutions based on acceleration or syn-
chronization arguments, there are dissenting voices in the relativistic 
literature, considering these arguments improper or unphysical. They 
view the twin paradox as a demonstration of the logical inconsistency 
of SR and challenge the concept of relativity of time and space [15–25]. 
Notably, physicist Herbert Dingle raised substantial criticism of SR, par-
ticularly through his examination of the twin paradox [26–29], which 
sparked widespread debate and controversy, being published during 
several years in Nature [15,30–33]. The whole story about the Din-
gle’s criticism of SR is thoroughly described and commented in detail 
by Chang [34].

This paper aims to contribute to the ongoing debate about the twin 
paradox by presenting another simple thought experiment, the inter-
pretation of which remains unclear or controversial within the Special 
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Fig. 1. Scheme of two satellites in the gravitational field, orbiting around a 
central massive body. P1 and P2 are points of encounter of the satellites, 𝜑 is 
the polar angle, 𝑣0 is the orbiting velocity of satellites, and 𝑅 is the radius of 
the orbit.

and/or General Relativity (GR). Given its focus on free-falling systems 
in gravitational fields, it may also probe the validity of the Einstein’s 
Equivalence Principle [35–38], being considered as an extension of the 
relativity principle. The paper should help enhance our understanding of 
relativistic time dilation resulting from the relative motion of observers 
in inertial and/or free-falling frames.

2. Formulation of the twin paradox in the gravitational field

The formulation of the twin paradox and its variations suffer from 
basic difficulties: (i) the inherent asymmetry present in the standard ver-
sion due to the acceleration experienced by the traveling twin, or (ii) the 
need to introduce additional frames and clock synchronization in fully 
symmetric versions without acceleration. Both issues can be addressed 
in the following formulation of the paradox.

Consider twins (or clocks) on satellites orbiting around a massive, 
spherically symmetric body in a vacuum. These satellites travel along 
identical stationary circular orbits at the same velocities but in opposite 
directions (see Fig. 1). The gravitational and centrifugal forces balance 
out, rendering the satellites as free-falling systems where the twins per-
ceive no acceleration. The scenario is entirely symmetrical, and the 
twins will encounter each other repeatedly at two defined points along 
the orbit (designated by polar angles 0◦ and 180◦).

The ‘circular’ twin paradox closely resembles the original twin para-
dox. From the perspective of each twin, the other twin is repeatedly 
receding and approaching. The mutual velocity is time-dependent: it is 
zero when the distance between the twins is maximum and it is max-
imum when the twins meet. The essential difference compared to the 
classical twin paradox is that neither twin perceives acceleration. Hence, 
each twin can consider his frame as stationary and the frame of the other 
twin as moving. Additionally, this formulation eliminates any need for 
clock synchronization with other frames because the twins meet re-
peatedly and their clocks can be synchronized at one of encounters. 
Naturally, we seek to determine the time displayed by their clocks at 
subsequent encounters.

Intuitively, one might expect both twins’ clocks to show the same 
time at every encounter due to the full symmetry of the problem. How-
ever, the situation becomes more complex when considering the prin-
ciples of SR and GR. In all inertial frames, the proper speed of light 
remains constant at 𝑐, and the Lorentz transformation predicts time di-
lation between frames. Similarly, the proper speed of light remains 𝑐
in all free-falling systems, suggesting that the Lorentz transformation 
should still apply. Consequently, time dilation due to relative motion of 
frames should occur, leading each twin to perceive the other as being 
younger. The age difference should progressively increase at successive 
2

encounters.
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2.1. Mathematical description of the paradox

Let us consider two satellites circulating in opposite directions along 
an orbit of radius 𝑅 with velocity 𝑣0 (see Fig. 1). The relative velocity 
of the satellites with respect to each other is described by the relativistic 
velocity-addition formula [39, their eq. 5.2]

𝑣 =
2𝑣0

1 + (𝑣20∕𝑐
2) cos2𝜔𝑡

cos𝜔𝑡 , (1)

where 𝑣0 = 𝜔𝑅 represents the satellite velocity in the frame of the cen-
tral massive body, 𝜔 = 2𝜋∕𝑇0 is the angular velocity, 𝑇0 is the orbital 
period, and 𝑡 is time. The time dilation 𝑑𝑡 is expressed according to SR 
as

𝑑𝑡 = 𝛾𝑑𝑡′ = 1√
1 − 𝑣2

𝑐2

𝑑𝑡′ , (2)

where 𝛾 is the Lorentz factor. Subsequently, time 𝑡 of the clock at rest 
with respect to the moving clock showing time 𝑡′ is

𝑡 =

𝑡′

∫
0

𝑑𝑡′√
1 − 𝑣2

𝑐2

=

𝑡′

∫
0

√√√√√1 −
4(𝑣20∕𝑐

2) cos2𝜔𝑡′(
1 + (𝑣20∕𝑐

2) cos2𝜔𝑡′
)2

−1

𝑑𝑡′ . (3)

After the satellites complete one orbit with a period 𝑇 ′
0 , the orbital time 

dilation 𝑇0 is

𝑇0 =

𝑇 ′
0

∫
0

√√√√√1 −
4(𝑣20∕𝑐

2) cos2𝜔𝑡′(
1 + (𝑣20∕𝑐

2) cos2𝜔𝑡′
)2

−1

𝑑𝑡′

=
2𝑇 ′

0
𝜋

𝜋∕2

∫
0

1 + (𝑣20∕𝑐
2) cos2𝜑

1 − (𝑣20∕𝑐
2) cos2𝜑

𝑑𝜑 .

(4)

Since the problem is fully symmetric, it seems evident that the twins 
should be of the same age and the clocks of both satellites must show 
the same time when the twins repeatedly meet. However, considering 
that 𝑇0 must equal 𝑇 ′

0 in Eq. (4), Eqs. (2)-(4) for time dilation are either 
erroneous or not applicable in this case. The equality 𝑇0 = 𝑇 ′

0 holds true 
only for 𝑣0 = 0; for other values of 𝑣0 > 0, we get 𝑇0 > 𝑇 ′

0 . Note that 𝑇0
even diverges as 𝑣0 approaches 𝑐.

2.2. What is the solution of the paradox?

To resolve the aforementioned paradox, we need to assess whether 
the Lorentz transformation, which relates times 𝑡 and 𝑡′ in the mutu-
ally moving frames in SR, is applicable in this scenario. If applicable, 
we must then examine whether it is physically justified and properly 
interpreted.

Given that the satellites are free-falling frames, Einstein’s Equiva-
lence Principle [35,36] ensures that they should behave similarly to 
inertial frames in Minkowski spacetime. Moreover, no gravitational shift 
needs to be considered because the satellites maintain a fixed distance 
from the central body ensuring a constant gravitational potential. The 
only necessary correction is for relativistic time dilation, which should 
not pose any difficulty. Similar corrections have been applied to satel-
lites orbiting Earth, for example, they are routinely used in GPS satellite 
data [40,41]. The difference here is that the GPS corrections are calcu-
lated between a satellite and an observation point on Earth’s surface, 
whereas we aim to calculate relativistic corrections between two satel-
lites. Thus, there is no apparent reason why the Lorentz transformation 
should not be applied to calculate time dilation in the presented para-
dox.

Next, we will examine whether the paradox could arise from an er-
roneous use or misinterpretation of the Lorentz transformation. The 
Lorentz transformation between mutually moving frames (𝑥, 𝑡) and 

(𝑥′, 𝑡′) is expressed by the following equations [39, their eq. 4.3]
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Fig. 2. Standard interpretation of the Lorentz transformation in SR. Frames (𝑥, 𝑡)
and (𝑥′, 𝑡′) are moving at non-zero relative velocity 𝑣. It is incorrectly assumed 
that the Lorentz transformation predicts time dilation between clock A in frame 
(𝑥, 𝑡) at 𝑥 = 0 for all 𝑡 and clock B in the frame (𝑥′, 𝑡′) at 𝑥′ = 0 for all 𝑡′. Hence, if 
we assume a constant Lorentz factor 𝛾 with value of 2, after one hour in the frame 
(𝑥′, 𝑡′), clock A should show twice larger time than clock B. For time-dependent 
𝛾 , times 𝑡𝐴 and 𝑡′

𝐵
in the plot should be substituted by the time differentials 𝑑𝑡𝐴

and 𝑑𝑡′
𝐵

.

𝑡′ = 𝛾

(
𝑡− 𝑣

𝑐2
𝑥

)
, (5)

𝑥′ = 𝛾 (𝑥− 𝑣𝑡) , (6)

and its inverse reads

𝑡 = 𝛾

(
𝑡′ + 𝑣

𝑐2
𝑥′
)

, (7)

𝑥 = 𝛾
(
𝑥′ + 𝑣𝑡′

)
, (8)

where 𝛾 = 1∕
√
1 − 𝑣2∕𝑐2 is the Lorentz factor, velocity 𝑣 is directed 

along the 𝑥-axis, and 𝑦′ = 𝑦, 𝑧′ = 𝑧.
These equations satisfy the Lorentz invariance condition

𝑐2𝑡2 − 𝑥2 = 𝑐2𝑡′ 2 − 𝑥′ 2 . (9)

For simplicity, we assume in Eqs. (5)-(9) a constant relative velocity 
𝑣 between the frames and consequently a constant Lorentz factor 𝛾 . The 
generalization of the Lorentz transformation to a time-dependent 𝛾 =
𝛾(𝑡) in Eq. (2) is straightforward as shown in Appendix A.

To understand the physical meaning of Eqs. (5)-(9), we first examine 
the relation between the original and transformed times 𝑡 and 𝑡′ for an 
object located in the origin of coordinates 𝑥′ = 0. Using Eqs. (7) and (8), 
we obtain

𝑡 = 𝛾𝑡′ , (10)

𝑥 = 𝛾𝑣𝑡′ = 𝑣𝑡 . (11)

Eq. (10) is the standard equation for the relativistic time dilation be-
tween two inertial frames, interpreted that time 𝑡′ in a moving frame 
runs slower than time 𝑡 in the frame at rest (see Fig. 2, clocks A and 
B). However, this interpretation is misleading because Eq. (10) does not 
define the time relation between 𝑡 and 𝑡′ for two mutually moving ob-
jects; it does not describe a situation where one object remains fixed at 
𝑥 = 0 and the other at 𝑥′ = 0 for all times 𝑡 or 𝑡′. Actually, Eq. (10) de-
fines the time relation between 𝑡 and 𝑡′ for two objects, which are at the 
same point in the moving frame (𝑥′ = 0) for all times 𝑡 or 𝑡′ (see Fig. 3, 
3

clocks B and C),
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Fig. 3. Correct interpretation of the Lorentz transformation. Frames (𝑥, 𝑡) and 
(𝑥′, 𝑡′) are moving at non-zero relative velocity 𝑣, but clocks B and C are at 
rest to each other. The Lorentz transformation predicts time dilation between 
clocks B and C. For the sake of simplicity, we assume a constant Lorentz factor 
𝛾 with value of 2. Hence after one hour in the frame (𝑥′, 𝑡′), clock C will show 
twice larger time than clock B. For time-dependent 𝛾 , times 𝑡′

𝐵
and 𝑡𝐶 in the plot 

should be substituted by the time differentials 𝑑𝑡′
𝐵

and 𝑑𝑡𝐶 .

𝑡 (𝑥 = 𝑣𝑡) = 𝛾𝑡′
(
𝑥′ = 0

)
. (12)

This implies that both clocks (Fig. 3, clocks B and C) do not move 
relative to each other; they are at rest with respect to each other, both 
located at the same point, 𝑥′ = 0. The only difference is that clock B 
shows time 𝑡′ and clock C shows time 𝑡.

To relate times 𝑡 and 𝑡′ for two mutually moving objects, we need to 
utilize the Lorentz invariance condition defined in Eq. (9). Let us assume 
the first clock in frame (𝑥, 𝑡) is situated at 𝑥 = 0 for all times 𝑡 (Fig. 4, 
clock A) and another clock in frame (𝑥′, 𝑡′) situated at 𝑥′ = 0 for all times 
𝑡′ (Fig. 4, clock B). Inserting 𝑥 = 0 and 𝑥′ = 0 into the Lorentz invariance 
condition expressed in Eq. (9), we readily obtain

𝑡 = 𝑡′ , (13)

which means that no time dilation should be observed for mutually mov-
ing clocks (Fig. 4, clocks A and B). We arrive at the same conclusion 
when we take into account the time-varying Lorentz factor 𝛾 , as ex-
plained in Appendix A.

3. Discussion

We have demonstrated that the time dilation between moving frames 
stems from misinterpretation of the Lorentz transformation. A proper 
analysis of the Lorentz transformation indicates that clocks in moving 
frames display the same time regardless of their relative velocity. This 
elucidates the twin paradox in a gravitational field, where twins repeat-
edly meet while orbiting at high speeds in opposite directions around a 
massive spherically symmetric body. Clearly, the clocks must show the 
same time in any physically meaningful theory, and the Lorentz transfor-
mation aligns with this observation. Similar arguments can be applied 
to explain the classical twin paradox, where the Lorentz transformation 
does not predict a difference in age, when the twins meet again.

With this understanding, we need to address how to physically inter-
pret the time dilation expressed in Eq. (10). As mentioned earlier, this 
equation applies to the relation between clocks B and C in Fig. 3. Both 
clocks are at rest relative to each other: clock B is situated at the ori-
gin of frame (𝑥′, 𝑡′) and clock C is considered to be part of frame (𝑥, 𝑡). 

While clock C is at rest with respect to clock B, it is moving relative to 



V. Vavryčuk and M. Křížek

Fig. 4. Correct interpretation of the Lorentz transformation. Frames (𝑥, 𝑡) and 
(𝑥′, 𝑡′) are moving at non-zero relative velocity 𝑣. For the sake of simplicity, we 
assume a constant Lorentz factor 𝛾 with value of 2. The Lorentz transformation 
predicts no time dilation between clock A in frame (𝑥, 𝑡) at 𝑥 = 0 for all 𝑡 and 
clock B in frame (𝑥′, 𝑡′) at 𝑥′ = 0 for all 𝑡′. For time-dependent 𝛾 , times 𝑡𝐴 and 
𝑡′
𝐵

in the plot should be substituted by the time differentials 𝑑𝑡𝐴 and 𝑑𝑡′
𝐵

.

the origin of frame (𝑥, 𝑡). Eq. (10) predicts that clocks B and C would 
display different times, which is physically absurd. Clocks at the same 
point in space with a zero relative velocity cannot run differently.

However, the reason for this peculiar behavior of clocks is straight-
forward. The Lorentz transformation is a formal mathematical construct 
that aims to maintain the speed of light 𝑐 as constant relative to the 
origins of both frames (𝑥, 𝑡) and (𝑥′, 𝑡′). Consequently, there is no alter-
native way to mathematically satisfy this requirement. Thus, the trans-
formation should be viewed as purely formal, preserving the constant 
speed of light by adjusting units. The units used for measuring time and 
length are modified to obtain the same numerical value of the speed of 
light. Obviously, this rescaling procedure is not physical.

This suggests that the requirement of the constant speed of light in all 
inertial frames may be questionable from a physical standpoint. There-
fore, interferometric experiments measuring the constancy of the speed 
of light [42–47] should be carefully reassessed and properly reinter-
preted as pointed out by several authors [48–50]. As shown by Vavryčuk 
[51], the Lorentz transformation is not the only transformation consis-
tent with the null result of these experiments. For example, the Doppler 
transformation is physically more justified and also predicts the null 
result in the ether-drift experiments. In this case, the principle of the 
constant speed of light in all inertial frames is formulated to apply to the 
phase speed of light instead of the signal (energy) speed of light. Addi-
tionally, the Doppler transformation does not produce different ticking 
rates for clocks B and C in Fig. 3.

Note that while the Lorentz transformation lacks direct physical 
meaning, it still may remain a useful tool in solving problems in both 
SR and GR. It may serve as a formal parametrization, simplifying the 
mathematical treatment of various relativistic issues. Consequently, it 
may find applications in physics, but its physical interpretation should 
always be approached with caution.

CRediT authorship contribution statement

Václav Vavryčuk: Writing – original draft, Methodology, Investiga-
4

tion, Conceptualization. Michal Křížek: Methodology, Investigation.
Physics Letters A 525 (2024) 129886

Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper.

Data availability

No data were used for the research described in the article.

Acknowledgements

We thank an anonymous reviewer for his constructive review. The 
second author was supported by the Czech Science Foundation Grant 
no. 24-10586S and RVO 67985840.

Appendix A. Lorentz transformation for free-falling frames with 
time-dependent Lorentz factor 𝜸

Here, we will generalize the physical interpretation of the Lorentz 
transformation for free-falling frames with time-dependent Lorentz fac-
tor 𝛾 . In this case, we must use a relation between differentials (𝑑𝑥, 𝑑𝑡)
and (𝑑𝑥′, 𝑑𝑡′) instead of the relation between (𝑥, 𝑡) and (𝑥′, 𝑡′), com-
monly used for inertial frames,

𝑑𝑡′ = 𝛾

(
𝑑𝑡− 𝑣

𝑐2
𝑑𝑥

)
, (A.1)

𝑑𝑥′ = 𝛾 (𝑑𝑥− 𝑣𝑑𝑡) . (A.2)

The inverse Lorentz transformation reads

𝑑𝑡 = 𝛾

(
𝑑𝑡′ + 𝑣

𝑐2
𝑑𝑥′

)
, (A.3)

𝑑𝑥 = 𝛾
(
𝑑𝑥′ + 𝑣𝑑𝑡′

)
. (A.4)

These equations satisfy the Lorentz invariance condition

𝑐2𝑑𝑡2 − 𝑑𝑥2 = 𝑐2𝑑𝑡′ 2 − 𝑑𝑥′ 2 . (A.5)

Similarly as for inertial systems, we first examine the relation be-
tween the original and transformed times 𝑡 and 𝑡′ for an object located 
at the origin of coordinates 𝑥′ = 0. Since the object remains at rest in the 
frame (𝑥′, 𝑡′) for all times 𝑡′, the distance element 𝑑𝑥′ is zero: 𝑑𝑥′ = 0. 
Using Eqs. (A.3) and (A.4), we obtain

𝑑𝑡 = 𝛾𝑑𝑡′ , (A.6)

𝑑𝑥 = 𝛾𝑣𝑑𝑡′ = 𝑣𝑑𝑡 . (A.7)

Eq. (A.6) is the standard equation for time dilation in SR, interpreted 
that time 𝑡′ in a moving frame runs slower than time 𝑡 in the frame at rest 
(see Fig. 2, clocks A and B). However, this interpretation is misleading 
because Eq. (A.6) does not define the time relation between 𝑑𝑡 and 𝑑𝑡′
for two mutually moving objects. Actually, Eq. (A.6) defines the time re-
lation between 𝑑𝑡 and 𝑑𝑡′ for two objects, which are at the same point in 
the moving frame (𝑥′ = 0) for all times 𝑡 or 𝑡′ (see Fig. 3, clocks B and C),

𝑑𝑡 (𝑑𝑥 = 𝑣𝑑𝑡) = 𝛾𝑑𝑡′
(
𝑑𝑥′ = 0

)
. (A.8)

This implies that both clocks (Fig. 3, clocks B and C) do not move 
relative to each other, both located at 𝑥′ = 0. The only difference is that 
clock C shows time 𝑡 and clock B shows time 𝑡′.

To relate times 𝑡 and 𝑡′ for two mutually moving objects, we need 
to utilize the Lorentz invariance condition defined in Eq. (A.5). Let us 
assume the first clock in frame (𝑥, 𝑡) is situated at 𝑥 = 0 with a fixed 
position, 𝑑𝑥 = 0 (Fig. 4, clock A). Analogously, we consider another 
clock in frame (𝑥′, 𝑡′) situated at 𝑥′ = 0 with a fixed position, 𝑑𝑥′ = 0
(Fig. 4, clock B). Inserting 𝑑𝑥 = 0 and 𝑑𝑥′ = 0 into the Lorentz invariance 
condition expressed in Eq. (A.5), we readily obtain
𝑑𝑡 = 𝑑𝑡′ , (A.9)
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which means that no time dilation should be observed for mutually mov-
ing clocks (Fig. 4, clocks A and B).
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