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Abstract—We give more than 10 examples based on astronomical observations showing that dark energy
acts not only on large scales but also on small scales. In particular, we present several independent
arguments that the average Earth-Sun distance increases by about 5 m/yr. Such a large recession speed
cannot be explained by the solar wind, tidal forces, plasma outbursts from the Sun, or by the decrease of the
Solar mass due to nuclear reactions. We also discuss possible reasons for disagreement with other authors,
who propose much smaller values.
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1. INTRODUCTION

1.1. Paradoxes in the Solar System. The
Solar System can at present be assumed to be suf-
ficiently isolated from the influence of other stars.
For instance, the gravitational force of the nearest
known star Proxima Centauri on Earth is one million
times smaller than the maximum gravitational force
of Venus.

In this paper we give more than 10 examples
showing that some repulsive (antigravity) forces can
be detected in the Solar System by means of a wide
interdisciplinary approach. We present several geo-
physical, heliophysical, climatological, geochrono-
metrical, paleontological, astrobiological, mathemat-
ical, and astronomical observational arguments to
support this conjecture. Introducing dark energy
(DE) into the Solar System, a number of classical
paradoxes can be easily explained, such as the Faint
Young Sun Paradox, the very large orbital momentum
of our Moon and Triton, the formation of Neptune and
the Kuiper belt, an unexplained residual in the orbit
of Neptune and migration of other planets, rivers on
Mars, the Tidal Catastrophe Paradox of the Moon,
the existence of fast satellites and Saturn’s rings be-
low the stationary orbits, etc.

No model describes reality absolutely exactly.
Therefore, an extremely small deviation ε > 0 of
the real position of some body (comet, planet, star,
etc.) from Newtonian mechanics or from general
relativity during one year may cause after one billion
years quite a large and detectable value of order
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109ε. All small deviations are generally not cancelled
(like, e.g., rounding errors are statistically annulled),
but accumulated and then possibly observed. They
appear if deviations are cumulative, i.e. secular, which
means that they act always towards one and the same
“direction”. At present, a substantial portion of these
cumulative deviations could be interpreted as DE
effects, which might explain (at least partly) the origin
of DE.

1.2. The Hubble parameter. DE is spread
almost uniformly everywhere in the Universe. Thus
it has an essential influence on the Hubble parame-
ter H = H(t) which characterizes the expansion rate
and can be written as

H(t) =
a′(t)
a(t)

, (1)

where the prime stands for the time derivative and
a = a(t) is the cosmological scale factor. According
to Planck Collaboration [70], the present (model-
dependent) value of the Hubble parameter is about

H0 = 67.3 ± 1.2 km s−1 Mpc−1, (2)

and

t0
.= 13.8 Gyr

.= 4.355 · 1017 s (3)

is the age of the Universe. The behaviour of the real
Hubble parameter H = H(t) is sketched in Fig. 1.
The corresponding data were taken from [65], which
is also based on recent Planck satellite results [70].
Integrating (1), the associated expansion function
can be expressed as

a(t) = a(t) exp
∫ t

t
H(τ)dτ for 0 < t ≤ t. (4)
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Fig. 1. The behavior of the Hubble parameter H = H(t)
is sketched by the solid line. The dashed-dotted line
stands for the corresponding deceleration parameter q =
q(t) = −1 − H ′(t)/H2(t). The lower horizontal axis
shows time in Gyr since the Big Bang. In the upper
horizontal axis we see the corresponding redshift z.

Note that measurements in the neighborhood of
our Galaxy with redshift z ≈ 0 yield a larger value
H0 = 72 km s−1 Mpc−1 (see [57, 84]) than that in (2)
obtained by fearless extrapolation methods of the mi-
crowave cosmic background with z ≈ 1100.

The current mean distance between the Earth and
the Sun is called the astronomical unit and is de-
noted by au. Its present value was redefined by the
IAU in 2012 as follows:

1 au = 149 597 870 700 m ≈ 150 · 109 m, (5)

and it is almost equal to the present value of the semi-
major axis of the Earth’s elliptic orbit. The previously
accepted value of 1 AU = 149 597 870 691 was thus
raised by 9 meters.

Now we will rescale H0 from (2) to 1 au. Since
1 pc = 206 265 au and one sidereal year has
31 558 149.54 s, an equivalent value of H0 given by (2)
is 10.3 ± 0.2 m yr−1au−1, i.e.,

H0 ≈ 10 m yr−1au−1. (6)

The value H0 as stated in (6) is so large that some
local manifestations of DE should be detected in our
own Solar System. In particular, in the next section
we show by several independent methods that the
average recession speed of the Earth from the Sun is
very roughly about 5 m/yr.

2. LARGE MEAN RECESSION SPEED
OF THE EARTH FROM THE SUN

From now on, 0 will stand for the present time, i.e.,
H(0) = H0.

2.1. Mean DE effect on the Solar System. DE
is distributed almost uniformly in the Universe. There
is no reason to assume that DE would somehow avoid
the Solar System. Thus, it should also be present in
the Solar System. In this section we will show that
DE has a substantial effect even on scales as small as
astronomical units,

H
(loc)
0 ≈ 0.5H0. (7)

This does not mean that the average recession speed
of the Earth from the Sun (whose distance is 1 au)
should be 5 m per year by (6), but some large speed
of several meters per year can be deduced, as we
shall see below. We illustrate that the local expansion
rate of the Solar System is smaller than the global
expansion rate of the Universe, i.e.,

H0 > H
(loc)
0 ,

but it is of the same order (see e.g. (9), (24), (30),
(34)).

Modern levels of accuracy do not allow us to de-
termine directly the secular changes of the Earth-Sun
distance ([68], p. 78). The reason is that the center of
gravity of the Solar System moves circa 1000 km per
day with respect to the Sun as shown in [4], p. 542
or [50], p. 5. Local effects of DE in the Solar System
are also examined in [1, 3, 10–13, 23, 25, 41, 42,
44]. Local and global measurements of the Hubble
parameter are compared in [35] and [77].

2.2. Stable conditions for life on Earth due to
almost constant solar flux. Life on Earth has ex-
isted continually for at least 3.5 Gyr, and this requires
relatively stable conditions during this very long time
period. However, since the Sun is a star on the main
sequence of the HR diagram, its luminosity has in-
creased approximately linearly within the last 4.5 Gyr
(Fig. 2). The initial value of the luminosity was only
70% of its present value [72]. This leads to the paradox
usually referred as the Faint Young Sun, see, e.g., [15,
53, 73, 74]. The mean temperature on the Earth’s
surface would have been much below the freezing
point, in contrast to the absence of glaciation in the
first 2.7 Gyr (see [4], p. 177). G. Feulner [14] tries
to find geochemical constraints on the composition of
Earth’s early atmosphere to explain the Faint Young
Sun problem. However, it is generally believed that
the greenhouse effect, higher levels of radioactivity,
impacts of comets, and more volcanism 3.5 Gyr ago
are not able to explain this paradox.

The Faint Young Sun paradox is, in fact, more
severe due to the ice-albedo feedback of the frozen
ocean. To prevent the Earth from freezing over, a
much higher concentration of CO2 than today is as-
sumed in [45]. Nevertheless, the Faint Young Sun
paradox can also be easily explained by antigravity
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Fig. 2. Linearized relative luminosity L/L0 of the Sun
from the origin of the Solar System up to the present.
The time t is given in Gyr. The thick segment along the
horizontal axis indicates the period when Mars had liquid
water on its surface. In the middle of this time interval,
also life on Earth appeared.

forces produced by DE, as was first presented in [50]
and then further developed in [34].

Assume for a moment that the recession speed of
the Earth from the Sun during the last 3.5 Gyr was
equal to the constant value

v = 5.2 m/yr (8)

which is in good agreement with (7), since by (6) we
get

H
(loc)
0 ≈ 0.52H0 (9)

for the expansion of the Earth-Sun system. We claim
that in this case the Earth would receive an almost
constant flux density of energy comparable with the
solar constant (i.e., the total solar power incident per
unit area of 1 m2 perpendicularly to rays at the top of
the Earth’s atmosphere corrected to 1 au)

L0 = 1.36 kW m−2 (10)

over a very long period of the last 3.5 Gyr.
To prove this (see Proposition 2.1 below), we put

τ = −3.5 Gyr. Since the luminosity of the Sun in-
creases approximately linearly with time and it was
only about 77% of its present value 3.5 Gyr ago (see
Fig. 2), we set

L(t) =
(
1 − 0.23

t

τ

)
L0 (11)

for every t ∈ [τ, 0], i.e. L(0) = L0. As the luminosity
decreases with the square of the distance, we can
state the following:

Proposition 2.1 (Optimal recession speed of
the Earth from the Sun). Set

Lopt(t) =
L(t)R2

(R + vt)2
, t ∈ [τ, 0], (12)

where R = 1 au and v is given by (8). Then

Lopt(t) ≈ 1.36 ± 0.005 kW m−2 ∀ t ∈ [τ, 0]. (13)

Proof. The very small dispersion of luminosity
±0.005 kW m2 on the right-hand side of Eq. (13)
can be easily derived analytically by investigating the
rational function Lopt(t) (see Fig. 3). It is concave on
the whole interval [τ, 0],

1.3573 < Lopt(τ) = min
t∈[τ,0]

Lopt(t)

< max
t∈[τ,0]

Lopt(t) < 1.3646,

and Lopt(0) = L0. �
The luminosity (12) would, of course, guarantee

very stable conditions (13) for the development of
intelligent life on Earth over a very long period of
3.5 Gyr. In particular, the amount of DE seems to be
just right for an almost constant influx of solar energy
and thus also for the appearance of mankind.

DE thus represents further support for the (weak)
Anthropic Principle, which states that the basic
physical constants are favorable to the emergence
of life only if they are in very narrow intervals [50].
Moreover, the speed in (8) is optimal in the sense
that any other slightly different speed would not yield
an almost constant flux expressed by the rational
function in (12) on the time interval of 3.5 Gyr.
Thus probably the real mean recession speed of the
Earth from the Sun was close to the value 5.2 m/yr
(see Propositions 2.2 and 2.3 and Remarks 2.1–2.4
below).

The real mean speed of the Earth from the Sun
could be even slightly higher than (8) since the tem-
perature of the oceans 3.5 Gyr ago was about 80◦C,
see [55]. It is known that a decrease of the luminosity
by only a few percent caused ice ages in the past. A
decrease larger than 5% would cause total glaciation
of the whole planet.

A decrease or increase of the solar constant (10)
up to 5% corresponds to a ring—popularly called the
ecosphere (habitable zone)—with radii (0.95)1/2

au and (1.05)1/2 au which represents a very narrow
range of 145.8–153.3 million km from the Sun.

Now, for a variable continuous recession speed v ∈
C([τ, 0]), we define similarly to (12) the associated
luminosity

L(v, t) =
L(t)R2(

R −
∫ 0
t v(θ)dθ

)2 , t ∈ [τ, 0], (14)

where τ = −3.5 Gyr, R = 1 au, and L(t) is defined
by (11).

Proposition 2.2 (Two-sided bounds). If the
recession speed v = v(t) of the Earth from the
Sun lies in the interval [4.26, 6.14] m/yr for every
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Fig. 3. Plot of the almost constant function t �→ Lopt(τ ) over the interval [τ, 0]. The vertical axis is substantially shortened for
clarity of the presentation.

t ∈ [τ, 0], then the luminosity determined by (14)
changes at most about 5% from L0, namely,

0.95L0 ≤ L(v, t) ≤ 1.05L0 ∀t ∈ [τ, 0].

Proof. For the constant velocity v1 ≡ 4.26 m/yr
the rational function t �→ L(v1, t) is increasing on
[τ, 0], and thus by (14)

0.95L0 =
L(τ)R2

(R + v1τ)2
= L(v1, τ)

≤ L(t)R2

(R + v1t)2
= L(v1, t) (15)

for any t ∈ [τ, 0]. Analogously, for the constant ve-
locity v2 ≡ 6.14 m/yr, we find that t �→ L(v2, t) is
decreasing, and therefore,

L(v2, t) ≤ L(v2, τ) =
L(τ)R2

(R + v2τ)2
= 1.05L0. (16)

Putting (15) and (16) together, we find by (14) that
for any t ∈ [τ, 0]

0.95L0 ≤ L(t)R2

(R + 4.26t)2
≤ L(t)R2(

R −
∫ 0
t v(θ)dθ

)2

≤ L(t)R2

(R + 6.14t)2
≤ 1.05L0. �

A more important converse proposition has stron-
ger assumptions on velocities.

Proposition 2.3 (Additional two-sided bo-
unds). If the mean recession speed v lies outside
the interval [4.26, 6.14] m/yr, then there exists a
nonempty subinterval I ⊂ [τ, 0] such that the lumi-
nosity L(v, t) is less than 95% or greater than 105%
of L0 for all t ∈ I.

Proof. If v < v1 ≡ 4.26 m/yr, then similarly to
(15) we get

L(v, τ) =
L(τ)R2

(R + vτ)2
<

L(τ)R2

(R + v1τ)2

= L(v1, τ) = 0.95L0.

From the continuity of the rational function t �→
L(v, t) it follows that there exists a nonempty time
interval I1 such that L(v, t) < 0.95L0 for all t ∈ I1.

Analogously to (16) we find that for v > v2 ≡ 6.14
m/yr there exists a nonempty interval I2 ⊂ [τ, 0] such
that L(v, t) > 1.05L0 for all t ∈ I2. �

Remark 2.1. The statement of Proposition 2.3
would not guarantee suitable conditions for the de-
velopment of life. From Propositions 2.2 and 2.3 we
find that a probable secular expansion rate of Earth’s
trajectory lies in the range

[0.426H0, 0.614H0].

Such a local expansion is therefore perfectly tuned
(see [50]).

Remark 2.2. The recession speed (8) also guar-
antees very stable conditions on the Earth for sev-
eral Gyr in the future. For instance, during the next
3.5 Gyr from now the flux density of energy from the
Sun will be in the interval 1.33–1.36 kW m−2 if the
luminosity behaves as in (12).

Remark 2.3. The linear function L(t) = (1 −
0.23t/τ)L0 (cf. Fig. 2) is in some models replaced
with a rational function (see e.g. [4], p. 177)

L̂(t) =
L0

1 + 0.3t/τ0
, t ∈ [τ, 0],

where τ0 = −4.5 Gyr. In this case the optimal mean
recession speed (guaranteeing an almost constant
energy flux from the Sun) is v = 4.36 m/yr, and the
mean recession speed should be in the interval [3.27,
5.21] m/yr to keep variations of the solar energy flux
below 5% as in Propositions 2.2 and 2.3.

Remark 2.4. From Fig. 1 we observe that H =
H(t) is almost constant over the last 4.5 Gyr when
the Solar System was formed. It lies in the interval
[H0,

5
4H0]. Assuming that H(t) is constant, i.e.,

H(t) ≡ H0, we get by (4)

a(t) ≈ a(0) exp(H0t). (17)
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Proposition 2.1 can be modified for an exponential ex-
pansion as follows. If the mean recession speed of the
Earth from the Sun is ṽ = 5.014 m/yr, then Lopt(t) =
1.36 ± 0.008 kW m−2 for all t ∈ [τ, 0], which is anal-
ogous to (8) and (13). Also Propositions 2.2–2.3 can
also be modified only slightly. However, in Section
5.2 we show that the expansion function a = a(t) is
almost linear during the last 4.5 Gyr.

The paper [89] suggests to test the existence of
dark matter and DE on the scale of the Solar System
(see also [40, 49]).

2.3. Analysis of growth patterns on fossil
corals from solar data. The present value of the
sidereal year is

Y = Y (0) = 31 558 149.54 s

= 365.25636 · 24 · 3600 s. (18)

However, the length of the sidereal year in seconds in
ancient times was

Y (t) = n(t)(24 · 3600 + f(t)t), t ≤ 0, (19)

where (−t) is the number of revolutions of the Earth
about the Sun, t = 0 corresponds to the present time,
f = f(t) > 0 characterizes the day length increase
per year (i.e., slowdown of the Earth’s rotation),
and n(t) is the number of days per year which is
known from paleontological data by calculating the
number of layers deposited during one year in fossil
corals. Hundreds of patterns were examined in [90],
pp. 4013–4014. One should have at least three or
four consecutive years of data to reduce the error
in the calculations. In particular, for the Devonian
era Zhang et al. [90] found that n(τ) ≈ 405 days
for τ = −370 · 106 years ago. A similar value of
about 400 days can be found in the classic paper
by Wells [85] from the seventies. Due to larger
tidal forces when the Moon was closer to the Earth
and the Earth closer to the Sun, the function f is
decreasing. Note that tidal forces decrease cubically
with distance, see [4], p. 96. According to [90],
p. 4014, f(τ) = 2.6 · 10−5 s per year, whereas the
present value is

f(0) = 1.7 · 10−5 s/yr. (20)

It was measured with respect to some fixed quasars at
cosmological distances (see also Subsection 4.2 for
a different approach). The Earth’s rotational history
(paleorotation) is examined, e.g., in [62, 86]. Substi-
tuting the above data into (19), we get (cf. (18))

Y (τ) = 405(86400 − 2.6 · 10−5 · 370 · 106)
= 405 · 76780 = 31 095 900 (s),

i.e., the day in the Devonian era had about 76780
seconds (≈21.327 hours).

Now denote by R(t) the Earth’s semimajor axis at
time t. For a very short time, Kepler’s third law

R3(t)
Y 2(t)

=
GM�
4π2

(21)

describes reality quite well. Here

G = 6.674 · 10−11 m3 kg−1 s−2 (22)

is the gravitational constant and

M� = 1.989 · 1030 kg (23)

is the Sun’s mass which can be assumed to be con-
stant as we shall derive in Subsection 3.4. Note that
Kepler’s laws are not reliable over long time periods,
especially due to DE. Thus, applying (19)–(23) for
t = τ , we get the length of the major semiaxis of
Earth’s orbit in the Devonian era

R(τ) =
(

Y 2(τ)GM�
4π2

)1/3

= 148.1 · 109 m.

This together with (5) yields the following mean re-
cession speed, which has the same order of magnitude
as that in (8) or Remark 2.3:

v =
R(τ) − R(0)

τ
=

(149.6 − 148.1) · 109

370 · 106

= 4.01 (m/yr).

In this case from (6) we get

H
(loc)
0 ≈ 0.4H0. (24)

A drawback of this method is that v is sensitive
to the particular choice of n(τ) and f(τ). Therefore,
Zhang et al. ([90], p. 4016), used hundreds of pa-
leontological data from various epochs starting from
the Cambrian era. They derived a somewhat higher
mean recession speed ∼0.57H0, which is again in
good agreement with (8). From Fig. 4 of [90] we find
that during the last 500 Myr the Earth-Sun distance
increased by about 3 million km. This implies an
average recession speed of 6 m/yr.

Remark 2.5. By (8) the semimajor axis R = 1
au of Earth’s orbit increases on the average by about
∆R = 5.2 m per sidereal year. However, such a small
change cannot be reliably detected since the Newto-
nian barycenter of the Solar System travels hundreds
of thousands km per year due to the influence of large
planets. From Kepler’s third law

(R + ∆R)3

(Y + ∆Y )2
=

R3

Y 2

we can easily find that the increase of the orbital
period of the Earth after one year would be only ∆Y =
1.6 ms. In particular,

Y 2(R3 + 3R2∆R + · · · ) = R3(Y 2 + 2Y ∆Y + · · · ).
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Neglecting higher-order terms, we get by (18) and (5)

∆Y ≈ 3Y
2R

∆R = 0.0016 s. (25)

Such a small time change also cannot be reliably
detected, since one or two additional leap-seconds
are usually added every year to compensate for the
slowing of Earth’s rotation. The increase of the or-
bital period by about ∆Y = 1.6 ms would require one
additional second after 35 years, since after two years
we have to add 2∆Y to the orbital period, after 3 years
3∆Y , etc. By properties of the triangular numbers we
get

(1 + 2 + · · · + 35)∆Y

= (1 + 35)
35
2

· 0.0016 ≈ 1 (s).

This makes the evidence of a slightly increasing or-
bital period very difficult to obtain.

2.4. Analysis of growth patterns on fossil
corals from lunar data. Let P = P (t) be the length
of the sidereal month and s = s(t) the number of side-
real months per year. At present it is P (0) = 27.322
days, and s(0) = 13.368. The number s(t) is known
from paleontological data for many negative t’s, since
s equals one plus the number of lunar months. The
number of lunar months can be manually calculated
from many growth patterns on coral fossils (see [85],
p. 4012). Note that in the Cambrian era, the Moon
was at least 20 000 km closer to the Earth than it is
now, so its angular area was more than 10% larger
than it is now and thus lunar patterns are better visible
on fossil corals. In particular, s(τ) ≈ 14.2 for τ =
−5 · 108 years according to [90], p. 4013.

Using the generalized Kepler’s third law for the
Earth-Moon system, we obtain the length of the year

Y (t) = s(t)P (t)

= s(t)
(

(D + w(t)t)3
4π2

G(M + m)

)1/2

, (26)

where

D = 384.402 · 106 m (27)

is the present mean distance between the Earth and
the Moon,

M = 5.9736 · 1024 kg, m = 7.349 · 1022 kg (28)

are their masses, and w(t) is the recession speed of
the Moon from the Earth. Due to larger tidal forces
when the Moon was closer to the Earth, the function
w is slowly decreasing from the past to the present.
By laser retroreflectors installed by the Apollo mis-
sions 11, 14, 15, and Lunokhod 2 on the Moon more
than 40 years ago, it has been found that the present

mean distance D between the Earth and the Moon
increases at present by about

w(0) = 3.84 cm/yr. (29)

From this, (21), (26), (22), (28), and (27) we get for
t = τ = −5 · 108 yr the following upper estimate:

R(τ) =
(
Y 2(τ)

GM�
4π2

)1/3

= s(τ)2/3
( M�

M + m

)1/3
(384.402 · 106 + w(τ)τ)

< 14.22/33289191/3(384.402 · 106 + w(0)τ)

= 147.8 · 109 (m),

since the former recession speed w(τ) is larger than
w(0). The previous inequality yields the following
guaranteed lower bound for the average recession
speed of the Earth from the Sun:

v =
R(τ) − R(0)

τ
>

(149.6 − 147.8) · 109

5 · 108

= 3.6 (m/yr).

In this case we obtain from (6)

H
(loc)
0 > 0.36H0. (30)

By a thorough analysis of growth patterns on fossil
corals from lunar data (which are independent of solar
data), Zhang et al. ([90], pp. 4013–4016), got further
values of s(t) for other time epochs t, leading to the
local expansion rate

H
(loc)
0 ≈ 0.57H0.

2.5. One more argument. In Subsection 4.1 we
present strong arguments that Mars had to be much
closer to the Sun since there were rivers in the period
of 3–4 Gyr ago when the luminosity of the Sun was
only 0.75 L�. Hence, the Earth had to be closer to the
Sun, since Mars was closer. On the other hand, if the
Earth-Sun distance at that time would be 1 au, then
the orbits of the Earth, Moon, and Mars would be
unstable (which can be easily checked numerically).

3. ELIMINATION OF OTHER POSSIBILITIES
FOR A LARGE RECESSION SPEED

3.1. Solar radiation. We first show that the
solar radiation is not able to explain a large speed
similar to (8). The cross-section area of our Earth is
S = π(6.378 · 106)2 m2 = 1.277964 · 1014 m2. From
this and (18), the total energy coming from the Sun
during one year is

E = SY L0 = 5.4 · 1024 J, (31)

where L0 is given by (10).
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Now denote Ei, λi, νi, and pi to be respectively the
energy, wave length, frequency, and momentum of the
i-th photon. Then we have

pi =
h

λi
=

hνi

c
=

Ei

c
,

where h is Planck’s constant and c
.= 3 · 108 m/s is

the speed of light. Summing the above equation over
all photons coming to Earth from the Sun during one
year, we get by (31) that

p =
∑

i

pi =
E

c
=

5.4 · 1024

3 · 108
= 1.8 · 1016 kg m/s.

However, by (28) and (18) we find that

v =
p

M
= 9.5 cm/yr,

which is much smaller than the speed given in (8).
3.2. Tidal forces. The angular sizes of the Moon

and of the Sun are almost the same. However, the
Earth’s rotation slows down mainly due to tidal forces
of the Moon—about 69% and only 31% of the Sun,
since the density of the Moon is approximately 2.3
times higher than that of the Sun, see [6]. Note
that tidal forces (per 1 kg of the Earth) are equal to
2GM�r/R3, where the mass M� of the Sun is given
by (23), R = 1 au, and r is the Earth’s radius. By the
above arguments, the Earth-Sun distance increases
by about only a few cm per year due to tidal forces
(see [61] and [4], p. 606).

3.3. Decrease of the Solar mass due to nuclear
reactions. One atom of helium is 0.7% lighter than
4 atoms of hydrogen. This means that at most 0.7%
of the Sun’s mass changes into energy during 10 Gyr
(the life period of the Sun). When the Sun was born,
it already contained about 30% of helium. Hydrogen
changes into helium only in central parts of the Sun,
and by the end of its time on the main sequence,
the Sun will still contain a lot of hydrogen. Thus
we may assume that only 0.07% of the Sun’s mass
will change into energy. In this way the Sun loses
0.0007 M�/(1010 · Y (0)) = 4.46 · 109 kg per second
due to (23) and (18). This is an essential part of the
total mass losses collected in the next Subsection 3.4.

3.4. Plasma outbursts from the Sun. If the
speed of a solar plasma outburst is larger than 613
(resp. 434) km/s, then the plasma can escape the
Solar System (resp. the Sun), which reduces the
Sun’s mass as well. At smaller speeds the plasma
falls back down to the Sun.

By Noerdlinger [60], the Sun loses every second
altogether 5.75 · 109 kg of its mass due to the solar
wind, electromagnetic radiation, neutrino losses, and
large eruptions. Taking into account that mass losses

during one year (see (18)) are 1.815 · 1017 kg/yr, we
find by (23) that (see also [25])

M ′
�(t)

M�(t)
= C with C = −9.13 · 10−14 yr−1,

where M ′
�(t) stands for the time derivative and

M�(0) = M� is given by (23). Since the planetary
orbits expand at the same rate [60], we find by (5)
that the mean recession speed of the Earth from the
Sun due to the radiative and particle losses of Sun’s
mass is approximately 9.13 · 10−14 yr−1 · 149.6 · 1011

cm .= 1.4 cm/yr (see also [68)].
Since M�(t) = M�e−Ct, changes of the Sun’s

mass are negligible. For instance, if t = −370 · 106

yr (which corresponds to the Devonian era), we find
that M�(t) = 1.989067 · 1030 kg (cf. (23)) if magne-
tohydrodynamic effects are ignored. By [34], the Sun
could have lost mass at an enhanced rate 4.3 Gyr ago.

3.5. Further influences. According to [23, 26,
66, 69], relativistic effects and dark matter also do not
seem to have detectable influence on the expansion of
the Solar System.

The Earth moves in the Sun’s magnetic field.
Since the Earth has a large iron core, circulating eddy
(Foucalt) currents should appear, and thus the Earth
should descend onto lower orbits. By Section 2, this
is not observed. The reason is that the magnetic
potential decreases as r−2 (whereas the gravitational
potential decreases as r−1). The interaction between
the magnetic fields of the Earth and the Sun occurs
mostly in the terrestrial magnetosphere (the plasma
envelope around the Earth, whose size is of the order
of 10 Earth’s radii). The magnetic force again has al-
most no influence on secular changes of Earth’s orbit
due to the fast decrease r−2 of the magnetic potential.
Moreover, the Sun reverses its polarity every 11 years,
so the possible errors due to the reversal of magnetic
polarity are not accumulated but canceled.

4. FURTHER TESTABLE HYPOTHESES
IN THE SOLAR SYSTEM

4.1. Mars was much closer to the Sun when
there were rivers. The present mean Mars–Sun
distance is about r = 225 · 109 m. Mars had liquid
water on its surface 3–4 Gyr ago, which was deduced
from the number of craters in its dry riverbeds. Nei-
ther wind nor lava can create such sinuous forma-
tions. At that time the Sun’s luminosity was about
75% of its present value (see Fig. 2). Since the
solar power decreases with the square of the distance
from the Sun, the corresponding luminosity would be
by (5) only

LMars = 0.75L0
1502

2252
=

L0

3
,
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66 KŘÍŽEK, SOMER

which corresponds to a 67%-decrease of the solar
constant L0 (see (10)). If Mars were on the same
orbit as it is now, the existence of rivers on its surface
would be impossible. Note that a decrease of L0 by
only 2% causes ice ages on the Earth, even though
there is the greenhouse effect. An ancient atmosphere
on Mars 3–4 Gyr ago had one-third to two-thirds of
the surface atmospheric pressure as Earth has today
(for details see [17]). Higher concentration of CO2

(as suggested by [4], p. 177) surely contributed to a
higher surface temperature on Mars but cannot fully
explain liquid water there because of the huge 67%
decrease of the luminosity. Therefore, Mars must
have been much closer to the Sun to account for liquid
water. The associated mean recession speed of about
6–10 m/yr (cf. (7)) could be verified as soon as laser
retroreflectors are installed on Mars.

According to Google Mars Maps, there were hun-
dreds of large rivers whose dry riverbeds are now
mainly between −50◦ and 50◦ of Martian latitude.
Due to measurements of the missions Viking I and
II, Pathfinder, Spirit, etc., we know that the current
annual average temperature on Mars is very much
below the freezing point of water, about −60◦C. The
present overall mean surface temperature can also be
estimated by

Tequilibrium =
(

(1 − A)L�
16πσr2

)1/4

= 211 K, (32)

neglecting the greenhouse effect, where A = 0.25 is
the present value of the Bond albedo, L� = 3.846 ·
1026 W is the total Solar luminosity, and σ = 5.669 ·
10−8 Wm−2 K−4 is the Stefan–Boltzmann constant.
The above relation can be derived from the nonlin-
ear dependence of the equilibrium temperature on
the solar luminosity given by the Stefan–Boltzmann
law σT4

eq = L�/(4πr2), taking into account that the
Martian surface is four times larger than the area of its
maximum cross-section. Notice that the theoretical
temperature (32) is in very good agreement with the
above-mentioned measured average temperature of
−60◦C.

When the Sun’s luminosity was 0.75 L�, then
by (32) we would only get r = 117 · 106 km to reach
the freezing point of water Tequilibrium = 273.15 K (cf.
Fig. 4). However, this distance is more than 100
million km smaller than the current radius r = 225 ·
106 km. Substituting 0.75 L� instead of L� into (32),
the corresponding equilibrium surface temperature
would be only 197 K for r = 225 · 106 km which con-
tradicts the observed survival of liquid water.

Moreover, the Bond albedo of Mars’ surface 3–
4 Gyr ago was higher than A, since there were water
clouds feeding many rivers. Ice and snow were not
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Fig. 4. The equilibrium temperature by the Stefan–
Boltzmann law (32) for albedo A = 0.25. The temper-
atures in the upper part correspond to the luminosity
0.75 L� and in the lower part to L�. The radii of the
above circles are 117, 134, 150, and 225 million km. The
Sun is on the left, Mars is on the right, and the Earth is in
between.

only present in polar caps, but also in other regions,
which increased the albedo, too.

The above arguments show that Mars must have
been closer to the Sun by several tens of million km
when it had liquid water. The mere erosion of its
atmosphere cannot explain, e.g., the existence of an
ancient ocean in the Northern hemisphere [64]. By (7)
and (6) recalculated to the Mars–Sun distance, we
find that Mars could move further from the Sun by an
amount of at least 30 (= 4 · 5 · 225/150) million km
during the last 4 Gyr. This would explain the Faint
Young Sun paradox for Mars proposed in [43, 74, 75].
Secular change rates of Mars’s semimajor axis are
also investigated in [21] and [28] for a non-Newtonian
model of gravity.

4.2. The Earth-Moon distance increases
more than can be explained by tidal forces.
The first observed discordance between the secular
acceleration of the Moon’s mean longitude utilizing
Atomic Time and the Ephemeris Time scale has
been reported in van Flandern [82] in 1975. By
laser measurements we know that the present mean
distance D = 384 402 km between the Earth and the
Moon increases by about 3.8 cm per year, see (29).
Tidal forces can explain only 55% of this value, i.e.,
2.1 cm per year as we shall observe below. This
lunar orbital anomaly is usually referred to as the
Tidal Catastrophe Paradox (see [83]). However,
the remaining part

δ = 0.45 · 3.8 = 1.7 cm/yr (33)

could be due to DE that influences the Hubble pa-
rameter.

In [90], p. 4016, a similar averaged value δ ≈
1.6 cm/yr during the last 500 Myr is independently
obtained by measurements of growth patterns on
fossil corals. This method uses geochronometrical
techniques introduced in Wells [85].

The large value in (33) is derived from the fol-
lowing facts. The angular frequency of the Earth is
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ω1 = 2π/Y = 7.292 · 10−5 s−1. The Earth’s rotation
slows down mainly due to tidal forces of the Moon
(cca 68.5%), see Subsection 3.2. By a thorough
analysis of the Ancient Babylonians’ records of solar
eclipses [76] we know that the length of a day has
increased on average by 1.7 · 10−5 s per year during
the last 2700 years (see (20)).

For example, one late Babylonian astronomical
tablet containing a record of the total solar eclipse
on 15th April in 136 BC is preserved in the British
Museum (see [80]). It was found that the rotation
of the Earth slowed down about ∆T = 4 hours more
than if it would have rotated uniformly. At that time
a day was shorter than in the year 2000. This period
contains altogether N ≈ 780 000 days. Assume for
simplicity that the length of every day increases lin-
early by about the value ∆t, i.e., the nth day is about
n∆t longer than the day of the eclipse. Thus, for the
total delay we obtain

∆T = ∆t
N∑

n=1

n = ∆t
N(N + 1)

2
= 4 · 3600 s,

which yields ∆t = 4.734 · 10−8 s, and after one year
365.25 · ∆t = 1.7 · 10−5 s.

This value (see also (20)) is consistent with data
measured by the Lageos satellite (see [9, 88]), and
it implies that ω′

1 = −4.56 · 10−22 s−2. However, in
the literature we can find a larger increase of the day
of 2.4 · 10−5 s/yr as well as a smaller increase of
0.9 · 10−5 s/yr (see, e.g. [78]). So the value (20) is
close to the average of these upper and lower limits.
The slowdown of Earth’s rotation as given in (20)
thus represents only some mean value over long time
intervals.

By the conservation of the total momentum M of
the Earth-Moon system, the value

M = I1ω1 + I2ω2 + m1R1v1 + m2R2v2

must be constant. Here I1 = 8.036 · 1037 kg m2 and
I2 are the inertial moments of the Earth and Moon,
ω1 and ω2 are their angular frequencies, m1 = M and
m2 = m (see (28)), v1 and v2 are the speeds of the
Earth and Moon, respectively, relative to their center
of gravity, and the corresponding distances satisfy
D = R1 + R2.

First assume that the moments Ii are independent
of time. Since the decrease of the Moon’s angular
momentum is negligible, we can derive from (20) that
dD/dt = 0.674 · 10−9 m/s (for a detailed calculation
see [49], pp. 1034–1937). However, the observed
value corresponding to the real recession speed of
3.8 cm/yr is much higher, namely, dD/dt = 1.2 ·
10−9 m/s. Putting these values together, we find that

1.7 cm/yr ≈ 3.8(1.2−0.674)/1.2 cm/yr, which is the
speed given in (33).

Rescaling H0 to the Earth-Moon distance D,
we easily get by (6), (5), and (27) that H0 =
2.57 cm yr−1D−1, and thus for the expansion of the
Earth-Moon system we obtain by (33),

H
(loc)
0 ≈ 1.7H0

2.57
= 0.66H0. (34)

Dumin in [10], p. 2463, derives a very similar value
to (34), namely, H

(loc)
0 ≈ 0.5H0 (and H

(loc)
0 ≈ 0.85H0

in [11]). He also shows that Lambda-perturbations
of Keplerian orbits enable us to reach the rate of the
standard Hubble flow (see [13]).

A time-variable inertial moment I1 = I1(t) was
observed, e.g., in [6, 9, 88]. Its derivative I ′1 ≈
−1020 kg m2 s−1 indicates that a transport of mass
toward the Earth’s center has existed at least for
2700 years since the ancient Babylonian observa-
tions. However, such a large transport of mass cannot
be explained by a simple process such as melting
of glaciers, el Nino, or internal processes, since the
magnitude of I ′1 is too large.

4.3. Neptune was formed closer to the Sun
than it is now. It is an open problem how Neptune
could be formed as far away as r = 30 au from the
Sun, where the original protoplanetary disc was very
sparse and where all motions are very slow [4]. By Ke-
pler’s third law, its mean velocity is only

√
GM�/r =

5.43 km/s.
Standish in [79] observed a small anomalous de-

lay in Neptune’s position. Subsequent searches for
Planet X have been unsuccessful, but DE can again
explain this paradox.

Assuming a similar expansion rate as in (7), Nep-
tune could be formed much closer to the Sun than it
is now. Indeed, similarly to (17), if r = r0 exp(1

2H0t),
where r0 stands for the initial radius of Neptune’s
orbit, then for t = 4.5 Gyr we get

r0 = r exp
(
−1

2
H0t

)
= re−0.15 = 25.82 au.

For a linear expansion rate we get by (7) an analogous
value,

r0 = r − 1
2
H0tr

= 30 au − 5 m/(yr au) · 4.5 · 109 yr · 30 au = 25.5 au.

The increase of the distance between the Sun and
Neptune could also be due to various resonances, but
DE could also play an essential role in this process.

Similarly to (25), we obtain that

∆P ≈ 3P
2r

∆r,
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where P = 164.79 yr is the orbital period of Neptune
around the Sun. Thus after one period P Neptune will
be delayed by the angle α for which

tan α ≈ ∆P

r

2πr

P
=

2π∆P

P
=

3π∆r

r
.

From this and (8) we find that

α ≈ 3πP · 5.2 (m/yr)/au = 0.01′′. (35)

Note that such small anomalous unexplained delays
on the order of several milliarcseconds per century
have already been observed [79].

4.4. Fast satellites. In the Solar System we know
19 satellites of Mars, Jupiter, Uranus, and Neptune
that are below the corresponding stationary orbit with
radius (cf. Kepler’s third law (21))

ri =
(GmiP

2
i

4π2

)1/3
, (36)

where mi is the mass of the ith planet and Pi is
its sidereal rotation. We call them fast, since their
orbital period is smaller than Pi. From a statistical
point of view, it is very unlikely that all these satellites
would be captured, since all of them move in the
same direction on circular orbits with almost zero
inclination. Therefore, they have been mostly in their
orbits approximately 4.5 Gyr even though some may
be parts of larger disintegrating satellites.

By Newtonian mechanics, the tidal bulges con-
tinuously reduce the potential energy and orbital pe-
riods of these fast satellites to keep the total or-
bital momentum constant. Due to tidal forces they
should approach their mother planets along spiral
trajectories. Assuming their approaching speed of
1–2 cm per year (see [49, 50] for details), we find
that they should be 45 000–90 000 km closer to their
mother planets during the 4.5 Gyr of their existence.
However, this contradicts the fact that the radii of the
respective stationary orbits of Uranus or Neptune are
r7 = 82 675 km and r8 = 83 496 km. For the time
being, their fast satellites are on very high orbits with
radii circa 50 000–76 000 km. Moreover, by (36)
the radii of stationary orbits were smaller in the past
(cf. [4], p. 440), since the rotations of the planets were
faster.

It is again DE which acts in the opposite direction
than gravity and thus protects the fast satellites
against crashing onto their mother planet. The
same argument applies for the retrograde moon
Triton whose distance from Neptune is quite large:
354 760 km.

4.5. Saturn’s rings. Saturn’s rings have probably
existed for several billion years. Rings B, C, and D
are below the stationary orbit of Saturn. Ring B is
composed of bodies up to 10 m in diameter subject
to tidal forces. Moreover, small collisions of bodies

continuously reduce the energy of Saturn’s rings,
and thus they should be slowly approaching Saturn,
which is not observed. DE which acts in the opposite
direction can again easily explain this mystery which
takes place also at the rings of Jupiter, Uranus, and
Neptune.

4.6. Why Mercury and Venus have no moons.
Since the Earth probably was 25 million km closer
to the Sun 4.5 Gyr ago due to (8), leading to a dis-
tance of 125 million km from the Sun, Venus (whose
present mean distance from the Sun is 108 million
km) also had to be closer to the Sun. Otherwise
their orbits would be unstable. Mercury and Venus
have no moons since the corresponding lunar orbits
would be unstable due to tidal forces when they were
closer to the Sun. Moreover, from (36) we see that
their stationary orbits are too large since the Pi are
relatively large numbers.

4.7. Kuiper belt. There are further arguments for
the influence of DE in the Solar System. According
to [4], p. 534, there is strong evidence that the Kuiper
belt of comets (at 30 to 50 au from the Sun) had been
formed much closer to the Sun in a region with larger
velocities. Relation (7) can explain a shift of at least
10 au during the last 4.5 Gyr due to DE. A similar
argumentation applies to Sedna-like bodies and the
Oort cloud whose origins are not easily understood,
see [24, 29, 32, 37, 56, 81].

4.8. Large orbital momentum of our Moon.
A paradoxically very large orbital momentum of the
Earth-Moon system (see [46] and [4], p. 534) can
also be explained by DE which causes an additional
shift (33) in the recession speed of the Moon from the
Earth that is not due to tidal forces.

An anomalous increase in the eccentricity of the
Moon’s orbit is presented in [2, 30, 31]. For lunar
rotational dissipation see [87].

4.9. Further footprints. The DE influence over
longer duration on the order of the lifetime of the Sun
left further footprints in the Solar System. They are
recorded in the physical characteristics of planets.
For instance, the rotation of Mercury is very slow (59
days) due to larger tidal forces when the planet was
closer to the Sun. We know that tidal forces decrease
cubically with distance. Thus, if Mercury were, e.g.,
10 million km closer to the Sun 4.5 Gyr ago, then the
tidal forces would be twice as large as today. This
could essentially slow down Mercury’s rotation.

If Mars were much closer to the Sun than it is now,
then Jupiter was also closer to the Sun. Otherwise
Mars would have a larger mass. It has only 0.1 of
Earth’s mass since Jupiter captured its constituent
material.
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5. WHY OTHER AUTHORS OBTAINED
MUCH SMALLER VALUES OF RECESSION

SPEEDS?

There are some discrepancies between our results
and those of other authors. Now we will explain why.

5.1. Classical Newtonian theory of gravita-
tion. Krasinsky and Brumberg [47] derived that the
present recession speed of the Earth from the Sun is
equal to v = 15 cm/yr. Their calculation is based on
the assumption that Newtonian gravitation describes
all motions in the Solar System absolutely exactly.
They solve an algebraic system for 62 unknown Kep-
lerian parameters of all planets and some large aster-
oids and implicitly assume that modelling, discretiza-
tion, and rounding errors are negligible. However, the
classical Newtonian theory assumes an infinite speed
of gravitational interaction, whereas the real speed is
surely finite. Hence, the modelling error is not zero.
The existence of DE was not taken into account (see
also [67]).

5.2. Almost linear expansion function. Coop-
erstock et al. [8] and many others derive a tiny out-
ward acceleration of the Earth of 3.17 · 10−47 m/s2,
but the large present value of the Hubble parameter
itself H0 = H(0) = 10 m yr−1 au−1 (see (6)) is not
taken into account. The derivative H ′(0) is, of course,
extremely small. Carrera and Giulini in [7], p. 175,
derived that the acceleration of the Universe is neg-
ligible on the scales of the Solar System. However,
they also did not consider the large value of the linear
expansion rate as given in (7) and (8). Their calcula-
tion is based on a very small effect of the present value
of the deceleration parameter q0 = −0.6 (cf. Fig. 1
and [70]) which appears in the Taylor expansion of the
scale factor

a(t) = a(0) + a′(0)t +
1
2
a′′(0)t2 + · · ·

= a(0)(1 + H0t −
1
2
q0H

2
0 t2 + . . . ). (37)

They ignore the large value of H0 occurring in (6)
which appears as the linear term in (37) and concen-
trate only on the purely quadratic term.

The accelerated expansion of the Universe is ab-
solutely negligible on the scale of the Solar System,
but the linear expansion itself is essential (see Fig. 5)
since

|H0t| 

1
2
|q0|H2

0 t2 (38)

for t close to 0. Consequently, the accelerated ex-
pansion only appears at cosmological distances due
to (38). In spite of that, the single quadratic term is
so small that the linear term essentially dominates not

only in the neighborhood of 0, but for all t in the whole
interval (−1/H0, 0) since we have

0.3 · |H0t| >
1
2
|q0|H2

0 t2,

where 1
2 |q0| = 0.3.

6. DISCUSSION

The discussion of the effect of cosmological ex-
pansion on local systems (such as the Solar System)
has a long history dating back to [58]. In the present
paper, we have also shown that DE acts not only
on large scales but also on small scales. It essen-
tially contributes to the migration of planets and their
moons. DE also causes many star clusters to dissi-
pate and helps to reduce the frequency of collisions of
stars and galaxies, see [48, 51]. It has also created
suitable habitable conditions on the Earth for several
billion years.

To demonstrate the influence of DE in the Solar
System, we must either measure very precisely (e.g.
the Earth-Moon distance) or consider very long time
intervals where all small deviations from Newtonian
mechanics are, in general, not cancelled but accu-
mulated and then possibly observed. An extremely
small deviation ε > 0 per year may cause, after
one billion years, quite a large and detectable
value of order 109ε which could be then attributed
to DE.

Modified theories of gravity allowing secular chan-
ges of the planetary semimajor axes are examined
in many papers (see [22, 36, 40, 54, 89] etc.). For
instance, Iorio in [22] examines the impact of a spher-
ically symmetric distribution of dark matter (DM) in
our Galaxy on planetary orbits. On the other hand,
in [52] we list several effects that essentially reduce
the amount of DM.

Note that there exist close binary pulsars whose
orbits do not expand with time, but decay. In this
case, strong magnetic and gravitational fields are
present, and the system loses energy due to electro-
magnetic and gravitational waves. These effects are
much stronger than the weak effects coming from
antigravity forces due to DE. Also various resonances
may be significantly larger as compared with tiny DE
effects (see, e.g., (33) and (35)).

Iorio [39] investigates local secular expansion
of a two-body orbit due to the acceleration rate
of cosmological expansion. In [63], the authors
discuss whether it is possible to directly detect DE
on Earth using atomic interferometry through a force
hypothetically caused by a gradient in DE density.
Possible effects of MOND in the Solar System are
discussed in [18–20, 29, 38]. On the other hand,
Blanchet and Novak [5] claim that MOND violates
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Fig. 5. The assumed behavior of the normalized expan-
sion function scale factor a(t)/a(0). The values on the
horizontal axis are given in Gyr. The quantities on the
vertical axis are relative with no physical dimensions.
The lower plot corresponds to the linear function 1 +
H0t from (37) on the interval [−1/H0, 0], where 1/H0 =
13.6 Gyr is the Hubble time. The upper plot shows the
quadratic function 1 + H0t − 1

2
q0H

2
0 t2 with q0 = −0.6.

The middle graph illustrates the normalized scale factor
as given in (4). We observe that accelerated expansion
differs little from linear expansion during the last few Gyr
(see (38)).

the strong equivalence principle known from general
relativity.

In [48] and [51] we examined the unknown source
of DE that is needed for the accelerated expansion of
the Universe. We claim that it may partly come from
the finite speed of gravitational influence that causes
gravitational aberration, which is much smaller than
the aberration of light, but positive due to causal-
ity [49]. It increases with distance. The amount of
DE that is generated by the Moon and the Earth is
estimated in [50], pp. 3 and 5. They are on spiraling
orbits which slightly move further and further apart.
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48. M. Křı́žek, “Numerical experience with the finite
speed of gravitational interaction,” Math. Comput.
Simulation 50, 237–245 (1999).
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51. M. Křı́žek, J. Brandts, and L. Somer, “Is gravitational
aberration responsible for the origin of dark energy?,”
in: Dark Energy: Theory, Implications and Roles
in Cosmology, Ed. by C. A. Del Valle and D. F. Lon-
goria (Nova Sci. Publishers, Inc., New York, 2012),
pp. 29–57.

52. M. Křı́žek, F. Křı́žek, and L. Somer, “Which effects of
galaxy clusters can reduce the amount of dark mat-
ter,” Bulg. Astron. J. 21, 1–23 (2014).

53. K. L. Lang, Cambridge Encyclopedia of the Sun
(Cambridge Univ. Press, Cambridge, 2001).

54. L.-S. Li, “Secular influence of Solar dark-matter ac-
cretion upon the evolution of orbits of planets,” Publ.
Astron. Soc. Japan 65, 107 (2013).

55. C. H. Linewaver and D. Schartzmann, “Cosmic ther-
mobiology,” in: Origins, Ed. by J. Seckbach (Kluwer,
Dordrecht, 2003), pp. 233-248.

56. P. S. Lykawka, “Trans-Neptunian objects as natu-
ral probes to the unknown Solar System,” Mono-
graphs on Environment, Earth and Planets 1, 121–
186 (2012).

GRAVITATION AND COSMOLOGY Vol. 21 No. 1 2015
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