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Abstract: The standard cosmological model is surprisingly quite thoroughly
investigated even though it possesses many paradoxes. We present several
arguments indicating why excessive extrapolations of Einstein’s equations to
cosmological distances are questionable. First, we show how to express ex-
plicitly the first of Einstein’s 10 partial differential equations to demonstrate
their extremely large complexity. Therefore, it would be very difficult to find
their solution for two or more bodies to model, e.g., the evolution of the Solar
system. Further, we present some unexpected failures of the Schwarzschild
and Friedmann solution of these equations. Then we explain why application
of Einstein’s equations to the whole universe represents incorrect extrapola-
tions that lead to dark matter, dark energy, and several unrealistic situations.
Finally, we give 10 further arguments showing why celebrated Einstein’s equa-
tions do not describe reality well.

Keywords: Einstein’s equations, Schwarzschild solution, Friedmann equa-
tion, modeling error, incorrect extrapolations, dark matter, dark energy

PACS: 4.20.-q, 95.35.+d, 98.80.-k

1. Introduction

Einstein’s field equations of general relativity consist of 10 equations (cf. [13])

Rµν −
1

2
Rgµν =

8πG

c4
Tµν , µ, ν = 0, 1, 2, 3, (1)

for 10 components of the unknown symmetric metric tensor gµν (sometimes called
gravitational potentials) of one timelike coordinate x0 = ct and three Cartesian or
curvilinear space coordinates x1, x2, x3, i.e. gµν = gµν(x

0, x1, x2, x3) (for simplicity
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the dependence of all functions from (1) on these coordinates will be nowhere indi-
cated), where c = 299 792 458 m/s is the speed of light in vacuum, G = 6.674 · 10−11

m3kg−1s−2 is the gravitational constant,

Rµν =
3∑

κ=0

Rκ

µκν (2)

is the symmetric Ricci tensor,

R =
3∑

µ,ν=0

gµνRµν (3)

is the Ricci scalar (i.e. the scalar curvature), Tµν is the symmetric tensor of density
of energy and momentum,

Rκ

µσν =
∂Γκ

µν

∂xσ
−

∂Γκ

µσ

∂xν
+

3∑

λ=0

Γλ
µνΓ

κ

λσ −
3∑

λ=0

Γλ
µσΓ

κ

λν , κ, µ, σ, ν = 0, 1, 2, 3, (4)

is the Riemann curvature tensor that has 20 independent components from the total
number of 44 = 256 components due to several symmetries

Rκ

µσν +Rκ

σνµ +Rκ

νµσ = 0, Rλµσν = −Rµλσν = −Rλµνσ, Rλµσν =
∑

κ

gλκR
κ

µσν ,

where the first equality is called the first Bianchi identity and

Γµ
κσ =

1

2

3∑

ν=0

gµν
(∂gκν
∂xσ

+
∂gσν
∂xκ

− ∂gκσ
∂xν

)
=

1

2

3∑

ν=0

gµν(gκν,σ + gσν,κ − gκσ,ν) (5)

are the Christoffel symbols of the second kind (also called the connection coefficients).
All derivatives are supposed to be classical (for simplicity we shall write gκν,σ :=
∂gκν/∂x

σ to reduce notation). From this and the relation gκσ = gσκ one can derive
the symmetry

Γµ
κσ = Γµ

σκ for µ = 0, 1, 2, 3.

Thus altogether we have 40 = 4× (1 + 2 + 3 + 4) independent components. Finally,
the contravariant symmetric 4×4 metric tensor gµν is inverse to the covariant metric
tensor gµν , i.e.

gµν =
g∗µν

det(gµν)
, det(gµν) :=

∑

π∈S4

(−1)sgnπg0ν0g1ν1g2ν2g3ν3 , (6)

where the entries g∗µν form the 4 × 4 matrix of 3 × 3 algebraic adjoints of gµν , S4 is
the symmetric group of 24 permutations π of indices (ν0, ν1, ν2, ν3), sgn π = 0 for an
even permutation and sgn π = 1 for an odd permutation.
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Theorem 1. If gµν is a solution of (1), then (−gµν) also solves (1).

Proof. From (5), we find that the Christoffel symbols remain the same if we
replace gµν by (−gµν), namely,

Γµ
κσ =

1

2
(−gµν)

(
−∂gκν

∂xσ
− ∂gσν

∂xκ
+

∂gκσ
∂xν

)
.

Using (2) and (4), we find that the Ricci tensor Rµν in (1) does not change as well.
Concerning the second term on the left-hand side of (1), we observe from (3) that(
−1

2
Rgµν

)
also remains unchanged if we replace gµν by (−gµν). �

2. On explicit form of the first Einstein equation

In this section we want to point out the extreme complexity of Einstein’s equa-
tions. In (1), the dependence of the Ricci scalar R and the Ricci tensor Rµν on the
metric tensor gµν is not indicated. Therefore, Einstein’s equations (1) seem to be
quite simple. To avoid this deceptive opinion, we will now derive the explicit form
of the first Einstein equation.

We will consider only the simplest case when Tµν = 0 (and without the cosmo-
logical constant, cf. (17)). Multiplying (1) by gµν and summing over all µ and ν, we
obtain by (3) that

0 =
3∑

µ,ν=0

gµνRµν −
1

2
R

3∑

µ,ν=0

gµνgµν = R− 1

2
R

3∑

µ=0

δµµ = R− 1

2
4R,

where δµν is the Kronecker delta. Thus, R = 0 and Einstein’s vacuum equations can
be rewritten as1

Rµν = 0.

Applying (2) and (4), we can express the first Einstein equation as follows

0 =R00 =
3∑

κ=0

Rκ

0κ0 =
3∑

κ=0

(
Γκ

00,κ − Γκ

0κ,0 +
3∑

λ=0

(Γλ
00Γ

κ

λκ − Γλ
0κΓ

κ

0λ)

)

=Γ0
00,0 + Γ1

00,1 + Γ2
00,2 + Γ3

00,3 − Γ0
00,0 − Γ1

01,0 − Γ2
02,0 − Γ3

03,0

+ Γ0
00(Γ

0
00 + Γ1

01 + Γ2
02 + Γ3

03) + Γ1
00(Γ

0
10 + Γ1

11 + Γ2
12 + Γ3

13)

+ Γ2
00(Γ

0
20 + Γ1

21 + Γ2
22 + Γ3

23) + Γ3
00(Γ

0
30 + Γ1

31 + Γ2
32 + Γ3

33)

− Γ0
00Γ

0
00 − Γ0

01Γ
1
00 − Γ0

02Γ
2
00 − Γ0

03Γ
3
00 − Γ1

00Γ
0
01 − Γ1

01Γ
1
01

− Γ1
02Γ

2
01 − Γ1

03Γ
3
01

− Γ2
00Γ

0
02 − Γ2

01Γ
1
02 − Γ2

02Γ
2
02 − Γ2

03Γ
3
02 − Γ3

00Γ
0
03 − Γ3

01Γ
1
03

− Γ3
02Γ

2
03 − Γ3

03Γ
3
03,

1Concerning nonuniqueness expressed by Theorem 1, we observe from (5) that we can add any
constant to any component of gµν and Einstein’s equations Rµν = 0 will still be valid.
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where the underlined terms cancel. Hence, the first Einstein equation can be rewrit-
ten by means of the Christoffel symbols in the following way:

0 =Γ1
00,1 + Γ2

00,2 + Γ3
00,3 − Γ1

01,0 − Γ2
02,0 − Γ3

03,0

+ Γ0
00(Γ

1
01 + Γ2

02 + Γ3
03) + Γ1

00(−Γ0
10 + Γ1

11 + Γ2
12 + Γ3

13)

+ Γ2
00(−Γ0

20 + Γ1
21 + Γ2

22 + Γ3
23) + Γ3

00(−Γ0
30 + Γ1

31 + Γ2
32 + Γ3

33)

− 2Γ1
02Γ

2
01 − 2Γ1

03Γ
3
01 − 2Γ2

03Γ
3
02 − (Γ1

01)
2 − (Γ2

02)
2 − (Γ3

03)
2. (7)

Using (5), we obtain

2Γµ
κσ =gµ0(gκ0,σ + gσ0,κ − gκσ,0) + gµ1(gκ1,σ + gσ1,κ − gκσ,1)

+ gµ2(gκ2,σ + gσ2,κ − gκσ,2) + gµ3(gκ3,σ + gσ3,κ − gκσ,3)

and thus by (7) we can express the first Einstein equation R00 = 0 by means of the
metric coefficients and their first and second order derivatives as follows:

0 =4R00 = 2[g10,1 g00,0 + g11,1 (2g01,0 − g00,1) + g12,1 (2g02,0 − g00,2) + g13,1 (2g03,0 − g00,3)

(8)

+ g10g00,01 + g11(2g01,01 − g00,11) + g12(2g02,01 − g00,21) + g13(2g03,01 − g00,31)
(9)

+ g20,2 g00,0 + g21,2 (2g01,0 − g00,1) + g22,2 (2g02,0 − g00,2) + g23,2 (2g03,0 − g00,3)

+ g20g00,02 + g21(2g01,02 − g00,12) + g22(2g02,02 − g00,22) + g23(2g03,02 − g00,32)

+ g30,3 g00,0 + g31,3 (2g01,0 − g00,1) + g32,3 (2g02,0 − g00,2) + g33,3 (2g03,0 − g00,3)

+ g30g00,03 + g31(2g01,03 − g00,13) + g32(2g02,03 − g00,23) + g33(2g03,03 − g00,33)

− g10,0 g00,1 − g11,0 g11,0 − g12,0 (g02,1 + g12,0 − g01,2)− g13,0 (g03,1 + g13,0 − g01,3)

− g10g00,10 − g11g11,00 − g12(g02,10 + g12,00 − g01,20)− g13(g03,10 + g13,00 − g01,30)

− g20,0 g00,2 − g21,0 (g01,2 + g21,0 − g02,1)− g22,0 g22,0 − g23,0 (g03,2 + g23,0 − g02,3)

− g20g00,20 − g21(g01,20 + g21,00 − g02,10)− g22g22,00 − g23(g03,20 + g23,00 − g02,30)

− g30,0 g00,3 − g31,0 (g01,3 + g31,0 − g03,1)− g32,0 (g02,3 + g32,0 − g03,2)− g33,0 g33,0

− g30g00,30 − g31(g01,30 + g31,00 − g03,10)− g32(g02,30 + g32,00 − g03,20)− g33g33,00]
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+ (g00g00,0 − g01g00,1 − g02g00,2 − g03g00,3)

× [g10(2g10,1 − g11,0) + g11g11,1 + g12(2g12,1 − g11,2) + g13(2g13,1 − g11,3)

+ g20(g10,2 + g20,1 − g12,0) + g21g11,2 + g22g22,1 + g23(g13,2 + g23,1 − g12,3)

+ g30(g10,3 + g30,1 − g13,0) + g31g11,3 + g32(g12,3 + g32,1 − g13,2) + g33g33,1]

+ (g10g00,0 + g11g11,1 − g12g11,2 − g13g11,3)

× [−g00g00,1 − g01g11,0 − g02(g12,0 + g02,1 − g10,2)− g03(g13,0 + g03,1 − g10,3)

+ g10(2g10,1 − g11,0) + g11g11,1 + g12(2g12,1 − g11,2) + g13(2g13,1 − g11,3)

+ g20(g10,2 + g20,1 − g12,0) + g21g11,2 + g22g22,1 + g23(g13,2 + g23,1 − g12,3)

+ g30(g10,3 + g30,1 − g13,0) + g31g11,3 + g32(g12,3 + g32,1 − g13,2) + g33g33,1]

+ [g20g00,0 + g21(2g01,0 − g00,1) + g22(2g02,0 − g00,2) + g23(2g03,0 − g00,3)]

× [−g00g00,2 − g01(g21,0 + g01,2 − g20,1)− g02g22,0 − g03(g23,0 + g03,2 − g20,3)

+ g10(g20,1 + g10,2 − g21,0) + g11g11,2 + g12g22,1 + g13(g23,1 + g13,2 − g21,3)

+ g20(2g20,2 − g22,0) + g21(2g21,2 − g22,1) + g22g22,2 + g23(2g23,2 − g22,3)

+ g30(g20,3 + g30,2 − g23,0) + g31(g21,3 + g31,2 − g23,1) + g32g22,3 + g33g33,2]

+ [g30g00,0 + g31(2g01,0 − g00,1) + g32(2g02,0 − g00,2) + g33(2g03,0 − g00,3)]

× [−g00g00,3 − g01g01,3 − g02(g32,0 + g02,3 − g30,2)− g03g33,0

+ g10(g30,1 + g10,3 − g31,0) + g11g11,3 + g12(g32,1 + g12,3 − g31,2) + g13g33,1

+ g20(g30,2 + g20,3 − g32,0) + g21(g31,2 + g21,3 − g32,1) + g22g22,3 + g23g33,2

+ g30(2g30,3 − g33,0) + g31(2g31,3 − g33,1) + g32(2g32,3 − g33,2) + g33g33,3]

− 2[g10g00,2 + g11(g01,2 + g21,0 − g02,1) + g12g22,0 + g13(g03,2 + g23,0 − g02,3)]

× [g20g00,1 + g21g11,0 + g22(g02,1 + g12,0 − g01,2) + g23(g03,1 + g13,0 − g01,3)]

− 2[g10g00,3 + g11(g01,3 + g31,0 − g03,1) + g12(g02,3 + g32,0 − g03,2) + g13g33,0]

× [g30g00,1 + g31g11,0 + g32(g02,1 + g12,0 − g01,2) + g33(g03,1 + g13,0 − g01,3)]

− 2[g20g00,3 + g21(g01,3 + g31,0 − g03,1) + g22(g02,3 + g32,0 − g03,2) + g23g33,0]

× [g30g00,2 + g31(g01,2 + g21,0 − g02,1) + g32g22,0 + g33(g03,2 + g23,0 − g02,3)]

− [g10g00,1 + g11g11,0 + g12(g02,1 + g12,0 − g01,2) + g13(g03,1 + g13,0 − g01,3)]
2

− [g20g00,2 + g21(g01,2 + g21,0 − g02,1) + g22g22,0 + g23(g03,2 + g23,0 − g02,3)]
2
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− [g30g00,3 + g31(g01,3 + g31,0 − g03,1) + g32(g02,3 + g32,0 − g03,2) + g33g33,0]
2. (10)

Now we should substitute (6) to all entries with double upper indices to (10). For
instance, the entry g11 in line (9) could be rewritten by means of the Sarrus rule for
3× 3 symmetric matrices g∗11 by

g11 =
g∗11

det(gµν)

=
g00g22g33 + 2g02g03g23 − g00(g23)

2 − g22(g03)
2 − g33(g02)

2

∑
π∈S4

(−1)sgnπg0ν0g1ν1g2ν2g3ν3
, (11)

where the sum in the denominator contains 4! = 24 terms. Note that the optimal
expression for the minimum number of arithmetic operations to calculate the inverse
of a 4× 4 matrix is not known, yet. The other nine entries g00, g01, g02, g03, g12, g13,
g22, g23, and g33 can be expressed similarly.

However, we have to evaluate also the first derivatives of gµν . Consider for in-
stance the entry g11,1 in line (8). Then by (11) we get

g11,1 =
∂

∂x1

( g∗11
det(gµν)

)

=
( 1∑

π∈S4
(−1)sgnπg0ν0g1ν1g2ν2g3ν3

× (g00g22g33 + 2g02g03g23 − g00(g23)
2 − g22(g03)

2 − g33(g02)
2)
)
,1

=
[(
g00,1g22g33 + 2g02,1g03g23 − g00,1(g23)

2 − g22,1(g03)
2 − g33,1(g02)

2 + g00g22,1g33

+ 2g02g03,1g23 + g00g22g33,1 + 2g02g03g23,1 − 2g00g23,1 − 2g22g03,1 − 2g33g02,1
)

×
(∑

π∈S4

(−1)sgnπg0ν0g1ν1g2ν2g3ν3

)

−
(
g00g22g33 + 2g02g03g23 − g00(g23)

2 − g22(g03)
2 − g33(g02)

2
)

×
∑

π∈S4

(−1)sgnπ(g0ν0,1g1ν1g2ν2g3ν3 + g0ν0g1ν1,1g2ν2g3ν3 + g0ν0g1ν1g2ν2,1g3ν3

+ g0ν0g1ν1g2ν2g3ν3,1)
](∑

π∈S4

(−1)sgnπg0ν0g1ν1g2ν2g3ν3

)−2

. (12)

Substituting all gµν and also its first derivatives into (10), we get the explicit
form of the first Einstein equation R00 = 0 of the second order for 10 unknowns
g00, g01, g02, . . . , g33. It is evident that such an equation is extremely complicated.
Relation (8) takes only 4 lines, relation (10) takes 40 lines and after substitution
of determinants into (10) the equation R00 = 0 takes several pages. The other
nine equations Rµν = 0 can be expressed similarly. Therefore, the explicit form of
all 10 Einstein equations will occupy a huge amount of pages. This fact prevents
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us to verify whether Einstein’s equations describe, for instance, the Solar

system better than Newtonian mechanics by N-body simulations.
For comparison note that the Laplace equation ∆u = 0 has only three terms

∂2u/∂x2
i on its left-hand side, i = 1, 2, 3, and the famous Navier-Stokes equations

24 terms.

3. Non-differentiability of the Schwarzschild composite solution

In 1915, Karl Schwarzschild wrote to Albert Einstein that he has found a solu-
tion [47] for the case Tµν = 0 (for the English translation of Schwarzschild’s original
letter by R.A. Rydin see [12]). It can be written as the following diagonal tensor

gµµ = diag
(
−r − S

r
,

r

r − S
, r2 sin2 θ, r2

)
, (13)

gµν = 0 for µ 6= ν, where r > S, the constant S is given by (14) below, (r, ϕ, θ) are
the standard spherical coordinates, ϕ ∈ [0, 2π), θ ∈ [0, π], i.e.,

x1 =r sin θ cosϕ,

x2 =r sin θ sinϕ,

x3 =r cos θ.

Schwarzschild assumed that the gravitational field has the following properties: it is
static (meaning that it does not change over time), it is spherically symmetric, the
spacetime is empty, and the spacetime is asymptotically flat. For a fixed nonrotating
ball in vacuum with mass M > 0 and with a spherically symmetric mass distribution
we set

S =
2MG

c2
(14)

which is called the Schwarzschild gravitational radius and (13) is called the exterior
Schwarzschild metric.

In 1916 Karl Schwarzschild (see [48]) found the first nonvacuum solution2 of
Einstein’s equations (1). He assumed that the ball with coordinate radius r0 > 0 is
formed by an ideal incompressible non-rotating fluid with constant density to avoid
a possible internal mechanical stress that may have a non-negligible influence on the
resulting gravitational field. He also assumed zero pressure at the surface. Then the
corresponding metric is (see e.g. [15], [16, p. 529], [49, p. 213], [53])

gµµ = diag

(
−1

4

(
3

√
1− S

r0
−
√
1− Sr2

r30

)2

,
r30

r30 − Sr2
, r2 sin2 θ, r2

)
, (15)

2The Schwarzschild solution is static. On the other hand, the well-known Kerr metric [39, p. 878]
is stationary, which means that there exists a coordinate system where we can express the metric
tensor independent of the time coordinate. Every static solution is stationary, but not vice versa.
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where r ∈ [0, r0], S is given by (14), and we assume that r0 > S. The corresponding
metric tensor is called the interior Schwarzschild solution. It is again a static solution
and the corresponding right-hand side Tµν is also a diagonal tensor for which T00 = 0,
since it does not change over time.

Using (13) and (15), we can easily verify that the exterior and interior metric
have the same values for r = r0, i.e., each component gµµ = gµµ(r) is a continuous
function on [0,∞) for µ = 0, 1, 2, 3. However, the first derivatives of g11 of the
exterior and interior Schwarzschild solution do not match (see Figure 1), since they
have a jump on the common boundary r = r0. Note that the 2nd order Einstein
equations contain classical derivatives of gµν which are supposed to be continuous
in definition (5). Therefore, the corresponding space manifold described by the
Riemann curvature tensor is not differentiable, since the tangent hyperplane for
r = r0 cannot be uniquely defined. All Riemannian manifolds must be locally flat
which is not true in this particular case (see also [26]).

r0r

11
g

1

Figure 1: The behavior of the non-differentiable component g11 = g11(r) of the
metric tensor from (13) and (15). The first derivative (∂g11/∂r)(r0) is not defined.
The piecewise rational function g11 cannot be smoothed near r0, since then Einstein’s
equations (1) would not be valid in a close neighborhood of r0.

From (13) we observe that the one-sided limit of the derivative of the component
g11(r) = r/(r − S) of the exterior solution is negative

lim
r→r+

0

∂g11
∂r

(r) < 0,

whereas the component g11(r) of the interior solution (15) is an increasing function
on [0, r0] (cf. Figure 1). It is increasing even for a variable spherically symmetric
density ρ = ρ(r), see [8, 39]. Consequently, the Schwarzschild solution cannot be
used inside the ball with radius r1 > r0 to model our Sun or any other star with
radius r0 together with its spherically symmetric vacuum neighborhood (see Figure 2
and (5)). This is a serious drawback, since the composite metric tensor (13)+(15)
is not differentiable for r = r0. Consequently, (13) and (15) are only local solutions
and together they do not form a global solution in the ball with radius r1.

16



Figure 2: Spherical shell {(x, y, z) ∈ E
3 | r20 ≤ x2+y2+z2 ≤ r21} is the region between

two concentric spheres.

Similarly, the function u(x) = |x| is a local classical solution of the second order
ordinary differential equation u′′ = 0 on the intervals [−1, 0] and [0, 1], but it is not
a global solution over the interval [−1, 1]. It is not even a weak solution there.

Example 1. For comparison, we also note that the first order classical derivatives
of the Newton potential u for the situation sketched in Figure 2 are continuous. It
is described by the Poisson equation

∆u = 4πGρ,

where ρ is the mass density. Let the right-hand f = 4πGρ side be spherically
symmetric and such that f(r) = 1 for r ∈ [0, 1] and f(r) = 0 otherwise. The Laplace
operator in spherical coordinates reads (see [44, Sect. 7.2])

∆u =
∂2u

∂r2
+

2

r

∂u

∂r
+

1

r2

(∂2u

∂θ2
+ cotan θ

∂u

∂θ
+

1

sin2 θ

∂2u

∂ϕ2

)
.

The sum in parenthesis on the right-hand side is zero for the spherically symmetric
case. By the well-known method of variations of constants, we find the following
solution of the above Poisson equation

u(r, ϕ, θ) =
1

6
r2 − 1

2
for r ∈ [0, 1],

u(r, ϕ, θ) = − 1

3r
otherwise.

Hence, both u and ∂u/∂r are continuous at r0 = 1. �

Finally, let us emphasize that the covariant divergence of the right-hand side
of (1) has to be zero, see (30) and [39, p. 146]. Therefore, the covariant divergence
of the left-hand side of (1) is zero, too. However, this requires the existence of the
third order derivatives of the metric tensor gµν at r0.
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4. Another unexpected property of the Schwarzschild solution

For positive numbers r0 < r1 consider a spherical shell with interior radius r0
and exterior radius r1 (see Figure 2). Its volume in the Euclidean space E3 is clearly
given by

V =
4

3
π(r31 − r30). (16)

Now we will derive a formula for the proper volume Ṽ of the spherical shell with
coordinate radii r0 < r1 in a curved space around the mass ball with coordinate
radius r0. Here the tilde indicates a curved space. By (13) we find that the exterior
spatial volume element is equal to

dṼ =

√
r

r − S
dr · (r sin θ dϕ) · (r dθ).

Therefore, the proper (relativistic) volume is defined as

Ṽ =

∫ r1

r0

r2
√

r

r − S
dr ·

∫ π

0

(∫ 2π

0

sin θ dϕ
)
dθ = 4π

∫ r1

r0

r2
√

r

r − S
dr. (17)

Theorem 2. If M > 0 and r0 > S are any fixed numbers satisfying (14), then

Ṽ − V → ∞ as r1 → ∞.

Proof. By differentiation, we can easily check that

∫
r2
√

r

r − S
dr =

(r2
3
+

5Sr

12
+

5S2

8

)√
r(r − S) +

5S3

16
ln(2

√
r(r − S) + 2r − S).

From this, (17), and (16) we get

Ṽ − V =4π

∫ r1

r0

r2
√

r

r − S
dr − 4

3
π(r31 − r30)

=
4π

3

[(
r21 +

5Sr1
4

+
15S2

8

)√
r1(r1 − S) +

15S3

16
ln(2

√
r1(r1 − S) + 2r1 − S)

−
(
r20 +

5Sr0
4

+
15S2

8

)√
r0(r0 − S)− 15S3

16
ln(2

√
r0(r0 − S) + 2r0 − S)

− r31 + r30

]
. (18)

Since

r1 > r0 > S
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and since the logarithmic function is increasing, the difference of the two terms
containing ln in (18) is positive.3 Thus from the inequality

√
r1(r1 − S) > r1 − S

we obtain the following lower bound

Ṽ − V >
(
r21 +

5Sr1
4

+
15S2

8

)
(r1 − S)− r31 + C =

Sr21
4

+
5S2r1
8

+ C,

where C contains all remaining terms not depending on r1 and where C = C−15S3/8.
Letting r1 → ∞, we obtain the statement of the theorem. �

We observe that the difference of volumes Ṽ − V increases over all limits for
r1 → ∞, which is a quite surprising property. Namely, Theorem 2 can be applied for
instance to a billiard ball or a small steel ball bearing (see Example 2 below) or an
imperceptible pinhead, since the mass M > 0 can be arbitrarily small. Consequently,
a natural question arises: How large can r1 be so that the relativistic relation (17)
approximates reality well.

Example 2. Setting M = 0.033 kg, r0 = 0.01 m, and r1 = 5 · 1020 m, which is
the radius of our Galaxy, we find that S = 5 · 10−29 m and by (18) the difference

Ṽ − V ≈ 10 000 km3.

This is about 1019 times more than the volume of the ball itself. From this we see
that the use of Einstein’s equations to galactic distances is questionable. Further
drawbacks of the Schwarzschild metric are surveyed in [20]. �

5. Division by zero in the Friedmann normalized equation

Einstein’s equations (1) were derived for a local description of the universe. They
were “tested” in a neighborhood of the Sun [12, 24, 39]. However, in 1917 Einstein
applied his equations to the whole universe [14]. At that time he did not know
what is its real size. Now we know that the size of the observable universe is at
least 1015 astronomical units.

We will show that these excessive extrapolations by many orders of magnitude
may lead to a division by zero in Einstein’s equations. To avoid a gravitational col-
lapse of the whole universe Einstein introduced a new form of his equations (see [14])

Rµν −
1

2
Rgµν + Λgµν =

8πG

c4
Tµν (19)

with non-zero cosmological constant Λ.

3The argument in parenthesis after ln is dimensionless, because ln a− ln b = ln(a/b).
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At present there are thousands of papers on the cosmological constant Λ. How-
ever, for the time being, we do not know any of its significant digit (nor even its
sign). The standard cosmological model (see [42]) assumes that

Λ ≈ 10−52 m−2. (20)

Einstein’s equations were not developed for a dynamical evolution of the universe.
This was done later in 1922 by Alexander Friedmann [18, 19] who derived from the
first Einstein equation the following ordinary differential equation for the expansion
function a = a(t)

ȧ2 =
8πGρa2

3
+

Λc2a2

3
− kc2, (21)

where the dot denotes the time derivative, k ∈ {−1, 0, 1} is the curvature index, and
ρ = ρ(t) > 0 is the mean mass density. At present it is assumed that (21) should be
considered only for t > τ , where

τ ≈ 380 000 yr

is the time of decoupling of the cosmic microwave background radiation (CMB).
Note that Friedmann derived (21) exactly from (19) without any approximations,
i.e., (21) is a direct mathematical consequence of Einstein’s equations for a homoge-
neous and isotropic universe which is described by a maximally symmetric manifold
for k ∈ {−1, 0, 1}. In particular, it is a consequence only of the first Einstein equa-
tion (8)–(12) enriched by the cosmological constant (see [30] for a detailed proof),

Einstein’s equations + maximum symmetry =⇒ Friedmann equation. (22)

We shall suppose that
ȧ(τ) > 0, (23)

since the universe was expanding at time τ . Furthermore, assume that ȧ(t) 6= 0 for
all t > τ and divide equation (21) by ȧ2. Then the Friedmann equation reads

ΩM(t) + ΩΛ(t) + Ωk(t) = 1 for all t > τ, (24)

where

ΩM(t) =
8πGρ(t)

3H2(t)
> 0, ΩΛ(t) =

Λc2

3H2(t)
, and Ωk(t) = − kc2

a2(t)H2(t)
, (25)

are normalized cosmological parameters called (see [41, p. 58], [43, p. 37]) the density
of dark and baryonic matter, density of dark (or vaccum) energy, and the curvature
parameter, respectively, and

H(t) =
ȧ(t)

a(t)
(26)
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is the Hubble-Lemâıtre parameter. Note that (24) is really a differential equation,
since the derivative ȧ is hidden in the Hubble-Lemâıtre parameter.

In the literature on cosmology, the division of (21) by the square ȧ2 ≥ 0 is usually
done without any preliminary warning that we may possibly divide by zero which
may lead to various paradoxes. For instance, we see by (25) and (26) that

ȧ(t) → 0 =⇒ ΩM(t) → ∞ and ΩΛ(t) → ±∞ for Λ 6= 0, (27)

corresponding e.g. to an oscillating (cyclic) universe, or a loitering universe or
a bouncing universe by de Sitter with ρ ≡ 0 and Λ > 0, see Figure 3,

a(t) =
1

α
cosh(αct) for α =

√
Λ

3
.

In the last case the Friedmann equation (21) is satisfied for k = 1, namely,

(ȧ(t))2 = c2sinh2(αct) = c2cosh2(αct)− c2 = c2α2a2(t)− c2 =
Λc2

3
a2(t)− kc2

and we have ȧ(0) = 0. Note that de Sitter solution does not describe reality well due
to the unrealistic assumption ρ ≡ 0.

0 t

a

t1 0 t

a

Figure 3: Graph of the expansion function a = a(t) for 1) a loitering universe for
which there exists t1 > 0 such that ȧ(t1) = 0, amd for 2) a bouncing universe.

The Einstein static solution (see Figure 4)

a(t) ≡ Λ−1/2

with Λ > 0 satisfies ȧ ≡ 0 which leads to division by zero in (25), too. The Friedmann
equation (21) is satisfied again for k = 1 and ρ = Λc2/(4πG), namely,

0 ≡ ȧ2 =
8πG

3
ρa2 +

Λc2

3
a2 − c2 =

8πG

3

Λc2

4πG

1

Λ
+

Λc2

3

1

Λ
− c2 = 0.

However, the Einstein static solution also does not describe reality well, since the
universe is expanding and the condition (23) does not hold. Moreover, this solution
is unstable [6, 9, 14, 35], i.e., small fluctuations can make it either expand or contract
(cf. Figure 3 for a(t1) = Λ−1/2).
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Figure 4: The expansion function for 1) the Einstein static universe, 2) the cyclic
universe (the expansion stops at some time t2 > 0 and then starts to shrink), 3) the
universe with zero cosmological constant, and for 4) the currently proposed expansion
of the universe with a positive cosmological constant. Here t4 = τ denotes the time
instant of the origin of the cosmic microwave background radiation.

Is there really an infinite density of dark matter and dark energy, when a = a(t)
reaches its extremal values? The true density of baryonic matter is surely finite. For
an oscillating universe (see the upper right of Figure 4), when the density of dark
energy reaches an infinite value (27), the universe starts to shrink. This is a quite
paradoxical result, see [30, p. 169].

The behavior of the curvature parameter is also strange. Applying (26), we see
that Ωk(t) = −kc2/ȧ2(t), i.e., Ωk(t) ≈ 0 when the universe has originated (cf. Fig-
ure 4).

In [26] we show that division by zero in (25) may appear for Λ negative, vanishing,
and also positive. If Λ < 0, we always divide by zero in (25).

In the model with Λ = 0 we again divide by zero in (25) if k = 1 and ρ = ρ(t)
is larger than the so-called critical density ρcrit(t) = 3H2(t)/(8πG). For k = −1 the
expansion function is strictly convex and increasing for t > t3 > 0 (see the bottom
left part of Figure 4).
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If Λ > 0 then the division by zero in (25) may appear for k = 1. Otherwise the
expansion function satisfying (23) changes from strictly concave to strictly convex
on the interval (9,14) Gyr (see the bottom right part of Figure 4).

6. Incorrect extrapolations lead to dark matter and dark energy

By the scientific results of the Planck satellite [43], our universe is composed of
about 68% of some mysterious dark energy (i.e., the present value ΩΛ = 0.68 in (25)),
27% of some exotic dark matter, and less than 5% of ordinary baryonic matter. In
truth, it is more likely that the measured data just indicate that the extrapolation
is wrong, since it requires one to introduce some hypothetical dark matter and dark
energy.4

The above cosmological parameters were obtained by the three seemingly in-
dependent methods of Baryonic Acoustic Oscillations (BAO), Cosmic Microwave
Background Radiation5 (CMB), and Supernovae type Ia explosions (SNe). However,
these methods are not independent, since they are all based on the same normalized
Friedmann equation (24).

According to the standard cosmological model [43], our universe contains more
dark matter than ordinary baryonic matter and

the ratio of masses of dark matter to baryonic matter ≈ 6 : 1. (28)

In [25] we present ten arguments showing that this proclaimed amount of dark mat-
ter is highly overestimated. The ratio (28) was again obtained from the standard
ΛCDM cosmological model which is based on excessive extrapolations [32]. For in-
stance, most of the observed galaxies have spiral structure. If these galaxies would
contain six times more uniformly distributed nonbaryonic matter than baryonic mat-
ter, then they could not exhibit such a high symmetry of structured baryonic matter.
Moreover, their disks would be more thicker due to dark matter halos.

In [28] we suggest that nonbaryonic dark matter need not be taken into account
to explain the observed rapid rotation of spiral galaxies. The main reason is a spe-
cial form of the gravitational potential of a flat disk which guarantees large orbital
velocities of stars at the galaxy edge. In particular, we proved that a star orbiting
a central mass point along a circular trajectory of radius R has a smaller speed
than if it were to orbit a flat disk of radius R and the same mass with an arbitrary
rotationally symmetric density distribution, see also [25, 33, 52].

At the end of the 20th century (when Perlmutter et al. published their famous
paper [42]) it was thought that red dwarfs of the spectral class M form only 3% of the
total number of stars, see [5, p. 93]. Nevertheless, the Gaia satellite estimated that

4There are hundreds of popularization books on dark matter and dark energy, since people like
mysteries. This trend is difficult to stop, since almost nobody would buy a book stating that there
is no dark matter and dark energy.

5For a trustworthy criticism of this method we refer to [50].
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red dwarfs are in the vast majority — about 75%. This large proportion essentially
contributes to invisible baryonic matter.

The density of dark and baryonic matter is defined by means of the Friedmann
equation by (25), i.e. via Einstein’s equation, cf. (22). However, sometimes New-
ton laws are used to describe dynamic manifestations of galaxy clusters. Einstein’s
equations should thus not be substituted by Newtonian mechanics to “prove” the
existence of dark matter.

For the luminosity distance of supernovae type Ia explosions, Perlmutter et al. [42,
p. 566] used a formula which was derived from the Friedmann equation. This distance
thus essentially depends on the fact whether Einstein’s equations on cosmological
distances sufficiently well approximate reality, since the Friedmann equation (21)
is a mathematical consequence of (19) for a homogeneous and isotropic universe,
see (22).

If this approximation is poor, the luminosity distances are not correct. Moreover,
the method SNe treats type Ia supernovae as standard candles. However, they
cannot be considered in this way due to a possible large extinction of light from
the supernova [51]. This essentially depends on its location in the host galaxy, if it
is at its edge or in the middle completely surrounded by galactic gas and dust. It
also depends on the direction of the supernova rotational axis. In this way we may
receive several orders of magnitude weaker light.

Further, let us introduce the dimensionless deceleration parameter

q := − äa

ȧ2
= − ä

a
H−2 = −ḢH−2 − 1,

where the second equality follows directly from (26). From this we see that the
deceleration parameter q0 = q(t0) at the present time t0 appears at the quadratic
term in the Taylor expansion (see e.g. [39, p. 781], [44, p. 652])

a(t) = a(t0) + ȧ(t0)(t− t0) +
1

2
ä(t0)(t− t0)

2 + . . .

= a(t0)
(
1 +H0(t− t0)−

1

2
q0H

2
0 (t− t0)

2 + . . .
)
, (29)

where H0 = H(t0) is the present value of H(t) called the Hubble constant. In the
paper [45, p. 110], a negative value of the parameter

q0 ≈ −0.6

was found, i.e., a is strictly convex in a neighborhood of t0 and the expansion of the
universe accelerates (see the last graph in Figure 4). Using (29), we observe that the
linear term is much larger than the quadratic term for t close to t0, namely,

|H0(t− t0)| ≫
1

2
|q0|H2

0 (t− t0)
2 =

1

2
|q0|

Λc2

3ΩΛ(t0)
(t− t0)

2,
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where the last equality is due to (25). The single quadratic term is so small that the
linear term in (29) essentially dominates not only in a close neighborhood of t0, but
also for the other t < t0,

0.3|H0(t− t0)| >
1

2
|q0|H2

0 (t− t0)
2,

where 1
2
|q0| = 0.3.

7. Further counter-arguments

We shall present 10 further counter-arguments showing that Einstein’s equations
do not describe reality well, especially on cosmological distances.

7.1. Problems with initial and boundary conditions

It is generally impossible to prescribe explicitly any appropriate initial and bound-
ary conditions for non-spherically symmetric regions (e.g. on a cube) for gµν which
satisfies (1) or (19). The reason is that spacetime tells matter how to move and
matter tells spacetime how to curve [39]. So the initial space manifold is a priori not
known for nontrivial cases. Thus we have serious problems to prove the uniqueness
and also the existence of the solution of Einstein’s equations and compare it with
reality. Furthermore, suitable function spaces, where we look for the true solution,
are usually not specified in the literature.

Let us also point out that Einstein’s equations are fully deterministic whereas
the universe (with its biological systems) does not operate solely gravitationally due
to quantum phenomena. Their effects can be observed not only on microscopic
scales. For instance, in our brain we can decide to change the trajectory of an
asteroid in arbitrary direction by the famous kinetic impactor method. Hence, the
evolution of the real world is very unstable with respect to initial conditions including
our decision. Imperceptible quantum fluctuations may thus cause large changes of
trajectories of celestial bodies and this process is definitely not described by Einstein’s
equations.

7.2. Nonuniqueness of the topology

The knowledge of the metric tensor gµν does not determine uniquely the topology
of the corresponding space-time manifold. For instance, the Euclidean space E

3 has
obviously the same metric gµν = δµν , µ, ν = 1, 2, 3, as S1×E

2, but different topology
for a time-independent case with Tµν = 0 in (1). Here S

1 stands for the unit circle.
Hence, solving Einstein’s equations does not mean that we obtain the shape of the
associated manifold. Other examples can be found in [39, p. 725].

7.3. Law of conservation of energy

In general relativity the energy-momentum conservation is true only locally, which
is expressed in the covariant divergence form as

T µν
;ν :=

∂T µν

∂xν
+ Γµ

λνT
λν + Γν

λνT
µλ = 0, (30)
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see e.g. [39, p. 146]. So the law of conservation of energy holds for Einstein’s equa-
tions (19). However, in [29] we presented 10 independent observational arguments
showing that the Solar system slowly expands and the expansion rate is compara-
ble to H0, cf. (29). For instance, the measured mean speed of the Moon from the
Earth is 3.84 cm/yr while tidal forces can explain only one half of this value. The
corresponding remainder is approximately equal to 0.67H0, see [10], [11], [29, p. 187].

Slight violation of the laws of conservation of energy and of momentum in static
spacetime can easily explain a wide range of puzzles such as the faint young Sun para-
dox, the formation of Neptune and Uranus closer to the Sun, the existence of rivers
on Mars, the paradox of tidal forces of the Moon, the paradox of the large orbital
momentum of the Moon, Triton and Charon, migration of planets, the slow rotation
of Mercury, the absence of its moons, rapid orbital expansion of Titan [34], etc.

In [29, Chapt. 16] we also show that galaxies themselves slightly expand at
rate comparable with H0. For instance, by [37, Sect. 8] the observed conserva-
tive expansion rate of the Milky Way is 0.6 − 1 kpc/Gyr, which is approximately
600–1000m/s and the Hubble constant recalculated on the diameter D of our Galaxy
is H0 = 2km/(sD), see [29, p. 241].

The angular momentum of spiral galaxies is also not conserved, cf. [36, 40]. This
is naturally expressed by the galactic angular momentum paradox: How is it possible
that spiral galaxies (originating from small random fluctuations in a hot homogeneous
and isotropic universe) rotate so fast?

7.4. Modeling error

The difference between physical reality and the solution of Einstein’s equations
is called the modeling error. In Figure 5 there is a general computational scheme of
numerical solutions of problems of mathematical physics on a computer [29], where
we always commit three basic errors: modeling error e0 = e0(t), discretization error
e1 = e1(t), and rounding errors e2 = e2(t). The size of e0 is often not taken into
account in the theory of general relativity even though it can be much larger than
e1 + e2.

results0 e1 e2

NumericalDiscreteMathematicalPhysical
reality model modele

Figure 5: Modeling error e0(t) is the difference between physical reality and the
solution of its mathematical model (mathematical-physical description). The dis-
cretization error e1(t) is the difference between solutions of the mathematical model
and the discrete computer model. Finally, in e2(t) rounding errors (or iteration
errors) are included.
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Setting A = 1
3
Λc2 and B = −kc2, the Friedmann equation (21) can be rewrit-

ten as the following simple autonomous ordinary differential equation with constant
coefficients

ȧ2 = Aa2 + B +
C

a
, (31)

where C = 8
3
πGρa3 > 0 is constant by the law of conservation of mass for zero

pressure, i.e. ρ(t)a3(t) = ρ(t0)a
3(t0) for all t > τ , where t0 is the present time

(see [31, p. 100]). E.g. C = 2
3
c2
√
Λ for the Einstein universe and C = 0 for the de

Sitter universe, where k = 1 and Λ > 0. However, the analytical solution of (31)
is not known when ABC 6= 0, in general. Therefore, we cannot separate particular
terms of the sum e0+e1 to establish the modeling error e0. Hence, from equation (31)
we should not make any categorical conclusions about the deep past and the future
of the universe, about its age, origin, size, curvature, composition, expansion speed,
etc., as is often done.

Moreover, we should not perform the backward integration of the Friedmann
equation close to the Big Bang (cf. Figure 4), when quantum phenomena played an
essential role, since they are not described by Einstein’s equations.

7.5. Scale non-invariance

No equation of mathematical physics describes reality absolutely exactly on any
scale. The reason is that the laws of physics are not unchanged under a change of
scale, in general. For instance, Einstein’s equations (19) are not scale-invariant, since
they are highly nonlinear and contain fixed physical constants Λ, c, and G. They
do not describe phenomena at an atomic level in a trustworthy manner. In this
case, the modeling is very large (see Figure 6). If the curvature index k = 1, then
the corresponding space manifold (hypersphere) is bounded, i.e., the scale invariance
again cannot hold.
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Figure 6: Left: A schematic illustration of a general behavior of the relative modeling
error E for equations of mathematical physics. The horizontal axis has a logarithmic
scale and p is the exponent for which the modeling error is the smallest. Right:
Behavior of the modeling error for Einstein’s equations promoted by the standard
cosmological model.

27



The standard cosmological model is based on the unrealistic assumption that
Einstein’s equations are scale invariant, i.e., one can apply them to arbitrarily large
objects — like the whole universe. This is, of course, an unjustified extrapolation,
see Section 5.

7.6. Unconvincing general relativity tests

Classical tests of the theory of general relativity [38, 39], such as bending of light,
Mercury’s perihelion shift, gravitational redshift, and also Shapiro’s fourth test of
general relativity, are usually being verified by very simple algebraic formulae de-
rived by various simplifications and approximations from the exterior Schwarzschild
solution (13) without any guaranteed estimates of the modeling error. However, we
cannot verify the validity of Einstein’s equations (1) by means of the Schwarzschild
solution.6 This could be used only to disprove their validity (more precisely, to
disprove their good approximation properties of reality).

For instance, Mercury’s perihelion shift is thought to be one of the fundamental
tests of the validity of the general theory of relativity. Recall Einstein’s formula for
this shift [12] during one period T = 7.6005 · 106 s,

ε = 24π3 a2

T 2c2(1− e2)
= 5.012 · 10−7 rad, (32)

where e = 0.2056 is the eccentricity of its elliptic orbit and a = 57.909 · 109 m
the length of its semimajor axis. From this we find an incredibly small perihelion
advance

E = 43′′ per century.

Let us point out that formula (32) was published already in 1898 by Paul Ger-
ber [21]. In [12], the planet Mercury is replaced by a massless point (which is again
called Mercury) that does not curve the surrounding spacetime7 and the influence
of the other planets is not taken into account. According to [17, p. 147], the rela-
tivistic perihelion shift 43′′ is in excellent agreement with observed values. However,
the observed perihelion shift is O ≈ 575′′ per century due to the gravitational tug
of other planets. From this value general relativists subtract the value C ≈ 532′′

calculated by Newtonian mechanics with infinite speed of gravity. This has to be
done numerically, since the analytical solution of the n-body problem corresponding
to the Solar system is not known. Hence, we necessarily meet all kinds of errors
marked in Figure 4. In spite of that general relativists claim that

E = O − C.
6Similarly, good approximation properties of reality modeled by the Laplace equation ∆u = 0

cannot be verified by testing its linear solution u(x1, x2, x3) = x1+x2+x3, since there exist infinitely
many other equations having the same solution.

7For comparison note that the Earth (18× heavier than Mercury) curves the surrounding space-
time by maintaining the Moon’s motion at a speed of 1 km/s at a very large distance of 384 400 km.
The generalized 3rd law of Kepler yields the difference 13 000 km in positions after one century if
Mercury is replaced by a massless point.
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However, the quantities O and C are not uniquely defined. Thus, the proposed
relativistic shift 43′′ per century comes from the subtraction of two quite inexact
numbers of almost equal magnitude (Observed minus Calculated). As such, this
shift is highly uncertain and may not correspond to reality. We present a thorough
numerical analysis of this ill-conditioned problem in [24].

The observed twist of line of apsides of binary pulsars does not imply that Ein-
stein’s equations describe reality well. The reason is that we do not know any of their
solutions for two massive bodies, since they are extremely complicated, cf. (8)–(12).
Nevertheless, we can apply formula (32) to the star S2 orbiting the super-massive
black hole SgrA*. For the corresponding values a ≈ 970 au≈ 145 ·1012 m, e ≈ 0.885,
and the period T ≈ 16.052 yr≈ 507 · 106 s (see [1]) formula (32) yields a relatively
large value ε = 10.74 arc minutes. However, we see that formula (32) contains
squares of a, e, and T , so it is very sensitive to their precise determination. More-
over, the trajectory of S2 is seen only in the projection on the celestial sphere, so it is
difficult to get precise values8 of a and e, see [27]. Hence, we have to wait for several
periods to verify, whether the proposed value ε = 10.74′ corresponds to reality.

7.7. Hubble-Lemâıtre constant

In 2016, the Planck Collaboration stated that

H0 = 66.93± 0.62 km s−1Mpc−1. (33)

This value is based on the standard cosmological model (i.e. Einstein’s equations),
while the Gaia and Hubble Space Telescope measurements of Cepheids and RR Lyrae
yield the 10% larger value H0 = 73.52± 1.62 km s−1Mpc−1, see [46]. We again get
a disagreement between theory and observations. For a substantial discordance in
estimating another cosmological parameter σ8, see [22].

7.8. The age of the universe

The age of the universe was derived from the ΛCDM model up to four significant
digits

t0 = 13.79 Gyr (34)

using the backward integration of the Friedmann equation (21) and the present value
of the Hubble-Lemâıtre constant (33). Nevertheless, from such a simple equation we
should not make any categorical conclusions about the real age of the universe, since
it was derived from Einstein’s equations by excessive extrapolations to cosmological
scales. For instance, by [7] the star HD 140283 is 14.46± 0.8 Gyr old, which contra-
dicts (34). Moreover, this star is quite close to our Sun, so it is very probable that
there are older stars in the whole universe.

8The angular size of the (projected) semimajor axis a was measured quite precisely, but the
Earth-SgrA* distance is known only approximately, i.e., the presented value of a in meters is very
rough.
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The existence of super-massive black holes ≈ 1010 M⊙ at distances z ≈ 7, when
the universe was only 700 000 yr old, also indicates that its real age is probably higher
than (34).

7.9. Time delay variables

Einstein’s equations do not contain delays (in time variables) corresponding to
the finite speed of gravity. This does not allow us to properly treat aberration effects.
The actual angle of gravitational aberration has to be necessarily positive, since the
zero aberration angle would contradict causality [29]. In fact, the causality principle
should be prior to the law of conservation of energy.

7.10. Measurements of vacuum energy

The main argument against the proposed amount of vacuum (dark) energy is
the 120-order-of-magnitude discrepancy between the measured and theoretically de-
rived density of vacuum energy (see [2]). From this it is evident that the standard
cosmological model, which is a direct mathematical consequence of Einstein’s equa-
tions (22), does not approximate reality well.

For further cosmological paradoxes we refer e.g. to [3, 4].

8. Concluding remarks

The main problem of the standard cosmological model lies in the hidden assump-
tion that Einstein’s equations describe the evolution of the whole universe very well.
Unfortunately, this unjustified assumption sits at the origin of all paradoxes of the
current cosmology. It resembles the situation of the PhD thesis of J. N. He defined
the so-called canal surfaces and proved many surprising lemmas and theorems about
them. Later it was found that his set of canal surfaces is empty.

In 1922 astronomers had no idea about the real size of the universe, because galax-
ies (other than the Milky Way) were discovered by Edwin Hubble in 1925, see [23].
Their typical size is about 1010 astronomical units, and the size of the observable
universe is at least five orders of magnitude larger. In spite of that, Alexander Fried-
mann [18] (and before him also Albert Einstein [14]) applied Einstein’s equations to
the whole universe, even though they are being tested on much smaller scales.

This excessive extrapolation has caused the current crisis
of the standard cosmological model.

The standard cosmological model assumes that time flows completely uniformly
from the Big Bang on (cf. Subsection 7.8). However, it is important to realize that
in the observable universe we actually look in any direction into the vast spacetime
singularity. The more distant the objects that are observed, the more it seems to
us that time passes more slowly due to the cosmological redshift. For instance, if
there were a huge clock placed at z = 1 from the Earth, then we would see that it
runs twice as slow. For the largest currently observed distance corresponding to the
CMB with redshift z = 1089, a similar clock would seem to tick 1090× slower than
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on the Earth. Moreover, time flows more slowly close to dense massive objects which
applies to the early universe when also quantum phenomena were present.
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[29] Kř́ıžek, M., Kř́ıžek, F., Somer, L.: Antigravity — its origin and manifestations
Lambert Acad. Publ., Saarbrücken, 2015, xiv + 348 pp.
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