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Abstract: We show that the Doppler effect and aberration of light can pro-
duce more dominant and entirely opposite effects for relativistic speeds than
those predicted by the Special Theory of Relativity, in particular, the clock
paradox, time dilatation, and length contraction. For instance, an observer
will measure a higher frequency of an approaching clock than the same clock
has at rest. We also prove that under certain conditions an approaching bar
on a photo may seem to have a larger length for a relativistic speed than at
rest.∗
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1. Introduction

According to Newton’s first law of inertia, a body will remain at rest or in uniform
motion in a straight line unless acted upon by an external force. This fundamental
physical principle serves to introduce the so-called inertial systems in the Special
Theory of Relativity (STR), see [7, p. 211]. Consider a fixed coordinate system S
with orthogonal axes x, y, z containing a fixed system of hypothetical synchronized
clocks1 that define the time coordinate t ∈ (−∞,∞) of a uniformly flowing time.
The coordinate system S is called inertial if it obeys Newton’s first law of motion.

Let S ′ be another coordinate system with orthogonal axes x′, y′, z′ which are for
simplicity parallel with x, y, z and have the same scale at rest, see [25]. The time
t′ ∈ (−∞,∞) in S ′ is introduced similarly using a fixed system of synchronized
clocks in S ′ having also the same time scale at rest. Let the origin of S ′ move along

∗Adapted and extended from the Czech version [12].
1This can be, in fact, interpreted so that all clocks are synchronized by an infinite speed of

signal.
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the x axis at a constant speed v ∈ (−c, c), where c is the speed of light in vacuum2,
see Figure 1.

Figure 1: The inertial system S ′ is moving by speed v ∈ (−c, c) with respect to the
system S.

The Lorentz transformation (see [13]) is a fundamental tool of the STR. The
parameter defined by

γv =
1

√

1− v2

c2

≥ 1 (1)

is called the Lorentz factor. Points of the spacetime R
4 are called events. Unless

otherwise stated, we will restrict ourselves to one pair of the above described inertial
systems, where the event is determined by the encounter of the origins of S and S ′

determines the beginning of time counting in the first and in the second inertial
system, respectively, i.e., t = 0 in S and t′ = 0 in S ′. In this special case the Lorentz
transformation3 has the form Lv : R

4 → R
4,

x′ = γv(x− vt), (2)

y′ = y,

z′ = z,

t′ = γv

(

t− v

c2
x
)

, (3)

where x, y, z, t ∈ (−∞,∞) and the last equality expresses how to transform a uni-
formly flowing proper time during transition from S to S ′. Events which are simul-
taneous4 in S are given by the identity t ≡ t0, where t0 is a fixed constant. By (3)

2The basic postulate of the STR that the speed of light c has the same size in all inertial systems
was verified experimentally on the Earth by the well-known Michelson’s experiments, see [14].

3Albert Einstein uses the transformation (2)–(3) in his pioneering paper [5, p. 902] from 1905,
but does not use the term intertial. He also does not cite Lorentz’s paper [13, p. 185] from 1892 nor
does he mention Hendrik Lorentz himself. Einstein probably knew Lorentz’s work [13], since the
titles of their two papers are very similar. Moreover, Lorentz was very famous after receiving the
Nobel Prize in 1902.

4Let us emphasize that any two different events which are simultaneous in S are not causally
connected. Thus, one can verify that they were really simultaneous only when their future light
cones intersect (cf. Figure 5).
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we see that the time t′ depends not only on t but also on the position x, i.e., t′ is
not constant and thus the corresponding events do not have to be simultaneous in S ′

for v 6= 0.
Notice that the right-hand sides of relations (2) and (3) are linear functions in

variables x and t for any fixed v. Thus, for x = (ct, x, y, z) and x
′ = (ct′, x′, y′, z′)

the Lorentz transformation can be rewritten into the matrix form

x
′ = Lvx,

where

Lv =













γv −v

c
γv 0 0

−v

c
γv γv 0 0

0 0 1 0
0 0 0 1













(4)

is a block diagonal symmetric and positive definite matrix. Note that the physical
dimension of all entries of the vectors x and x

′ is one meter.
The inverse matrix L

−1
v

has a similar form as Lv, only the two minus signs in (4)
have to be replaced by plus. Therefore, the Lorentz transformation Lv is a one-to-one
mapping from R

4 onto R
4 for v ∈ (−c, c).

Let us point out that in the limit case |v| = c, the matrix (4) becomes singular,
since its two first rows are linearly dependent. Consequently, the Lorentz transfor-
mation should not be applied to the surface of the light cone. Its inverse does not
exist.

2. Time dilatation

The relation (3) is to be understood only as the time which we would record
at the moment when the two clocks in S and S ′ are closely passing each other at
one single x-coordinate (e.g. at the origin). So we can compare only time data t
and t′ of local clocks, because the concept of the present is relative. By definition,
all clocks in each inertial system at rest show the same time in the whole infinite
three-dimensional space (e.g. at the beginning and at the end of a motionless bar).
So when we are exactly in the middle between any two fixed clocks, they will show
us the same time.

Consider a fixed time interval

∆t′ = t′2 − t′1,

where t′
i
are space independent coordinates in S ′. For an arbitrary fixed point x in S

we determine the corresponding t2 and t1 from formulae (cf. (3))

t′2 = γv

(

t2 −
v

c2
x
)

, t′1 = γv

(

t1 −
v

c2
x
)

,
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and we set ∆t = t2 − t1. From this we get the so-called time dilatation (see e.g. [10,
p. 430])

∆t′ = γv

(

t2 −
v

c2
x− t1 +

v

c2
x
)

= γv∆t. (5)

By (1) we see that ∆t′ > ∆t for any v 6= 0 independently of the sign of v. The rela-
tion (5) actually expresses that the time, measured by a clock in a moving system S ′,
runs slower than the time measured by a clock that is at rest with respect to S.

The clock at rest is fastest.

The time dilation is usually theoretically justified as follows: A photon launched
from the origin of the system S in the z direction flies obliquely at S ′ with speed c.
Therefore, in terms of an observer in S ′ this photon needs longer time to reach the
plane z′ = z = 1 than in terms of an observer in the system S.

Remark 1. The experimental verification of time dilation can be demonstrated
by means of particles called muons whose mean half-life time at rest is τ = 2.2·10−6 s.
From observations of cosmic rays we know that if muons move linearly at almost the
speed of light, they will travel on average much longer distance than cτ = 660 m.
However, it should be emphasized that in the inertial system associated with muons
their decay will not slow down. In another experiment [3], the time dilatation is
verified by means of the transverse Doppler effect.5 Lithium ions accelerated to the
speed v = 0.338c are used as clocks. Note that the Hafele-Keating experiment [9]
with two atomic clocks in airplanes and one on the Earth is not too credible, since
none of the corresponding three systems was inertial. �

The non-relativistic longitudinal Doppler effect6 (see [4]) is described by the re-
lation

fv =
c

c− v
f, (6)

where f is the source frequency at rest, v is the speed of the source approaching an
observer along the axis x, fv is the frequency measured by the observer, and c is the
speed of signal. For relativistic speeds this relationship needs to be corrected by time
dilation, see [7]. All physical processes including clock speed in S ′ will run by (3)
slower when observed from S. Thus by (6), the new relation will be of the form

fv =
c

c− v
f ′, (7)

5The transverse relativistic Doppler effect was first measured by Ives in [11] already in 1938. In
classical mechanics, this transverse effect does not occur, because it is given by time dilation (5)
only.

6Olaf Rømer (in Journal des Sçavans, 1676) suggested an elegant method to measure the speed
of light. When the Earth moved toward Jupiter, the time interval between successive eclipses of
Jupiter’s moon Io became steadily shorter with respect to the terrestrial time. When the Earth
moved away from Jupiter these eclipses became steadily longer, i.e., they were behind the expected
values. Rømer thus actually found a phenomenon, which was later named after Christian Doppler.
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where c is the speed of light and

f ′ = γ−1
v

f (8)

corresponds to the lower frequency calculated from (5). By (7), (8), and (1) we
obtain a relativistic Doppler relation for the frequency detected in S (see [5]),

fv =
1

1− v

c

f ′ =
γ−1
v

1− v

c

f =

√

1−
(v

c

)2

1− v

c

f =

√

c+ v

c− v
f. (9)

From this we immediately get the following theorem.

Theorem 1. For any v ∈ (0, c) we have that fv/f
′ > fv/f > 1. Moreover,

fv/f → ∞ as v → c.

Consequently, the Doppler effect manifests more than the time dilation itself,
whenever the clock approaches the observer. Hence, the higher the speed v, the
greater the Doppler effect. Special relativity effects for large v are of higher order
than those arising from the Doppler effect.

It is therefore very important to distinguish consistently between reconstructions
(calculations by means of the Lorentz transformation) and observations (measure-
ments, photographs, videos). The notion “observer” in the STR is somewhat con-
fusing. It should not be a person who only applies relations (2)–(3). The observer
performs real observations and measurements including all effects together as it is
usually understood, i.e., the observer measures incoming frequencies.

Example 1. Suppose that a clock will be approaching the origin of S at rela-
tivistic speed v = 0.8c. Its proper time will pass slower than on clocks fixed in the
system S, since by (1) and (5) we have

γv =
1√

1− 0.64
=

5

3

and

∆t′ =
5

3
∆t.

However, substituting v = 0.8c into (9), we find that

fv = 3f and fv = 5f ′, (10)

i.e., the observer at the origin of S will detect a 3× higher (blue-shifted) frequency
than the same clock has at rest in the system S and even a 5× higher frequency than
the time dilatation predicts (see (8)). This may seem to be paradoxical. For a clock
receding the origin by the speed (−v), the observer will detect by (9) a 3× lower
(red-shifted) frequency than f . So there is a jump in these constant frequencies
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at the origin and only in this single point the observer can theoretically detect the
proper frequency f ′. So the Doppler effect plays an essential role. �

Remark 2. The observer usually does not have a possibility to measure directly
the speed v of some distant object so that he could immediately use the Lorentz
transformation. However, he can measure the frequency fv (blue-shifted or red-
shifted) of some characteristic spectral line of a certain chemical compound and
establish the corresponding quiescent frequency f . From this and (9) he can establish
the speed v (or its radial component in general case). Then he can determine the
factor γ−1

v
and find how significant are the corresponding relativistic effects (2)–(3).

�

3. The Lorentz transformation does not allow superluminal velocities

First we recall Einstein’s formula [5] for a relativistic addition of velocities, see
also [17, Chapt. I.6].

Theorem 2 (Einstein). Let u ∈ (−c, c) and w ∈ (−c, c) be constant velocities

of a point-like object in the system S and S ′, respectively, in the direction of the

horizontal axis. Then

u =
v + w

1 +
vw

c2

, (11)

where v ∈ (−c, c) is a constant speed of S ′ with respect to S.

P r o o f: Velocities u and w are constant in S and S ′, respectively. Therefore,

u =
dx

dt
and w =

dx′

dt′
. (12)

By (3) we get
dt′

dt
= γv

(

1− v

c2
dx

dt

)

= γv

(

1− uv

c2

)

,

where the difference in parenthesis is obviously positive. Using this equality, (12),
and (2) we find that

w =
dx′

dt′
=

dx′

dt

dt

dt′
= γv

(

dx

dt
− v

)

γ−1
v

(

1− uv

c2

)

−1

=
u− v

1− uv

c2

.

From this it follows that

u− v = w − uvw

c2
.

Now it is enough to evaluate u and we obtain (11). �

For example, by Theorem 2 we see that for v = w = 2
3
c the speed u = 12

13
c is less

than c. In the next theorem we prove that from (11) we can never get the speed of
light or faster-than-light speed u, even if |v| and |w| are arbitrarily close to c.
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First, let us recall that a group G is a set equipped with an associative binary
operation ◦ : G × G → G and with the neutral element e such that for any g ∈ G
there exists exactly one inverse element g−1 ∈ G for which

g ◦ g−1 = e = g−1 ◦ g.

The composition ◦ of two Lorentz transformations Lv and Lw given by rela-
tions (2)–(3) for v, w ∈ (−c, c) is defined as follows

Lu = Lv ◦ Lw, (13)

where u satisfies Einstein’s formula (11).

Theorem 3. Lorentz transformations Lv for all v ∈ (−c, c) defined by (2)–(3)
form an Abelian group.

P r o o f: If v, w ∈ (−c, c) then obviously
(

1 +
v

c

)(

1 +
w

c

)

> 0 and
(

1− v

c

)(

1− w

c

)

> 0.

From this we find that

−
(

1 +
vw

c2

)

<
v + w

c
< 1 +

vw

c2
,

and thus

−c <
v + w

1 +
vw

c2

< c.

Comparing with Einstein’s formula (11), we see that u ∈ (−c, c), i.e., |u| is always
less than c.

Using (1) for v = 0, we find that γ0 = 1 and the corresponding transformation L0

is the identity, i.e. the neutral element.
From (11) and (13) we immediately get that

Lv ◦ L−v = L0 = L−v ◦ Lv,

where L−v is the inverse transformation, i.e., x = γv(x
′ + vt′), t = γv(t

′ + vx′/c2).
The composition ◦ is commutative, since the special block diagonal matrices Lv

and Lw defined by (4) are commutative, i.e.

LvLw =













γv −v

c
γv 0 0

−v

c
γv γv 0 0

0 0 1 0
0 0 0 1

























γw −w

c
γw 0 0

−w

c
γw γw 0 0

0 0 1 0
0 0 0 1













=













γvγw +
vw

c2
γvγw −v + w

c
γvγw 0 0

−v + w

c
γvγw γvγw +

vw

c2
γvγw 0 0

0 0 1 0
0 0 0 1













= LwLv
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for all v, w ∈ (−c, c). The associativity of the operation ◦ is due to the fact that
matrix multiplication is associative. �

4. Length contraction

Lorentz’s length contraction is an immediate consequence of the Lorentz trans-
formation. On the horizontal axis x′ consider a fixed bar which is at rest in the
system S ′. Denote its length by

∆x′ = x′

2 − x′

1, (14)

where x′

i
are fixed time independent coordinates of its ends in S ′. For an arbitrary

fixed time instant t in S we determine the corresponding x2 and x1 from formulae
(cf. (2))

x′

2 = γv(x2 − vt), x′

1 = γv(x1 − vt),

and we set ∆x = x2 − x1. Substituting this into (14), we get (cf. (5))

∆x′ = γv(x2 − vt− x1 + vt) = γv∆x. (15)

Denoting ℓ0 = ∆x′ and ℓ = ∆x, we get by (1) the well-known length contraction

ℓ = ℓ0

√

1− v2

c2
. (16)

The bar at rest has the greatest length.

Remark 3. For the time being there is no direct experimental evidence of length
contraction (16). Anyway, we can verify it indirectly by means of muons mentioned
in Remark 1. In the system S associated with these muons at rest we will observe
their usual mean half-life time τ = 2.2·10−6 s. However, in S ′ connected with Earth’s
atmosphere they will travel longer distance than cτ = 660 m. This demonstrates the
length contraction is S ′. �

In 1959, Roger Penrose published a paper [18] (see also [19, p. 431], [20]) describ-
ing why we should see a quickly flying non-rotating ball in a photo again like a ball.
In the same year, his thoughts were elaborated in more detail by James Terrell [21]
using light aberration. Here is a specific example showing the substantial effect of
light aberration for relativistic speeds.

Example 2. Consider a bar with length ℓ0 = 1 m. Assume that it moves from
the left to the right along the axis x by the constant speed v = 0.8c and that its
front end just reached the origin of the coordinate system S. By (16) the bar is
shortened to

ℓ = ℓ0
√
1− 0.64 = 0.6 m,
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and thus the length of the straight line segment AC in Figure 2 is |AC| = 0.4 m.
We will photograph this bar from the axis z by a fixed nonrotating camera which is
placed at the distance

d = 0.75 m (17)

from the origin. Using the similarity of right triangles from Figure 2, we find that
|BC| = |AC|d/ℓ0 = 0.3 m. From this we have |AB| =

√
0.42 + 0.32 = 0.5 m. The

segment on the hypotenuse from B to the camera has the same length in meters as d
in (17), √

12 + 0.752 − |AB| = 1.25− 0.5 = d. (18)

To avoid blurred photos, we assume that our idealized camera can take pictures
within 1 picosecond. During this time period, the light will fly 0.3 mm only and
a possible blurring will not play a significant role. For simplicity, we shall analyze
only that photo, in which the front end of the bar just reached the coordinate origin
of S. However, the rear end of the bar will be on the photo farther than ℓ, since the
light from the front end flies along a shorter distance d than the light from the rear
end (see Figure 2). That is why there will be recorded photons on the photo from the

A C

B

Figure 2: The length of the legs of the larger (or smaller) right triangle is 1 and 0.75
(or 0.4 and 0.3) meters. The ratio between the lengths of sides of the both triangles
is 5 : 4 : 3. Due to light aberration the flying bar from the left to the right at the
speed 0.8c has the same length in the photo as the same bar at rest. A photon
emitted to the camera from the rear end of the moving bar will always have the
same x coordinate as this rear end in this special case.

rear end of the bar that were emitted earlier than those from the front end. During
the time period, when the rear end of the bar moves from A to C, a photon pointing
from A to the camera will travel the distance |AB|, since v/c = |AC|/|AB| = 0.8.
Hence, thanks to light aberration and (18) the moving bar will have on the photo
the same length as the fixed one meter long bar. �

Let us point out that a photon will travel the distance d from the origin to the
camera during the time period ∆t = d/c. During this period, the bar will shift about
v∆t = 0.8d = 0.6 m, i.e., it will be placed entirely to the right of point 0.

Example 3. Let again ℓ0 = 1 m and v = 0.8c. Hence, ℓ = 0.6 m. This time,
however, we place the camera closer to the axis x, i.e. d < 0.75 m. We shall again
analyze the image, where the right end of the bar is at the origin. The left end of the

69



bar will shift from the point A = (−a, 0) to the point (−ℓ, 0) during the time period
∆t = (a − ℓ)/v. During this period, a photon will travel the distance c∆t from the
point A to the camera. From the relation a2 + d2 = ((a− ℓ)c/v + d)2 we can derive
the following inverse formula

d =
a2

(v

c
− c

v

)

+ 2aℓ
c

v
− ℓ2

c

v
2(a− ℓ)

.

For instance, when a = 2 m we obtain d = 15
56

= 0.26 . . . m. So if we place the
camera on the axis z at a distance of 26 cm from the origin, the one meter flying
bar will appear extended in the photo as two meters long. Similarly for v = 0.9 and
d = 4 cm we even get a = 4 m. The main reason for these surprising phenomena
is that photons, which simultaneously passed through the lens, were not emitted
simultaneously in S.

Figure 3: (see [8]). The man in the middle should observe much longer bicycle in the
x-direction due to light aberration (compare with the observed bar from Example 3).
Moreover, the wheels should not look like ellipses and its wires should be bent.
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For d = 0 no aberration effect appears. The photon from the end of the bar will
travel a distance of 3 m in the x-direction within 1 µs. During this time period, the
end of the bar will move 3 · 0.8 = 2.4 m. Thus the photon just gets to the beginning
of the bar, since 2.4 + 0.6 = 3 m. �

Approaching objects are manifested by blue shift (i.e. shortening the wave
length). However, due to aberration they may seem to be prolonged, which is para-
doxical. On the other hand, receding objects that are manifested by red shift may
seem to be shortened.

For d > 0.75 m we shall see the bar in the photo shorter than 1 meter. The
same bar will also be shorter than ℓ, if we photograph it so that its left end is at
the origin. If it is placed exactly symmetrically with respect to the origin, its length
on the photo will be just ℓ, but nonlinearly deformed. In the article [23], Weisskopf
describes an apparent deformation of a quickly flying cube on a photo.

Example 4. Due to Example 3, Figures 3 and 4 taken from the popularization
book [8, Chapt. 1] are confusing. �

Figure 4: (see [8]). The man on the bicycle should see the policemen on the right
thicker due to light aberration.
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5. The twin paradox

In a series of publications [6], [8], [15, p. 167], [16], . . . the twin paradox (called
also the clock paradox) is described by means of time dilation as follows:

One of the twins Adam stays on Earth while the other twin Bob flies in a rocket
e.g. to the star Sirius about 8 light years away with constant relativistic speed v.
Bob’s time runs slower due to time dilatation and his distance to Sirius is less
than 8 light years due to length contraction. When Bob returns with velocity (−v)
back on Earth, he finds out that his brother Adam is much older than him.

Now let us look at the twin paradox in more detail. First we present a wrong
argumentation which is sometimes proposed in the literature (and on internet).

Example 5 (Wrong argumentation). Let again v = 0.8c. For simplicity, the
speed of light c = 1 ly/yr will be not explicitly marked in this example. According
to Adam’s time, Bob will reach Sirius within 10 years and the same amount of time
he will fly back, i.e. 20 years altogether. The first half of Bob’s trajectory is defined
by the equation x′ = 0 in the system S ′ implying by (2) that Bob will follow the line
t = 5

4
x in S (see the lower thick line in Figure 5). Its second half in the inertial system

S ′′ associated with speed (−v) is given by the equation x′′ = 0 yielding t = 20− 5
4
x.

Bob’s proper time in the first half of his trip is t′ = γv(t− 0.8x) due to (3). From
this for a constant time t′ we obtain the equation t = 4

5
x + const which determines

in S the space of simultaneous events in S ′. Its graph has to pass through the event
given by x = 8 ly and t = 10 yr when Bob reaches Sirius. Hence, the corresponding
space of simultaneity is given by the equation t = 4

5
x +3.6, since 10 = 4

5
×8+3.6 (see

the dashed line passing through t = 3.6 on vertical axis in Figure 5). Similarly we
find that the second space of simultaneous events in S ′′ is given by t = −4

5
x+ 16.4.

During Bob’s turn at Sirius, the time on Earth will jump about 20−2×3.6 = 12.8 yr.
This time interval is not accounted by Bob and thus he will return 12.8 years younger
than his twin Adam (see the left vertical axis t in Figure 5). �

Why is the above argumentation wrong? There are several reasons. Bob’s proper
time t′ (and also t′′) was not taken into account correctly as we shall see in Example 6.
We saw in Theorem 1 and Example 1 that the Doppler effect plays an important role
in the STR. However, it was also not taken into account in Example 5. Bob feels an
infinite deceleration7 during his turnover at Sirius. The reader is juggled that this is
the main reason for the twin paradox, since Bob changes its inertial system. However,
this is not true, since when Bob reaches Sirius, he can just transmit information
about his real age in the system S ′ to another traveler who is fixed in the system S ′′

associated with speed (−v). The same applies for Bob’s departure and arrival back
to the Earth.

Moreover, it is said that Bob will observe a large jump in time on Earth, since no
event from the red interval (3.6, 16.4) on the vertical axis in Figure 5 is simultaneous

7Roger Penrose [19, p. 421] rounds the corresponding world lines on a small neighborhood around
the three critical points to avoid an infinite acceleration or deceleration.
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0 8 x

10

20

t

3.6

10

8

16.4

Figure 5: The vertical axis t shows the time in years and the horizontal axis x shows
the distance in light years. The left vertical line is the world line of Adam who stays
on Earth. The right vertical line corresponds to the world line of Sirius. The world
line of flying Bob is marked with a thick piecewise linear line given by equations
t = 5

4
x and t = 20− 5

4
x. The future light cone t = |x| is marked by the dot-and-dash

line and the dashed lines stand for events with simultaneous times in S ′ and S ′′ such
that t′ and t′′ are constant.

with Bob. In Example 6, we will show that Bob will see only a jump in frequencies
and no jump in time in S during his turnover (see Figure 6).

So further, we shall investigate the twin paradox from another point of view. We
will get different values than in Example 5.

Theorem 4. The difference (ct)2 − x2 is invariant with respect to the Lorentz

transformation.

P r o o f: From (2)–(3) we see that

(ct′)
2 − x′2 = (ct′ − x′)(ct′ + x′)

= γv

(

ct− vx

c
− x+ vt

)

γv

(

ct− vx

c
+ x− vt

)

= γ2
v

(

1 +
v

c

)

(ct− x)
(

1− v

c

)

(ct+ x) = (ct)2 − x2. (19)
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Figure 6: The notation is the same as in Figure 5 except for dashed lines. Here
dashed lines indicate trajectories of photons launched every year by Adam and Bob.
Left: Adam sends a periodic signal to Bob. Right: Bob sends a period signal to
Adam. There is not jump in time — only a jump in received frequencies.

Hence, this difference of squares is invariant with respect to the Lorentz transforma-
tion. �

Example 6 (Right argumentation). Let again v = 0.8c. Since Bob is at rest
in the system S ′, we have that x′ = 0. Thus from (19) we get for ∆t = 10 yr and
∆x = 8 ly

c∆t′ =
√

(c∆t)2 − (∆x)2 =
√
100− 64 = 6 ly. (20)

Consequently, Bob will fly 6 years to Sirius according to his proper time (see bullets
in Figure 6). Thus his clock at Sirius will show 6 years. On the other hand, the
corresponding time interval on Earth is only 3.6 years (see Figure 5), since ∆t =
γ−1
v

∆t′ = 3
5
· 6 = 3.6 years by (5).

Let f be the same frequency of Adam’s and Bob’s clock at rest. Due to the
relativistic Doppler relation (9), Adam will observe 3× lower frequency from Bob’s
clock, since

f−v = f

√

c− v

c+ v
=

1

3
,

and after the turnover of Bob, Adam will observe the frequency fv = 3f , see (10)
and Figure 6. Adam will receive the same frequencies from Bob due to the relativity
principle.
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Obviously, Bob will fly after the turnover the same distance back to Earth with
velocity (−v) again 6 years according to his proper time. So he will be 20−2×6 = 8
years younger than his twin Adam. This is a different result than in Example 5. Bob
will see all instants on Earth, i.e., no time interval will be skipped. �

Example 7. How younger was Niel Armstrong when he returned from the
Moon? For simplicity, assume that he was flying there and back by the constant
speed v = 10 km/s and that ∆x = 384 000 km is the Earth-Moon distance. Hence,
the one-way flight lasted

∆t =
∆x

v
= 38 400 s (21)

with respect to Earth’s clock. Then like in (20) we get

∆t′ =

√

(∆t)2 − (∆x)2

c2
=

√
38 4002 − 1.282 =

√
1 474 559 998.3616

= 38 399.999 978 666 s

From this and (21) we find that

∆t−∆t′ = 0.000 021 344 s.

Thus, when Niel Armstrong returned, he was approximately 43 µs younger than if
he stayed on Earth. �

6. Conclusions

The Special Theory of Relativity has a number of unexpected claims that con-
tradict our intuition. According to the STR, no experiment can be made to decide
whether the body is at rest or moving. All inertial systems for describing physical
phenomena are equivalent and there is no preferred inertial system. However, at
present we know that the cosmic microwave background radiation (CMB) actually
determines a certain kind of a fixed reference system in our neighborhood. Thus
there arise speculations whether the principle of relativity in the real universe holds.

In the limiting case w = ±c, Einstein’s formula (11) for v ∈ (−c, c) gives u = c.
Hence, every photon always has the speed of light in any inertial system.

It is often said that the Lorentz transformation for low speeds |v| ≪ c changes
into the Galileo transformation

x′ = x− vt,

y′ = y,

z′ = z,

t′ = t.
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This is not true (see [2], [22]), since for an arbitrarily small fixed v > 0 we can
always find x such that the term vx/c2 in (3) will dominate significantly over t.
However, from (2)–(3) it follows that the Lorentz transformation changes into the
Galileo transformation for a fixed v, if we treat c as a parameter and assume that
c → ∞. However, for an infinite speed of light there would be no Doppler effect nor
aberration of light.

Remark 4. For ~x = (x, y, z) and a constant velocity vector ~v ∈ R
3 with length

|~v| ∈ (0, c) the general Lorentz transformation is of the form (see e.g. [10, p. 434])

~x ′ = ~x+

(

γ − 1

|~v|2 ~v · ~x− γt

)

~v, (22)

t′ = γ

(

t− ~v · ~x
c2

)

. (23)

Here the Lorentz factor γ is defined similarly as in (1), only v2 needs to be rewritten
as |~v|2. It is easy to find that for nonzero ~v = (v, 0, 0), where v ∈ (−c, c), relations
(22)–(23) change to (2)–(3). By Wikipedia [24] (see also [1]), the Einstein addition
of velocities is neither commutative nor associative, in general. �

We conclude by stating that the longitudinal Doppler effect and aberration of light
may cause that we observe completely opposite phenomena than those predicted by
the Special Theory of Relativity by meas of (2)–(3). Note that relations (2)–(3)
represent only a transformation of spacetime coordinates of points from one inertial
systems into spacetime coordinates of the second inertial system. We saw that some
other effect than time dilatation and length contraction can manifest stronger and
they cannot be shielded in any way. For a visualization of several further accompa-
nying effects (like nonlinear distortion) we refer to www.spacetimetravel.org.
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