36

OBZORY MATEMATIKY, FYZIKY A INFORMATIKY 1/2008 (37)

'The role of the protractor in understanding the uni-

verse
Michal Krizek

Abstract: We present several examples to show how such an ordinary and si'mple in-
strument as the usual protractor helped to create the modern view of the universe.

Siihrn: Na niekol'kych prikladoch ukéZeme, ako taky obyZajny a jednoduchy pristroj,
ktorym je uhlomer, pomoho! vytvorit’ modemy pohl'ad na néS vesmir.

Introduction

It took thousands of years utill humankind attained our current imagination and
knowledge about the structure and functioning of the universe. In the following nine
examples (taken from [1, 2, 3], and [4]) we show that an ordinary protractor played
an essential role in this process.

1 Measurement of relative distances in the solar system

The following measurement is usually attributed to the Greek astronomer Aristarchus
of Samos (3rd century BC) who first proposed a heliocentric model to explain the
seasons. He had several really ingenious perceptions and showed that seemingly
complicated cosmic problems can be solved by elementary geometrical tools. When
the Moon was in the first or last quarter (see Figure 1), he realized that the angle
SME is right, where S, M, E stand for the Sun, Moon, and Earth, respectively. Using
an ancient protractor, he found that the angle SEM is roughly o = 87° (in today’s
degrees). Since the Sun and Moon in the sky have approximately the same angular
size, he deduced that the Sun is 19 times further from the Earth than the Moon, i.e.,

1
| COsQl = —1—§ . '

Note that it was very difficult to establish the instant of the first quarter exactly
and measure the angle o by the instruments of the day. At present we know that
the Sun is approximately 389 times further from the Earth than the Moon, which
corresponds to an almost right angle o = 89.852°. The big discrepancy in distances
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Fig. 1: When the Moon is in the first or last quarter, the angle SME is right (S =Sun, M =Moon,
E =Earth) and we have |ES| = |[EM|/coso.

- is due to the fact that cos ™ 87° < cos~! 89.852° even though the associated angles

are almost the same (cf. Figure 1).

Aristotle (cca 384-322 BC) in his treatise On the heaven [5] argued that the Earth
is a sphere, because its shadow on the Moon during lunar eclipses is always circular
(see Figure 2).

Later Aristarchus measured the angular
size of this shadow (= 1.5°). He stated that
the Earth freely hovers in space and its ra-
dius is 3 times larger than the radius of the
Moon (we know now that it is 3.67 times).
From this he calculated that the Moon is 70
Earth’s radii from the Earth, whereas the ac-
tual value is about 60 Earth’s radii.! More-
over, he formulated the groundbreaking hy-
pothesis that the Earth moves round the Sun
ar_ld not vice versa, since the Sun is much Fig. 2: The shadow of the Earth on the Moon
bigger than the Earth (cf. [6]). during a lunar eclipse is circular. Its radius R

The measurements of the size of the so- is more than 3 times larger than the radius of
lar system as deduced by the ancient Greek the Moon.
astronomers appears also in [7].

2 Establishment of absolute distances

Aristarchus’ conception of the determination of relative distances in the solar system
was supplemented more sophisticatedly by another Greek astronomer and scholar,

INote that tan1.5° =~ 720’%, where R is radius of the Earth. Since the angular size of the Moon is
about 31.1', we get tan(3.67 x 31.1') = Z&.
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sunlight

Fig. 3: The Earth’s circumference o was calculated from the known distance d between Alexandria and
Syene and the angle B was determined by gnomon at the midday of the summer solstice in Alexandria.

Eratosthenes of Cyrene (cca 276-194 BC). He is famous not only for his prime
number sieve, but also for the first scientific calculation of the Earth’s circumference
(see (8] for details). At that time it was known that the Sun’s zenith varies at distinct
latitudes. Eratosthenes used the simplest astronomical instrument — the gnomon —
which is just a straight stick perpendicularly raised to the Earth’s surface. He knew
that the Sun shines on the bottom of deep wells in Syene (at the tropic of Cancer near
to today’s Asuan) at midday of the summer solstice. This means that the gnomon
does not throw any shadow here. At the same time, in Alexandria (which is on almost
the same meridian as Syene) Eratosthenes measured the length of the gnomon and
the length of its shadow on the ground. The ratio of these two values gave him the
angle f = 7%0 between the vertical and the rays of sunlight (see Figure 3), i.e., 2 of
the angle 360°. Then from the relation »

d_ B

o 360°

he derived that the Earth’s circumference is 0 = 250000 stadia? = 46 000 km, where
the value d = 5000 stadia = 920 km was found by travelling on cart as traditionally
referred. At present we know that 0 = 40000 km.

3 Substantial improvement of accuracy

Due to the above results by Aristarchus and Eratosthenes it was believed in the Mid-
dle Ages that the distance between the Sun and Earth is about 1970 - 46000/ (2r)

21t is not known how large the Greek distance unit “stadium” was exactly (most probably in the
interval 165-210 m).
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km, i.e., less than 10 million kilometers (in today’s units). This estimate was dra-
matically increased in 1672, when G.D. Cassini measured the distance to Mars by
using a protractor. In Paris he measured the position of Mars on the celestial sphere
when Mars was at its nearest point to Earth (see [9] Chapt. 1). At the same instant,
his colleague J.F. Richer in Frerich Guyana also measured the position of Mars on
the celestial sphere. From the corresponding parallax of 18" and the known distance
between Paris and French Guyana it was found by standard trigonometric methods
that Mars is 73 million km far-away from the Earth (this result was obtained, in fact,

in French miles). Then Kepler’s third law was applied
T_2

]

3
2 :a_g, ij=1,2,3,..., (1)
j i

)

where T, is the sidereal period of ith planet and a; is the length of the semimajor
axis of its elliptical orbit. For the Earth and Mars we have T3 =1 and 7, = 1.88
years. Hence, a4 = (1.88)2/ 3a,. The second equation for the unknowns a3 and aq4
comes from the fact that planetary orbits are almost circular and the above-mentioned
angular measurement, i.e., ag —a3 =73- 106 km. From this we get a; = 140- 106
km which is a quite good estimate of the modern value a3 = 149.6-10% km. The
distances a; of all the other known planets were then calculated from Kepler’s third
law (1) and the observed periods T;.

The distances a, and a, of the inner planets were also estimated by the relation
a; = azsin oy, where oy; is the maximum angle of elongation (which is about 28° for
Mercury and 47° for Venus). For instance, Nicholas Copernicus established that the
radius of Venus’ orbit is about 72% that of the Earth’s by measuring the maximum
angle of separation from the Sun (see [10], p. 39 and 44).

4 Further improvement of accuracy

Another ingenious geometric method (see {11, 12]) was suggested by the famous
astronomer E. Halley (1656-1742). He developed the idea of using transits of Venus
from different places of known latitude into a practical method, which was applied
later in 1769 (also in 1761) when the planet Venus was passing over the Sun’s disc.
This phenomenon is very rare, since it happens only several times per millennium
(recently in June 8, 2004). According to [10], p. 133, more than 120 astronomers
made observations from about 60 stations. In particular, one group of astronomers
headed by Maximilian Hell was at the island Vardg (at present in Norway) and an-
other one with Captain James Cook and Charles Green travelled to Tahiti (see [1],
p.267). In Figure 4 we see asketch of two trajectories AB and CD of Venus observed
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Fig. 4: Schematic illustration of two different trajectories AB and CD of the Venus passing over the
Sun’s disc observed from Vardp and Tahiti in 1769. The real angular distance between AB and CD is
much smaller than in this figure.

from thege two places. The angular distance between the two line segments AB and
CD was found to be approximately o = 40”. Note that the angular diameter of the
Sun is about 32/, i.e., it is almost fifty times larger.

From (1) and the fact that T, = 0.615 years we get a; = 0.723a3. Moreover,
from Figure 4 we find that aytanP = (a3 —a,)tano. Since the Earth-Sun line was
perpendicular to the segment Vardg-Tahiti at certain instant during the time of the
transit, we obtain

4 e 4 0723d
" tanB a3—ay; tano  (1-—0.723)tanc’

as

where d = 11425 km is the distance between Vardg and Tahiti (it can be calculated
from the latitudes and longitudes of these two places by means of ellipsoidal coordi-
nates). In this way the calculation of the distance a; between the Earth and Sun was
improved to 153 - 108 km. ‘

There exist, of course, more sophisticated methods (see [10]) which take into
account the motion of the Earth and Venus during the time of the transit and other
circumstances.

5 Measurement of mass density and mass

A great breakthrough in understanding the behavior of the solar system came from
Newton’s laws, First, we show how to calculate the mean mass density of the Sun by
means of Newton’s laws and the protractor.
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Fig. 5: The inean inass density of the Sun can be determined from its viewing angle § and the Earth's
orbital period (see (3)).

To solve this seemingly absurd problem assume for simplicity that the Earth’s
orbit is circular. By Newton’s law of gravitation, the second and third law (of action
and reaction), we get

Ca = @
where M is the mass of the Sun, # is the mass of the Earth, r is their mutual distance,
v is the speed of the Earth, and G = 6.67- 10~ m?kg~'s~2 is the gravitational con-
stant (whose approximate value was found in 1798 by H. Cavendish by means of a
precise torsion balance and large lead spheres). Using the protractor, we can find that
the viewing angle of the Sun is 8 = 32’. Then Ri;—gi—"—l is the radius of the Sun (see
Figure 5). Clearly, v =2nr/T, where T = 31558149.5 s (=365.25636 days), is the
Earth's orbital period (sidereal year). Denoting by V the volume of the Sun, we get
by (2) that the mean mass density is

M Vo (2nr)?-r 3n

= = = =1409 [kgm’], @3
P=V =G T°G-3n(rsingd)®  T2Gsin® 18 lke/ar], )

i.e., slightly higher than the density of water.

The total mass of the Sun can be now calculated as follows. From the real mean
distance r = 149.6- 10° m and the measured angle 8/2, we find the radius R and
volume V of the Sun. Then we get M = pV = 1.99-10% kg.

6 Slowing-down of Earth’s rotation

During the last 2700 years the Earth’s rotation slowed-down so that the length of
a day increased by 1.7-1072 s per century (see [13], p.270). This value has been
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obtained by a thorough data analysis of ancient Babylonian records of angular mea-
surement of solar eclipses. We restrict ourselves only to a simple example to illustrate
it.

According to [14], p.340, the Babylonians observed an entirely total eclipse of
the Sun on April 15, 136 BC.> At that time, a day was about T = 0.036312 seconds
(= 21.42 century x 1.7 ms/century) shorter than in 2006. This period contains ap-
proximately N = 783000 days. Due to cumulative effects the rotation of the Earth
was slowed down about 4 hours more than if it would have rotated uniformly. This
corresponds to an angle of 60° (= 360° - 4/24). To check this, assume that the length
of the ith day increased linearly about the value

i
At =ty i= 1,...,N.

~ Thus, the entire growth during N days is

N+1
2

N
AT =Y A=1 = 14216 [s] = 4 [hours]. )
=1

The value T in [13] was, in fact, calculated by the reverse procedure. If the Earth’s
rotation would be constant, then the ancient Babylonians could not observe the total
eclipse at the place where they actually describe it, but 4 time zones shifted to the
west of Babylon. Now we can exactly establish their local time during the eclipse
from the height of the Sun over the horizon, which was measured by protractor and
carefully recorded. From the shift AT = 4 hours and the known number of days N
we can calculate the corresponding T due to (4) and thus also the reduction of the
Earth’s rotation 1/21.36 = 1.7 ms per century. Late Babylonian astronomical tablet
containing a record of the total solar eclipse of 15 April in 136 BC is preserved in the
British Museum (see [15]).

7 Annual parallax of the nearest stars

The Earth’s orbital motion around the Sun causes stars to circumscribe very small
ellipses on the celestial sphere. This enables us to find distances of the nearest stars
by means of the measurement of the so-called annual parallax.

Let C stand for a relatively nearby star. Suppose for simplicity that the Earth’s
orbit is circular and let 7 be its radius. Then there exist two opposite points 4, and

3This date was derived with respect to the present calendar.
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B on the Earth’s orbit such that the triangle ABC is isosceles with the base AB (see
Figure 6). Then the distance from C to AB is

r

~ tany’

where one half of the angle ACB is called the annual parallax-y.

€Ty The first measurements of annual parallaxes of the
I o N nearest stars were carried out by F. W. Bessel in 1838.
K 5 / At present we know that the nearest star is Proxima Cen-
NS tauri. Its annual parallax is 0.76” and the corresponding

distance about d = 4 - 1013 km (= 4.22 light years).

8. Deflection of light. In 1911 A. Einstein in his
pioneering paper [2] derived that light (which “traveles”
on shortest joins) deviates from rectilinear motion near

d massive objects due to gravitation (cf. Figure 7). This
effect was first photographed during the total eclipse in

1919, when the light rays of stars in a close neighbour-

A WB - hood of the Sun’s disc were deflected from the original
direction. By comparison of this photo with pictures of

Fig. 6: The distance d of a  yhe same part of the celestial sphere, it was found in good
Zleofe:ets;i:: ;’}iazfﬁte incnfﬁ agreement with the value 1.75" predicted by Einstein. In
al parallax ¥ and the radius r  this way the angular measurements of the deflection con-
of the Earth’s orbit. tributed to confirm the validity of Einstein’s general the-

ory of relativity.

-2




44

O ;

AA A0

Fig. 8: Bended trajectories of light near massive objects show that the geometry of the universe can be
locally a) Riemannian and also b) Lobachevskian.

Each mass object thus makes the uni-

deflection of light (and is also the ba-
W sis of famous gravitational lenses). In
) Figure 8, we observe two examples of
’*_l bending of light in a close neighbour-
8 hood of stars. The three trajectories in
Figure 8a) form a curved triangle. No-
tice that the sum of its angles satisfies

. ' the inequality
Fi, vof d

Sun is illustrated on Einstein’s plaque in the Old
Town Square of Prague. The curved ray of light

is slightly above the sketch of the Charles bridge . .
(bottom right). which reminds one of a famous asser-

tion from Riemannian geometry. On the other hand, in Figure 8b) we see two
stars of equal masses and three trajectories forming another curved triangle with
o+ B+ < 180°. This case is reminiscent of Lobachevskian geometry.

o+ B+vy>180°,

These two examples show that the universe locally has different kinds of geome-
tries with various curvatures. However, to find a “global curvature” of the universe
for a fixed time, we have to consider very large scales, on which all local curva-
tures are averaged. This is like Earth’s surface, whose curvature locally changes very
much (due to mountains, valleys, saddle-points, etc.), but whose global curvature is
positive, and almost constant. According to Einstein's cosmological principle, our
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Fig. 9: The observed time period t* of the phenomenon is shorter that the real time period t, since light
has to cover the distance vt cosOL..

universe on each isochrone is homogeneous and isotropic on large scales, i.e., its
curvature is constant at any point and in any direction. This assumption has been

confirmed by astronomers (e.g. from pictures of the Hubble Deep Field and Hub-

ble Deep Field-South, from the homogenity and isotropy of the cosmic microwave

background radiation and y-ray bursts). It yields a very restrictive conditions on the

global topology of the universe (see [16]).

8 Observation of superluminal speeds

According to Einstein’s theory of relativity, no mass can move faster than the speed
of light ¢ = 299792 km/s in vacuum. However, astronomers observe by angular
measurements hundreds of superluminal plasma jets in the whole universe. For in-
stance, by [17], one of the two jets ejected from the microquasar GRS1915+105 that
is in our Galaxy seemingly traveled s* = 6250 AU (1 AU= 149597870 km) during
t* =29 days in 1994. The value 6250 AU has been obtained by protractor and from
the known distance (40000 light years). The associated illusory speed of the jet

s* 6250149597870
* 29.24.3600

V=

= 373 159km/s (5)

is thus greater than c.

To explain this paradox, consider the situation of Figure 9. For simplicity, assume

“that the microquasar does not move and that the real speed v of its jets is constant.

Let o, < 90° be the angle between the line microquasar — observer and the line ap-
proximating the jets (see Figure 9). Then vcoso (vsino) is the radial (tangential)
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component of v with respect to the observer. During the time period ¢ each jet covers
the distance vt from the microquasar. '

For o < 90° one jet moves towards the observer and the second one away. There-
fore, the illusory observed time period ¢* is shorter than the real time period ¢, and
thus,

r=t— ;tcos o, (6)

where (vt cosa)/c is the time interval that is necessary for light to cover the distance
vtcoso. This time interval plays a key role in the paradox, since the illusory speed

by (6) is then
N . .
o s vtsino _ vsvmoc , o
t* t-ftcosoc 1—*cosa

which can be easily greater than ¢. For instance, by [17], oo = 71° and v = 0.92¢.
Substituting this into (7), we get v* = 1.24¢, which is in good agreement with (5).
The plasma jet travelled ¢ = 41.4 days and the light covered the distance vt cosa in
12.4 days. Therefore, the time period of the phenomenon observed from the Earth
was only t* = 41.4 —12.4 = 29 days.

By a suitable choice of the angle o and the real speed v < ¢, we can obtain an

arbitrarily large illusory speed v* in (7). For example, taking o, = 8° and v = 0.99¢,

we get v =Tc.

The intrinsic expansion of the universe, moreover, magnifies the velocities of jets
in galaxies at cosmological distances. The younger the objects which are observed,
the larger the magnification effect appears. We call (see [3]) this effect the time-lens
principle. An example of an enormous magnification due to the time-lens principle
is the Big Bang itself, which appeared 13.7-10° years ago. Although it probably
happened in a minimal volume, its current position is on the possibly greatest sphere
(the so-called horizon) with a very large radius. Now the Big Bang is, in fact, on the
entire horizon, i.e., 13.7 - 10° light years away in every direction.
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