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I. Whitehead’s problem



Whitehead groups

All groups in this talk are abelian.

Definition

A group A is Whitehead if, for every surjective group
homomorphism π : B → A with ker(π) ∼= Z, there is a
homomorphism σ : A → B such that π ◦ σ = idA.

Equivalently, every short exact sequence of the form

0 → Z → B → A → 0

splits. Equivalently, Ext1(A,Z) = 0.



Whitehead’s problem

Fact

A group A is free if and only if Ext1(A,C ) = 0 for every group C.
Equivalently, for every surjective homomorphism π : B → A, there
is a homomorphism σ : A → B such that π ◦ σ = idA.

A free group is therefore manifestly Whitehead. Whitehead’s
problem, first posed in the 1940s/50s, asks whether the converse
holds.

Question (Whitehead)

Is every Whitehead group free?



A solution

Shortly after the problem was posed, Stein proved that all
countable Whitehead groups are free. Twenty years later, Shelah
resolved the full question in a way that was very surprising at the
time.

Theorem (Shelah)

Whitehead’s problem is independent of ZFC.

1 If V = L, then every Whitehead group is free.

2 If MAℵ1 holds, then there is a nonfree Whitehead group of
cardinality ℵ1.



The Hom functor
For groups A, G , Hom(A,G ) denotes the group of all
homomorphisms from A to G . For a fixed abelian group G ,
Hom(·,G ) is a contravariant functor from Ab to Ab (a
homomorphism π : B → A gives rise to a homomorphism
π∗ : Hom(A,G ) → Hom(B,G ), given by ρ 7→ ρ ◦ π). This functor
is left exact, i.e., if

0 → C → B → A → 0

is exact, then

0 → Hom(A,G ) → Hom(B,G ) → Hom(C ,G )

is exact. But

0 → Hom(A,G ) → Hom(B,G ) → Hom(C ,G ) → 0

may fail to be exact, i.e., Hom(B,G ) → Hom(C ,G ) may not be
surjective.



The Ext functor

The functor Ext1(·,G ) is the first right derived functor of
Hom(·,G ), and can be seen as measuring the failure of Hom(·,G )
to be fully exact. Given a short exact sequence

0 → C → B → A → 0,

we get a long exact sequence

0 Hom(A,G ) Hom(B,G ) Hom(C ,G )

Ext1(A,G ) Ext1(B,G ) Ext1(C ,G ) 0



Free resolutions

Given any group A, we can form a short exact sequence

0 → K → F → A → 0

where K is a subgroup of F and F is free (hence K is also free).
This induces the exact sequence

0 → Hom(A,Z) → Hom(F ,Z) → Hom(K ,Z) → Ext1(A,Z) . . .

If A is Whitehead, i.e., Ext1(A,Z) = 0, then
Hom(F ,Z) → Hom(K ,Z) is a surjection, i.e., every
homomorphism φ : K → Z extends to a homomorphism
ψ : F → Z. It turns out that these are equivalent: A is Whitehead
if and only if every element of Hom(K ,Z) extends to an element
of Hom(F ,Z).



Condensed mathematics



Motivation

In general, classical categories of objects carrying topologies are
badly behaved from an algebraic viewpoint. To take a simple
example, in the category of topological abelian groups, the
“identity map”

(R, discrete) → (R,Euclidean)

is not an isomorphism, but this failure is not witnessed by a
nontrivial kernel or cokernel. In recent years, Clausen and Scholze
have introduced and developed the theory of categories of
condensed objects to try to address this deficiency. (Barwick and
Haine have a similar theory of pyknotic objects.)



“Definition”

A condensed set/abelian group/ring/. . . is a contravariant functor
T from CHaus = {compact Hausdorff spaces} (or
Prof = {totally disconnected compact Hausdorff spaces} or
ED = {extremally disconnected compact Hausdorff spaces}) to
Set/Ab/Ring/ . . . satisfying

1 T (∅) = ∗;
2 T (S0 ⊔ S1) ∼= T (S0)× T (S1);

3 whenever S ′ → S is a surjection of spaces having fiber
product S ′ ×S S ′ with projections π0, π1, we have

T (S) ∼= {x ∈ T (S ′) | π∗0(x) = π∗1(x) ∈ T (S ′ ×S S ′)}.

(Condition (3) is automatic if the domain of our functors is ED.)
Formally, T is a sheaf of sets/abelian groups/rings/. . . on the
pro-étale site of the point.



Condensed abelian groups

Let CondAb denote the category of condensed abelian groups. For
T ∈ CondAb, we call T (∗) the underlying group of T . The
category of locally compact topological abelian groups embeds
(fully faithfully) into CondAb via the map A 7→ A, where

A(S) = Cont(S ,A)

for every S ∈ CHaus. Note that A(∗) ∼= A. CondAb is very
well-behaved algebraically; for example, in CondAb our example
Rdisc → Reul completes to a short exact sequence

0 → Rdisc → Reucl → Q → 0, where

Q(S) ∼= {cont. maps from S to R}/{loc. constant maps from S to R}.
(Note that Q(∗) = 0, the trivial group.)



Internal Hom

For T0,T1 ∈ CondAb, Hom(T0,T1) is an abelian group. CondAb
also has a tensor product and an internal Hom functor, Hom(·, ·),
which takes values in CondAb. It satisfies the adjunction

Hom(T0,Hom(T1,T2)) ∼= Hom(T0 ⊗ T1,T2).

If A and G are locally compact topological abelian groups, then

Hom(A,G ) ∼= Hom(A,G ),

where Hom(A,G ) is given the compact-open topology (if A and G
are both discrete, then this is just the product topology). Thus, for
S ∈ CHaus, we have Hom(A,G )(S) ∼= Cont(S ,Hom(A,G )).



Internal Ext

Hom(·, ·) has a first derived functor, Ext1(·, ·). When Whitehead’s
problem is formulated in terms of Ext1 (applied to abelian groups
with the discrete topology), it turns out that it is not independent
of ZFC.

Theorem (Clausen–Scholze)

Suppose that A is an abelian group and Ext1(A,Z) = 0. Then A is
free.

Clausen and Scholze’s original proof relies heavily on deep
structural facts about the category of condensed abelian groups
(and the subcategory of solid abelian groups). It is also very
inexplicit, e.g., given a nonfree group A, it does not identify a
space S for which Ext1(A,Z)(S) ̸= 0. This motivated us to find a
more explicit, combinatorial proof.



III. Whitehead’s problem in the
condensed world



A refinement

Theorem (Bergfalk–LH)

Suppose that A is a nonfree abelian group and κ is the least
cardinality of a nonfree subgroup of A. Then Ext1(A,Z)(2κ) ̸= 0.

Sketch of proof. The proof is by induction on κ. We sketch a
proof in the case in which |A| = ℵ1 and A is almost free (i.e., all
countable subgroups of A are free). Let

0 → K → F → A → 0

be exact with K ⊆ F free of size ℵ1. This yields the sequence

0 → Hom(A,Z) → Hom(F ,Z) → Hom(K ,Z) → Ext1(A,Z) →

To show that Ext1(A,Z)(2ω1) ̸= 0, it suffices to show that
Hom(F ,Z)(2ω1) → Hom(K ,Z)(2ω1) is not a surjection.



To show that Hom(F ,Z)(2ω1) → Hom(K ,Z)(2ω1) is not a
surjection, we must show that there is a continuous map
φ : 2ω1 → Hom(K ,Z) that does not extend pointwise to a
continuous map ψ : 2ω1 → Hom(F ,Z), i.e., there is no continuous
ψ : 2ω1 → Hom(F ,Z) such that ψ(f ) extends φ(f ) for all f ∈ 2ω1 .

Let BK and BF be bases for K and F . Let M⃗ = ⟨Mα | α < ω1⟩ be
an ∈-increasing, continuous chain of elementary submodels of
some large H(θ), with everything relevant in M0. Let
Aα := A ∩Mα, and similarly define Fα, Kα. Let A

∗
α := Aα+1/Aα,

and similarly define F ∗
α, K

∗
α. Since A is almost free but nonfree, by

thinning out M⃗ if necessary, we may assume that the set

S := {α < ω1 | A∗
α is not free}

is stationary in ω1.



For each α ∈ S , we have a short exact sequence

0 → K ∗
α → F ∗

α → A∗
α → 0.

Note that F ∗
α and K ∗

α are free groups with bases
{e + Fα | e ∈ BF ∩ (Mα+1 \Mα)} and
{z +Kα | z ∈ BK ∩ (Mα+1 \Mα)}. Since A∗

α is a countable nonfree
group, it is not Whitehead, so we can find a homomorphism
φα : K ∗

α → Z that does not lift to a homomorphism ψα : F ∗
α → Z.

To define φ : 2ω1 → Hom(K ,Z), it suffices to specify φ(f )(z) for
all f ∈ 2ω1 and z ∈ BK . To do so, if there is α ∈ S such that
z ∈ Mα+1 \Mα and f (α) = 1, then let φ(f )(z) = φα(z + Kα).
Otherwise, let φ(f )(z) = 0. (The idea behind this precise
construction is due to Jan Šaroch.) φ is continuous: to determine
φ(f )(z), one only need inspect f (α) for the unique α such that
z ∈ Mα+1 \Mα (if it exists).



This works: suppose for sake of contradiction that
ψ : 2ω1 → Hom(F ,Z ) is continuous and extends φ pointwise. By
continuity, we can find α ∈ S such that ψ(f ) ↾ Fα is determined by
f ↾ α, i.e., for all x ∈ 2α and all f , g ∈ 2ω1 extending x , we have
ψ(f ) ↾ Fα = ψ(g) ↾ Fα. Fix an arbitrary x ∈ 2α, and let
f0, f1 ∈ 2ω1 extend x with fi (α) = i for i < 2. Define a
homomorphism ψα : F ∗

α → Z by letting
ψα(e + Fα) = (ψ(f1)− ψ(f0))(e) for all e ∈ BF ∩ (Mα+1 \Mα).

We claim that ψα extends φα. To see this, fix
z ∈ BK ∩ (Mα+1 \Mα). Write z as z+ + z−, where z− ∈ Fα and
z+ is a linear combination of elements of BF ∩ (Mα+1 \Mα). Note
that (ψ(f1)− ψ(f0)) ↾ Fα = 0, so

(ψ(f1)−ψ(f0))(z) = (ψ(f1)−ψ(f0))(z+) = ψα(z
++Fα) = ψα(z+Fα).

Then

ψα(z+Fα) = ψ(f1)(z)−ψ(f0)(z) = φ(f1)(z)−φ(f0)(z) = φα(z+Kα).

This contradicts the fact that φα cannot be extended to an
element of Hom(F ∗

α,Z).



Extremally disconnected spaces

Extremally disconnected compact Hausdorff spaces play a central
role in the theory of condensed mathematics (and condensed
objects are fully determined by the values they take on ED spaces).
This is in part due to the fact that ED spaces are precisely the
projective objects in the category of compact Hausdorff spaces.

ED spaces are familiar to set theorists largely for another reason:
they are precisely the Stone spaces of complete Boolean algebras.
This hints at a connection between results in categories of
condensed objects and forcing results in set theory.



A variation

A variation on the proof of the previous theorem yields the
following.

Theorem (Bergfalk–LH)

Suppose that A is a nonfree group, 0 → K → F → A → 0 is a free
resolution, and κ is at least the minimal cardinality of a nonfree
subgroup of A. Then, in V [Add(ω, κ)], there is a homomorphism
σ : K → Z that does not extend to an element of Hom(F ,Z).
Moreover, given a basis B for K, we can ensure that σ(z) ∈ {0, 1}
for all z ∈ B.



A translation

Let Sκ denote the Stone space of the Boolean completion of
Add(ω, κ). Given any set B, every Add(ω, κ)-name σ̇ for a
function from B to {0, 1} naturally gives rise to a continuous
function φ : Sκ → 2B . (The point is that, for every b ∈ B, every
ultrafilter U ∈ Sκ must contain either Jσ̇(b) = 0K or Jσ̇(b) = 1K).
Conversely, for any set X , any continuous function ψ : Sκ → XB

gives rise to an Add(ω, κ)-name for a function from B to X . The
result from the previous slide can then be translated as follows:

Theorem (Bergfalk–LH)

Suppose that A is a nonfree group and κ is at least the minimal
cardinality of a nonfree subgroup of A. Then Ext1(A,Z)(Sκ) ̸= 0.



Thank you for your attention


