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Abstract. Since being isolated by Viale and Weiß in 2009, the Guessing
Model Property has emerged as a particularly prominent and powerful conse-

quence of the Proper Forcing Axiom. In this paper, we investigate connections

between variations of the Guessing Model Property and cardinal arithmetic,
broadly construed. We improve upon results of Viale and Krueger by proving

that a weakening of the Guessing Model Property implies Shelah’s Strong Hy-
pothesis. We also prove that, though the Guessing Model Property is known

not to put an upper bound on the size of the continuum, it does imply that

2ω1 is as small as possible relative to the value of 2ω . Building on work of
Laver, we prove that, in the extension of any model of PFA by a measure alge-

bra, every tree of height and size ω1 is B-special (a generalization of special-

ness introduced by Baumgartner that can also hold of trees with uncountable
branches). Finally, we investigate the impact of forcing axioms for Suslin and

almost Suslin trees on guessing model properties. In particular, we prove that

if S is a Suslin tree, then the axioms PFA(S) and PFA(S)[S] imply the Guessing
Model Property and the Indestructible Guessing Model Property, respectively,

and, if T ∗ is an almost Suslin Aronszajn tree, then the axiom PFA(T∗) im-

plies the Indestructible Guessing Model Property. This answers a number of
questions of Cox and Krueger.
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1. Introduction

A long line of research in set theory, dating back at least to the 1970s, concerns
the study of the extent to which certain combinatorial properties of large cardinals
can consistently hold at smaller cardinals and of the consequences and implications
of such properties. Classical examples of such properties include stationary reflec-
tion principles and the tree property; particularly prominent in recent years have
been two-cardinal tree properties, which, in their strongest forms, can usefully be
reformulated as guessing model principles.

The study of two-cardinal tree properties began with work of Jech [7] and Magi-
dor [16], who used them to give combinatorial characterizations of strongly compact
and supercompact cardinals, respectively. Versions of two-cardinal tree properties
consistent at small cardinals were first isolated by Weiß [32] in the late 2000s, and
since then much work has been done to understand these principles. In [31], Viale
and Weiß show that the strongest of these two-cardinal tree properties, ISP, can be
reformulated in terms of the existence of guessing models; this reformulation has
proven to be quite fruitful in deriving consequences of two-cardinal tree properties.
Viale and Weiß also prove that the guessing model property at ω2, which is equiv-
alent to ISPω2

and often simply denoted GMP, follows from the Proper Forcing
Axiom (PFA).

In this article, we continue the study of two-cardinal tree properties and guessing
model principles, focusing in particular on their relationship to cardinal arithmetic,
broadly construed. There has already been considerable work done in this direction.
Notably, results of Viale [30] and Krueger [9] show that GMP implies the Singular
Cardinals Hypothesis (SCH), and, more generally, that for any regular cardinal
κ ≥ ω2, ISPκ implies SCH above κ. On the other hand, Cox and Krueger prove
in [2] that, unlike PFA, GMP does not place any restrictions on the value of the
continuum other than implying that 2ω > ω1.

In the first part of the paper, we continue these lines of investigation. In par-
ticular, we show that, for a regular cardinal κ ≥ ω2, a certain weakening of ISPκ

implies Shelah’s Strong Hypothesis (SSH) above κ. This improves upon Viale and
Krueger’s aforementioned result by weakening the hypotheses and strengthening
the conclusion. (The terminology and notation in the statement of Theorem A will
be introduced in later sections; for now, we note that the hypothesis of the theorem
is a weakening of ISPκ.)

Theorem A. Let κ ≥ ω2 be a regular cardinal and, for every singular cardinal
λ > κ of countable cofinality, let

Yλ := {M ∈ PκH(λ++) | M is (ω1, λ)-internally unbounded}.
If wAGPYλ

(κ, κ, λ++) holds for all such λ, then SSH holds above κ.

In the process of proving Theorem A, we sharpen some results of Viale [29]
regarding covering properties. In particular, in [29] and [30], Viale shows that
various consequences of PFA, including GMP, imply certain covering properties at
all singular cardinals of countable cofinality above 2ω. Here, we improve upon
this by removing the assumption that the singular cardinal is greater than the
continuum. See Theorem 4.13 below for a more precise statement; the main new
technical lemma leading to this improvement is Lemma 4.7.

By the work of Cox and Krueger [2], GMP is compatible with cf(2ω) = ω1 and
therefore, unlike PFA, or even MAω1 , it does not imply that 2ω1 = 2ω. However,
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as a consequence of the proof Theorem A, we are able to prove that a weakening
of GMP implies that 2ω1 is as small as possible relative to the value of 2ω. We
additionally show that the negation of the weak Kurepa Hypothesis (¬wKH), which
is a consequence of the same weakening of GMP, yields the same conclusion if
2ω < ℵω1

but can consistently fail to do so if 2ω ≥ ℵω1
.

Theorem B. (1) If wAGP(ω2) holds and wAGPYλ
(λ++) holds for all singular

λ < 2ω of countable cofinality, where

Yλ := {M ∈ Pω2
H(λ++) | M is (ω1, λ)-internally unbounded},

then

2ω1 =

{
2ω if cf(2ω) ̸= ω1

(2ω)+ if cf(2ω) = ω1.

(2) If ¬wKH holds and 2ω < ℵω1
, then 2ω1 = 2ω.

(3) Relative to the consistency of the existence of a supercompact cardinal, it is
consistent that ¬wKH holds, 2ω = ℵω1

, but 2ω1 > ℵω1+1.

In the second half of the paper, we prove some results motivated in part by the
indestructible guessing model property (IGMP) introduced by Cox and Krueger in
[3], and which we also feel are of independent interest. We first prove a result
about special trees. Recall that a tree of height ω1 is special if it is the union of
countably many antichains. Special trees therefore have no uncountable branches.
In [1], Baumgartner introduces a generalization of specialness, which we call here
B-specialness, which can also hold of trees with uncountable branches. By results
of Cox and Krueger [3] and Krueger [10], IGMP follows from the conjunction of
GMP and the assertion that all trees of height and size ω1 are B-special. Also,
Cox and Krueger prove [3] that IGMP is compatible with any possible value of the
continuum with cofinality at least ω2. Motivated by the question of whether IGMP
is compatible with cf(2ω) = ω1, we prove the following variation on a theorem
of Laver [15], who proved that forcing with a measure algebra over any model
of Martin’s Axiom preserves the fact that all trees of height and size ω1 with no
uncountable branches are special.

Theorem C. If PFA holds and B is a measure algebra, then in V B every tree of
height and size ω1 is B-special.

Theorem C implies that, in the extension of any model of PFA by a measure
algebra, an indestructible version of ¬wKH holds (see Corollary 5.8 for a precise
statement). In particular, this indestructible version of ¬wKH is compatible with
cf(2ω) = ω1.

In the last section of the paper, we investigate the effect of forcing axioms for
Suslin and almost Suslin trees on guessing model principles. The axiom PFA(S)
(introduced by Todorcevic in [25] and defined more precisely in Section 6) is the
assertion that S is a Suslin tree and the conclusion of PFA holds when restricted
to proper forcings that preserve the fact that S is a Suslin tree.1 PFA(S)[S] is the
assertion that the universe is obtained from forcing over a model of PFA(S) with
the Suslin tree S. The axiom PFA(T∗) (introduced by Krueger in [11] and again
defined more precisely in Section 6), is the assertion that T ∗ is an almost Suslin

1Most other sources require S to be a coherent Suslin tree in the statement of PFA(S). Since
we will not need coherence here, we state the axiom in a more general form.
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Aronszajn tree and the conclusion of PFA holds when restricted to proper forcings
preserving this fact. Our main theorem in this section is the following:

Theorem D. (1) Let S denote a Suslin tree. Then PFA(S) implies GMP, and
PFA(S)[S] implies IGMP.

(2) Let T ∗ denote an almost Suslin Aronszajn tree. Then PFA(T∗) implies
IGMP.

This theorem answers a number of questions of Cox and Krueger, which we
record here and explicate more thoroughly in Section 6.

• In [3], Cox and Krueger ask whether IGMP implies that the pseudointer-
section number p is greater than ω1. Theorem D answers this negatively,
since, in any model of PFA(S)[S], we have p = ω1.

• In [3], Cox and Krueger ask whether IGMP implies that every tree of height
and size ω1 with no cofinal branches is special. Theorem D answers this neg-
atively, since, in any model of PFA(T∗), IGMP holds and T ∗ is a nonspecial
Aronszajn tree.

• In [11], Krueger asks whether PFA(T∗) implies ¬wKH. Theorem D answers
this positively, since GMP, and hence IGMP, implies ¬wKH.

The structure of the remainder of the paper is as follows. In Section 2, we review
some background on Pκλ combinatorics and guessing models. In Section 3, we in-
vestigate the effect of ¬wKH on cardinal arithmetic, proving clauses (2) and (3) of
Theorem B. In Section 4, we investigate the effect of (weakenings of) GMP on car-
dinal arithmetic. Among the central technical results of this section is Lemma 4.7,
a new lemma about covering matrices. This is then used to prove Theorem A and
clause (1) of Theorem B. Section 5 contains the proof of Theorem C, and Section 6
contains the proof of Theorem D.

1.1. Notation and terminology. Our terminology and notation is for the most
part standard. We use [8] as our standard background reference for set theory and
refer the reader there for any undefined notions or notations. We record a few
notational conventions here at the outset. If κ < ν are infinite cardinals, with κ
regular, then Sν

κ := {α < ν | cf(α) = κ}. If κ is an infinite cardinal and X is a
set with |X| ≥ κ, then PκX := {x ⊆ X | |x| < κ}. If P is a forcing poset with
greatest lower bounds and p, q are compatible conditions in P, then p ∧ q denotes
their greatest common lower bound.

2. Background on two-cardinal combinatorics and guessing models

Though much of the previous work motivating this article concerns two-cardinal
tree properties, we will be working here exclusively with the formulations of these
properties in terms of guessing models. Since the definitions of the relevant thin
and µ-slender (κ, λ)-lists and (κ, λ)-trees and the ensuing tree properties (I)TP(κ, λ)
and (I)SP(µ, κ, λ) are somewhat involved and will not directly be used in this pa-
per, we refer the reader to the companion paper [13] for their precise definition
and their connection with the guessing model properties studied here and defined
below. Before introducing these guessing model properties, though, we need some
background on two-cardinal combinatorics.
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2.1. Two-cardinal combinatorics. Temporarily fix a regular uncountable cardi-
nal κ and a set X with |X| ≥ κ.

Definition 2.1. Suppose that C ⊆ PκX.

(1) C is closed if whenever D ⊆ C is such that |D| < κ and D is linearly
ordered by ⊆, we have

⋃
D ∈ C;

(2) C is strongly closed if whenever D ⊆ C and |D| < κ, we have
⋃

D ∈ C;
(3) C is cofinal in PκX if for all x ∈ PκX, there is y ∈ C such that x ⊆ y;
(4) C is a club in PκX if it is closed and cofinal;
(5) C is a strong club in PκX if it is strongly closed and cofinal.

A set S ⊆ PκX is (weakly) stationary in PκX if S ∩C ̸= ∅ for every (strong) club
C ⊆ PκX.

Given a set x ⊆ X and a function f : X → PκX, we say that x is closed under
f if f(a) ⊆ x for all a ∈ x. Similarly, if g : [X]2 → PκX, then x is closed under g
if g(a) ⊆ x for all a ∈ [x]2. The following proposition is immediate.

Proposition 2.2. Suppose that f : X → PκX is a function. Then the set {x ∈
PκX | x is closed under f} is a strong club in PκX. In particular, if Y ⊆ PκX
is weakly stationary, then there is x ∈ Y such that x is closed under f .

The following characterization of the club filter on PκX is due to Menas [19].

Proposition 2.3. If g : [X]2 → PκX is a function, then the set

Cg := {x ∈ PκX | x is infinite and closed under g}
is a club in PκX. Moreover, for any club C in PκX, there is g : [X]2 → PκX
such that Cg ⊆ C.

2.2. Guessing models. We now review the notion of a guessing model and the
subsequently defined guessing model properties, which provide an alternative for-
mulation of the two-cardinal tree properties of the form ISP(. . .).

Definition 2.4. Suppose that θ is a regular uncountable cardinal and M ⊆ H(θ).

(1) Given a set x ∈ M , a subset d ⊆ x, and a cardinal µ, we say that
(a) d is (µ,M)-approximated if, for every z ∈ M ∩ Pµ(x), there is e ∈ M

such that d ∩ z = e ∩ z;2

(b) d is M -guessed if there is e ∈ M such that d ∩M = e ∩M .
(2) M is a µ-guessing model for x if every (µ,M)-approximated subset of x is

M -guessed.
(3) M is a µ-guessing model if, for every x ∈ M , it is a µ-guessing model for x.
(4) Suppose that µ ≤ κ ≤ θ are regular uncountable cardinals and Y ⊆

PκH(θ) is stationary. Then GMPY(µ, κ, θ) is the assertion that the set
of M ∈ Y such that M is a µ-guessing model is stationary in PκH(θ).

Remark 2.5. In order to cut down on the number of parameters in use and make
statements of our results cleaner, we introduce some conventions, all of which are
standard in the literature. In the notation GMPY(µ, κ, θ), if Y is omitted, then it

2In other words, the conclusion of this definition is simply “d ∩ z ∈ M”. This is clearly

equivalent to what is written here if M ≺ H(θ) (and hence M is closed under intersections). We
will want to apply this definition to more general situations, though, and for our purposes this

seems like the most appropriate formulation.
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should be understood to be PκH(θ). GMP(µ, κ,≥κ) denotes the assertion that
GMP(µ, κ, θ) holds for all regular θ ≥ κ. Since the most common first two param-
eters in GMP(. . .) are ω1 and ω2, respectively, if Y ⊆ Pω2H(θ), we let GMPY(θ)
denote GMPY(ω1, ω2, θ) and let GMP denote the assertion that GMP(θ) holds for
all regular θ ≥ ω2. By [31, Propositions 3.2 and 3.3], for a regular cardinal κ ≥ ω2,
GMP(ω1, κ,≥κ) is equivalent to ISP(ω1, κ,≥κ), which is typically denoted in the
literature as simply ISP(κ) or ISPκ (we will use the latter in this paper). We note
that GMP follows from the Proper Forcing Axiom [31, Theorem 4.8] and also holds
in the extension by the Mitchell forcing M(ω, κ) if κ is supercompact in the ground
model [32, Theorem 5.4].

We next recall weakenings of GMP(. . .) introduced in [13] that provide alternative
formulations of two-cardinal tree properties of the form SP(. . .).

Definition 2.6. Suppose that µ ≤ κ ≤ θ are regular uncountable cardinals, x ∈
H(θ), S ⊆ PκH(θ), and M ⊆ H(θ). We say that (M,x) is almost guessed by S if
x ∈ M and, for every (µ,M)-approximated subset d ⊆ x, there is N ∈ S such that

• x ∈ N ⊆ M ;
• d is N -guessed.

Suppose that Y ⊆ PκH(θ).

• AGPY(µ, κ, θ) is the assertion that, for every ⊆-cofinal S ⊆ PκH(θ) and
every x ∈ H(θ), the set of M ∈ Y such that (M,x) is almost guessed by S
is stationary in PκH(θ).

• wAGPY(µ, κ, θ) is defined in the same way, except that the set of M as in
the conclusion is only assumed to be weakly stationary in PκH(θ).

Remark 2.7. (w)AGP stands for “(weak) almost guessing principle”. In the no-
tation (w)AGPY(µ, κ, θ), we again suppress mention of Y if it is equal to PκH(θ).
As with GMP, if Y ⊆ Pω2

H(θ), we let (w)AGPY(θ) denote (w)AGPY(ω1, ω2, θ).
It is immediate that, for a fixed trio of regular uncountable cardinals µ ≤ κ ≤ θ

and a stationary Y ⊆ PκH(θ), we have

GMPY(µ, κ, θ) ⇒ AGPY(µ, κ, θ) ⇒ wAGPY(µ, κ, θ).

To verify the first implication, the key observation is the fact that, for a fixed cofinal
S ⊆ PκH(θ), the set

{M ∈ PκH(θ) | ∀a ∈ M∃N ∈ S [a ∈ N ⊆ M ]}
is a club in PκH(θ).

3. The weak Kurepa hypothesis and cardinal arithmetic

Recall that, for a regular uncountable cardinal µ, a weak µ-Kurepa tree is a tree
of height and size µ with more than µ-many cofinal branches. We use wKH(µ) to
denote the weak Kurepa hypothesis at µ, i.e., the assertion that there is a weak
µ-Kurepa tree. Then ¬wKH(µ) is the assertion that every tree of height and size
µ has at most µ-many cofinal branches. Note that ¬wKH entails 2<µ > µ, since
otherwise <µ2 is a weak µ-Kurepa tree. We omit mention of µ and write simply
wKH if µ = ω1.

In [13, Theorem 9.3], we show that, if µ is a regular uncountable cardinal, then
¬wKH(µ) follows from wAGP(µ, µ+, µ+). In particular, ¬wKH follows from GMP
(this conclusion had been proven earlier in [3, Theorem 2.8]).
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In this section, we address the influence of ¬wKH(µ) on the value of 2µ. In
particular, we will show that ¬wKH(µ) forces 2µ to be as small as possible relative
to 2<µ if 2<µ < µ+µ but does not have the same influence in general. In particular,
¬wKH implies that 2ω1 = 2ω if 2ω < ℵω1

, but not necessarily otherwise. This should
be contrasted with (a weakening of) GMP, which implies ¬wKH and, as we will see
in Section 4, forces 2ω1 to be as small as possible relative to 2ω regardless of the
value of 2ω.

These arguments make use of the notion of meeting numbers, which will also be
used in the arguments of Section 4.

Definition 3.1 ([18]). Suppose that κ ≤ λ are infinite cardinals. Then the meeting
number m(κ, λ) is the minimal cardinality of a collection Y ⊆ [λ]κ such that, for
all x ∈ [λ]κ, there is y ∈ Y such that |x ∩ y| = κ.

Remark 3.2. By a standard diagonalization argument, if κ < λ and cf(κ) = cf(λ),
then m(κ, λ) > λ. Therefore, for general κ < λ, the smallest possible value m(κ, λ)
can take is λ if cf(κ) ̸= cf(λ) and λ+ if cf(κ) = cf(λ). As we will see in Section 4,
a weakening of GMP forces m(κ, λ) to always attain this minimum possible value.

One reason for interest in meeting numbers is the fact that they provide a simple
alternate formulation of Shelah’s Strong Hypothesis (SSH), which is the assertion
that, for every singular cardinal λ, the pseudopower pp(λ) is equal to λ+.

Theorem 3.3 (Matet, [17]). The following are equivalent:

(1) Shelah’s Strong Hypothesis;
(2) for every singular cardinal λ of countable cofinality, we have m(ω, λ) = λ+;
(3) for all infinite cardinals κ < λ, we have m(κ, λ) = λ+ if cf(κ) = cf(λ) and

m(κ, λ) = λ if cf(κ) ̸= cf(λ).

Note that Theorem 3.3 makes it immediately evident that SSH is indeed a
strengthening of SCH, since if λ is a singular cardinal of countable cofinality, then
a straightforward calculation yields λω = 2ω ·m(ω, λ).

The following basic fact about m(κ, λ) will be useful. For a proof, see [17,
Corollary 2.5].

Proposition 3.4. Suppose that κ < λ < κ+cf(κ). Then m(κ, λ) = λ.

Lemma 3.5. Suppose that µ is a regular uncountable cardinal, and assume ¬wKH(µ).
Then 2µ = m(µ, 2<µ).

Proof. First note that m(µ, 2<µ) ≤ |[2<µ]µ| = 2µ. It thus remains to show that
2µ ≤ m(µ, 2<µ).

Fix Y ⊆ [<µ2]µ such that

• |Y| = m(µ, 2<µ);
• for every x ∈ [<µ2]µ, there is y ∈ Y such that |x ∩ y| = µ.

For each y ∈ Y, let Ty := {f ∈ <µ2 | ∃g ∈ y [f ⊆ g]}, i.e., Ty is the downward
closure of y in the tree <µ2. Note that Ty is a tree of cardinality µ and therefore,
by ¬wKH(µ), Ty has at most µ-many branches of size µ. We naturally identify
branches through <µ2 of size µ with elements of µ2.

Claim 3.6. For every h ∈ µ2, there is y ∈ Y such that h is a branch through Ty.
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Proof. Fix h ∈ µ2, and let x := {h ↾ α | α < µ} be the set of proper initial segments
of h. Then x ∈ [<µ2]µ, so we can find y ∈ Y such that |x ∩ y| = µ. Then there are
unboundedly many α < µ such that h ↾ α ∈ y; it follows that h is a branch through
Ty. □

Since, for each y ∈ Y, Ty has at most µ-many branches of size µ, and since
each element of µ2 is a branch through Ty for some y ∈ Y, it follows that 2µ ≤
µ ·m(µ, 2<µ). Since 2µ > µ, it follows that 2µ ≤ m(µ, 2<µ), as desired. □

The following corollary yields clause (2) of Theorem B as a special case.

Corollary 3.7. Suppose that µ is a regular uncountable cardinal, ¬wKH(µ) holds,
and 2<µ < µ+µ. Then 2µ = 2<µ.

Proof. Since ¬wKH(µ) holds, Lemma 3.5 implies that 2µ = m(µ, 2<µ). By ¬wKH(µ),
we have 2<µ > µ, and by assumption we have 2<µ < µ+µ. Therefore, Proposition
3.4 implies that m(µ, 2<µ) = 2<µ. Altogether, this implies that 2µ = 2<µ. □

We now prove clause (3) of Theorem B, showing that ¬wKH(µ) no longer forces
2µ to be as small as possible relative to 2<µ if we allow 2<µ ≥ µ+µ. For concreteness,
we focus on the case µ = ω1 and produce a model in which ¬wKH holds, 2ω = ℵω1 ,
and 2ω1 = ℵω1+2, but it will be evident how to modify the construction to produce
other configurations.

Theorem 3.8. If the existence of a supercompact cardinal is consistent, then it is
consistent that ¬wKH holds, 2ω = ℵω1 , and 2ω1 > ℵω1+1.

Proof. Let λ be a supercompact cardinal. By forcing with the Laver preparation
followed by the forcing to add λ++-many Cohen subsets to λ, we may assume that
2λ = λ++. Let κ < λ be weakly compact. We can now force with a Radin-type
forcing R with interleaved collapses such that:

• in V R, we have λ = κ+ω1 , λ is strong limit, and 2λ = λω1 = λ++;

• (Vκ+1)
V R

= (Vκ+1)
V .

For details about how to define such a forcing notion, see, for example, [4]. The
forcing defined there produces an extension in which λ = ℵω1

, but by ensuring
that all of the points of the Radin club are chosen above κ and by using an initial
interleaved Lévy collapse of the form Coll(κ+3, < λ0), where λ0 is the first point in
the Radin club, we obtain a forcing notion with the desired properties.

Since (Vκ+1)
V R

= (Vκ+1)
V , κ is still weakly compact in V R. Let Ṁ be an R-name

for the standard Mitchell forcing M(ω, κ). Then, in V R∗Ṁ, we have:

• κ = ω2 = 2ω;
• λ = ℵω1

is strong limit, and 2λ = λω1 = λ++;
• ¬wKH (cf. [26]).

Finally, let Ċ be an R ∗ Ṁ-name for the forcing to add λ-many Cohen reals. Then,

in V R∗Ṁ∗Ċ, we have 2ω = λ = ℵω1 and 2ω1 = (ℵω1)
ℵ1 = ℵω1+2. It remains to verify

that ¬wKH holds in V R∗Ṁ∗Ċ.
It is proven in [26, §1] that, after forcing over a ground model W with Mitchell

forcing M(ω, µ) with µ inaccessible, ¬wKH is preserved by further forcing with a
finite-support iteration of length at most ω2 of c.c.c. posets of size ω1 such that
each iterand does not add a new uncountable branch to any tree of height ω1. In
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particular, it follows that, in V R∗Ṁ, ¬wKH is preserved after adding ω2-many or
fewer Cohen reals.

In V R∗Ṁ, let Ṫ be a C-name for a tree of height and size ω1. We think of
conditions in C as being finite partial functions from λ to 2. For each A ⊆ λ, let
CA be the complete suborder consisting of all elements of C whose domains are
subsets of A. Since C has the c.c.c., we can find A ∈ [λ]ℵ1 such that there is a

CA-name Ṫ ′ for which ⊩C “Ṫ = Ṫ ′”. Let T be the realization of Ṫ ′ in V R∗Ṁ∗ĊȦ .
By the previous paragraph, ¬wKH holds in that model, so T has at most ω1-many

branches there. But V R∗Ṁ∗Ċ is an extension of V R∗Ṁ∗ĊȦ by the forcing to add
λ-many Cohen reals, which cannot add new cofinal branches to a tree of height

ω1. Therefore, T still has at most ω1-many branches in V R∗Ṁ∗Ċ, so ¬wKH holds
there. □

4. Guessing models and cardinal arithmetic

In this section, we analyze the effect of guessing model principles on cardinal
arithmetic, focusing on meeting numbers and pseudopowers. In the process, we
will prove, for instance, that a weakening of GMP implies that 2ω1 is as small as
possible relative to 2ω and that a weakening of GMP(κ, κ,≥ κ) implies SSH above
κ.

We will need to introduce a bit of machinery to obtain these results. We first
recall the notion of a covering matrix, introduced by Viale in his proof that PFA
implies SCH [28].

4.1. Covering matrices. The terminology associated with covering matrices is
slightly inconsistent across sources; we will follow the terminology of [21] and [12].

Definition 4.1. Let θ < λ be regular cardinals. A θ-covering matrix for λ is a
matrix D = ⟨D(i, β) | i < θ, β < λ⟩ such that:

(1) for all β < λ, ⟨D(i, β) | i < θ⟩ is a ⊆-increasing sequence and
⋃

i<θ D(i, β) =
β;

(2) for all β < γ < λ and i < θ, there is j < θ such that D(i, β) ⊆ D(j, γ).

For such a matrix D, let βD denote the least ordinal β such that otp(D(i, γ)) < β
for all γ < λ and i < θ.

We will be especially interested in covering matrices satisfying certain additional
properties.

Definition 4.2. Suppose that θ < λ are regular cardinals and D is a θ-covering
matrix for λ.

(1) D is transitive if, for all β < γ < λ and all i < θ, if β ∈ D(i, γ), then
D(i, β) ⊆ D(i, γ).

(2) D is uniform if, for every limit ordinal β < λ, there is i < θ such that
D(i, β) contains a club in β.

(3) D is strongly locally downward coherent if, for all X ∈ [λ]≤θ, there is γX < λ
such that, for all β ∈ [γX , λ), there is i < θ such that, for all j ∈ [i, θ),
X ∩D(j, β) = X ∩D(j, γX).

(4) CP(D) holds if there is an unbounded A ⊆ λ such that [A]θ is covered by
D, i.e., for all X ∈ [A]θ, there are β < λ and i < θ for which X ⊆ D(i, β).
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Remark 4.3. In some of the early literature on covering matrices (e.g. [29]), a
version of strong local downward coherence is included in the definition of covering
matrix. We follow [21] in not including this property in the definition. We will see
below in Lemma 4.7 that in many cases it in fact follows from the combination of
transitivity and uniformity.

Viale’s proof that PFA implies SCH contains two key ingredients. First, for every
singular cardinal µ of countable cofinality, PFA implies CP(D) for every strongly
locally downward coherent ω-covering matrix D for µ+. Second, for every singular
cardinal µ > 2ω of countable cofinality, there is a strongly locally downward coher-
ent ω-covering matrix D for µ+ such that βD = µ. The proof of this second fact
can be broken down further into two smaller steps:

(1) For every singular cardinal µ, there is a transitive cf(µ)-covering matrix D
for µ+ such that βD = µ.

(2) If µ > 2cf(µ), then every such covering matrix D is strongly locally down-
ward coherent.

We will show in Lemma 4.7 that, in step (2), the requirement of µ > 2cf(µ) can be
dropped if we additionally assume that our covering matrix is uniform. We first
note that the proof of step (1) already guarantees the existence of such covering
matrices. In fact, we will be able to arrange the following strengthening of βD = µ
that will be useful later in this section, when we address the influence of guessing
model principles on pseudopowers.

Definition 4.4. Suppose that µ is a singular cardinal, θ = cf(µ), and µ⃗ = ⟨µi |
i < θ⟩ is an increasing sequence of regular cardinals converging to µ. If D =
⟨D(i, β) | i < θ, β < µ+⟩ is a θ-covering matrix for µ+, we say that D respects µ⃗ if
|D(i, β)| < µi for all i < θ.

The following lemma is essentially [21, Lemma 2.4]; our formulation is slightly
stronger than the cited lemma, but the proof there easily yields our desired conclu-
sion.

Lemma 4.5 ([21, Lemma 2.4]). Suppose that µ is a singular cardinal, θ = cf(µ),
and µ⃗ = ⟨µi | i < θ⟩ is an increasing sequence of regular cardinals converging to µ.
Then there is a uniform, transitive θ-covering matrix for µ+ that respects µ⃗.

We now show that covering matrices as in Lemma 4.5 actually satisfy a strength-
ening of strong local downward coherence. Our proof is a modification of an argu-
ment of Shelah from his development of PCF theory. We first recall the following
club-guessing theorem.

Theorem 4.6 ([22, Ch. III, §2]). Suppose that κ and ν are regular cardinals and
κ+ < ν. Then there is a sequence ⟨Cα | α ∈ Sν

κ⟩ such that:

(1) for all α ∈ Sν
κ, Cα is club in α;

(2) for every club C in ν, the set {α ∈ Sν
κ | Cα ⊆ C} is stationary in ν.

Lemma 4.7. Suppose that µ is a singular cardinal, θ = cf(µ), and D is a uniform,
transitive θ-covering matrix for µ+. Then, for every X ∈ [µ+]<µ, there is γX <
µ+ such that, for all β ∈ [γX , µ+), there is i < θ such that, for all j ∈ [i, θ),
X∩D(j, β) = X∩D(j, γX). In particular, D is strongly locally downward coherent.

Proof. Fix a set X ∈ [µ+]<µ, and suppose for the sake of contradiction that there
is no γX as in the conclusion of the lemma. Since D is transitive, it follows that,
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for all β < γ < µ+ and all i < θ, if β ∈ D(i, γ), then X ∩ D(i, β) ⊆ X ∩ D(i, γ).
Therefore, by the nonexistence of a γX as in the conclusion of the lemma, for every
β < µ+ we can find a β′ > β and an unbounded set Iβ ⊆ θ such that, for all j ∈ Iβ ,
we have X ∩D(j, β) ⊊ X ∩D(j, β′). Let E be a club in µ+ such that, for all γ ∈ E
and all β < γ, we have β′ < γ. Then, by the transitivity of D, for all β < γ, both
in E, and for all but boundedly many j ∈ Iβ , we have X ∩D(j, β) ⊊ X ∩D(j, γ).

Let κ := max{|X|+, θ+}, and let ν := κ++. Fix a sequence ⟨Cα | α ∈ Sν
κ⟩

satisfying the conclusion of Theorem 4.6. Assume without loss of generality that
each Cα contains only limit ordinals.

We now construct a strictly increasing, continuous sequence ⟨βξ | ξ < ν⟩ of
elements of E as follows. Begin by setting β0 := min(E). If ξ < ν is a limit ordinal
and we have defined ⟨βη | η < ξ⟩, then we are obliged to set βξ := sup{βη | η < ξ}.
Finally, suppose that ξ < ν and we have defined ⟨βη | η ≤ ξ⟩. Let Bξ be the
set of α ∈ Sν

κ for which there is β < µ+ such that, for some i < θ, {βη | η ∈
Cα ∩ (ξ + 1)} ⊆ D(i, β). For each α ∈ Bξ, choose a βξ,α witnessing this. Finally,
choose βξ+1 ∈ E \ (βξ + 1) large enough so that βξ+1 > βξ,α for all α ∈ Bξ. This
completes the construction of ⟨βξ | ξ < ν⟩. We first note the following simple claim.

Claim 4.8. For all ξ < ν and all α ∈ Bξ, there is j < θ such that {βη | η ∈
Cα ∩ (ξ + 1)} ⊆ D(j, βξ+1).

Proof. Fix ξ < ν and α ∈ Bξ. By construction, we can fix an i < θ such that
{βη | η ∈ Cα ∩ (ξ + 1)} ⊆ D(i, βξ,α). Since βξ,α < βξ+1, we can fix j ∈ [i, θ) such
that βξ,α ∈ D(j, βξ+1). By the definition of covering matrix and the transitivity of
D, we have

D(i, βξ,α) ⊆ D(j, βξ,α) ⊆ D(j, βξ+1),

so {βη | η ∈ Cα ∩ (ξ + 1)} ⊆ D(j, βξ+1), as desired. □

Let γ := sup{βξ | ξ < ν}. Since D is uniform, there is a club C ⊆ γ and an
i∗ < θ such that C ⊆ D(i∗, γ). Let C̄ := {ξ < ν | βξ ∈ C}. Since ⟨βξ | ξ < ν⟩
enumerates a club in γ, it follows that C̄ is a club in ν. We can therefore fix α ∈ Sν

κ

such that Cα ⊆ C̄.
Note that, for all ξ < ν, we have α ∈ Bξ, since

{βη | η ∈ Cα ∩ (ξ + 1)} ⊆ C ⊆ D(i∗, γ).

Therefore, for each ξ ∈ Cα, we can fix an iξ < θ such that {βη | η ∈ Cα∩ (ξ+1)} ⊆
D(iξ, βξ+1). Also for each ξ ∈ Cα, let ξ

† denote min(Cα \ (ξ + 1)), and fix jξ < θ
such that βξ+1 ∈ D(jξ, βξ†). Let kξ := max{iξ, jξ}. Since κ is a regular cardinal
and κ > θ, we can find a fixed k < θ and an unbounded set A ⊆ Cα such that
kξ = k for all ξ ∈ A.

Claim 4.9. Suppose that j ∈ [k, θ) and that η < ξ are both in A. Then D(j, βη†) ⊆
D(j, βξ†).

Proof. By the choice of iξ and jξ, we have βη† ∈ D(iξ, βξ+1) and βξ+1 ∈ D(jξ, βξ†).
Since j ≥ k = max{iξ, jξ}, the transitivity of D implies that βη† ∈ D(j, βξ†) and
then, through another application, that D(j, βη†) ⊆ D(j, βξ†), as desired. □

To ease the notation, let A† denote {η† | η ∈ A}. Note that A† is an unbounded
subset of Cα. The previous claim then can be reworded to assert that, for all η < ξ,
both in A†, and for all j ∈ [k, θ), we have D(j, βη) ⊆ D(j, βξ). For each η ∈ A†, let
η̂ = min(A† \ (η + 1)). Since both βη and βη̂ are in E, we can find ℓη ∈ [k, θ) such



12 CHRIS LAMBIE-HANSON AND ŠÁRKA STEJSKALOVÁ

that X ∩ D(ℓη, βη) ⊊ X ∩ D(ℓη, βη̂). Again, since κ is a regular cardinal greater
than θ, we can find a fixed ℓ and an unbounded A∗ ⊆ A† such that ℓη = ℓ for all
η ∈ A∗. Now, for all η < ξ, both in A∗, we have

X ∩D(ℓ, βη) ⊊ X ∩D(ℓ, βη̂) ⊆ X ∩D(ℓ, βξ),

so ⟨X ∩ D(ℓ, βη) | η ∈ A∗⟩ is a strictly ⊊-increasing sequence of subsets of X,
contradicting the fact that otp(A∗) = κ and κ > |X|. □

4.2. Guessing models and meeting numbers. We next show that GMP(κ, κ,≥
κ) implies that CP(D) holds whenever λ > κ is a singular cardinal of countable
cofinality and D is a uniform, transitive ω-covering matrix for λ+. We will in
fact prove something a bit stronger; to state the result precisely, we will need the
following notion.

Definition 4.10. Given a set M , a subset x ⊆ M is said to be bounded in M if
there is z ∈ M such that x ⊆ z. Given uncountable cardinals ν ≤ µ, with ν regular,
we say that M is internally (ν, µ)-unbounded if, for all x ∈ PνM such that x is
bounded in M , there is y ∈ M such that |y| < µ and x ⊆ y.

Remark 4.11. Notice that the property of being internally (ν, µ)-unbounded be-
comes stronger as ν increases (for fixed µ) and weaker as µ increases (for fixed ν).
In the extant literature, internally unbounded typically means (ω1, ω1)-unbounded.
Also, for a set M and uncountable cardinals ν ≤ µ with ν regular, the following
weak form of internal approachability is readily seen to imply that M is (ν, µ)-
unbounded: M =

⋃
α<ν Mα for some ⊆-increasing sequence ⟨Mα | α < ν⟩ such

that Mα ∈ M and |Mα| < µ for all α < ν. It then immediately follows that, for all
regular uncountable cardinals ν < κ ≤ θ, the set

{M ∈ PκH(θ) | M is (ν, κ)-internally unbounded}
is stationary in PκH(θ).

Proposition 4.12. Suppose that ν < µ are infinite cardinals, θ is a sufficiently
large regular cardinal, and M ≺ H(θ) is a µ-guessing model such that <νM ⊆ M
and ν ∈ M . Then M is internally (ν+, µ)-unbounded. In particular, every µ-
guessing model is internally (ω1, µ)-unbounded.

Proof. The proof is quite similar to that of [10, Theorem 1.4]. Suppose for the sake
of contradiction that M is not internally (ν+, µ)-unbounded, and fix a set z ∈ M
and an x ∈ Pν+(z ∩M) such that there is no y ∈ M such that |y| < µ and x ⊆ y.
Since <νM ⊆ M , we know that |x| = ν; enumerate it as ⟨aβ | β < ν⟩. For each
γ < ν, let bγ := {aβ | β < γ}. By the closure of M , we have bγ ∈ M . Let
B := {bγ | γ < ν}, and note that B ⊆ Pνz ∈ M and B ⊆ M .

We claim that B is (µ,M)-approximated. To this end, fix an arbitrary w ∈
M ∩Pµ(Pνz), and note that

⋃
w ∈ Pµ(z)∩M . If w ∩B had cardinality ν, then

we would have bγ ∈ w for unboundedly many γ < ν, which would then imply that
x ⊆

⋃
w, contradicting our choice of x. Therefore, w ∩B has cardinality less than

ν, so, by the closure of M , we have w ∩B ∈ M .
Since w was arbitrary, it follows that B is (µ,M)-approximated. Therefore, B

is M -guessed, so we can fix d ∈ M such that d ∩ M = B. By elementarity, we
have d ⊆ Pνz. Moreover, since |B| = ν and ν + 1 ⊆ M , it follows again from
elementarity that |d| = ν, and therefore that d = B. But then

⋃
d ∈ M and⋃

d =
⋃
B = x, again contradicting our choice of x. □
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By Proposition 4.12 and Remark 2.7, the assumption of wAGPY(κ, κ, λ
++) in the

following theorem follows immediately from GMP(κ, κ, λ++) and hence also from
the stronger GMP(ω1, κ,≥κ), which is equivalent to ISPκ (cf. Remark 2.5).

Theorem 4.13. Suppose that κ < λ are uncountable cardinals, with κ regular and
λ singular of countable cofinality. Let

Y := {M ∈ PκH(λ++) | M is (ω1, λ)-internally unbounded},
and suppose that wAGPY(κ, κ, λ

++) holds. Then CP(D) holds for every uniform,
transitive ω-covering matrix D for λ+. Moreover, if m(ω, µ) ≤ λ+ for all µ < λ,
then m(ω, λ) = λ+.

Proof. Fix a uniform, transitive ω-covering matrix D for λ+. For all α < β < λ+,
let jαβ be the least j < ω such that α ∈ D(j, β). For each β < λ+ and each i < ω,
define a function gβ,i : β → ω by letting gβ,i(α) := max{jαβ , i} for all α < β.

By Lemma 4.7, for each X ∈ [λ+]<λ, we can fix γX < λ+ such that, for all
β ∈ [γX , λ+), there is i < ω such that, for all j ∈ [i, ω), we have X ∩ D(j, β) =
X ∩D(j, γX). For each X ∈ [λ+]<λ and each i < ω, define a function hX,i : X → ω
by letting hX,i := gγX ,i ↾ X. Also, let π0 : λ+ × ω → λ+ and π1 : λ+ × ω → ω
be the projection maps. We view functions of the form gβ,i and hX,i as subsets of
λ+ × ω in the natural way.

Let S := {N ∈ PκH(λ++) | N ≺ H(λ++) and cf(sup(N ∩ λ+)) > ω}. Since
wAGPY(κ, κ, λ

++) holds, we can find M ∈ Y such that

• λ+ × ω ∈ M ;
• for all y ∈ M , we have y ∩ (λ+ × ω), sup(y ∩ λ+) ∈ M ;
• for all y ∈ M ∩ Pλ(λ

+ × ω) and every i < ω, we have γπ0[y], hπ0[y],i ∈ M
and, if |y| < κ, then y ⊆ M ;

• (M,λ+ × ω) is almost κ-guessed by S.

Let δ := sup(M ∩ λ+).

Claim 4.14. There is i < ω such that gδ,i is (κ,M)-approximated.

Proof. Suppose not. Then, for every i < ω, we can fix yi ∈ M ∩ Pκ(λ
+ × ω) such

that there is no z ∈ M for which gδ,i ∩ yi = z ∩ yi. Let y :=
⋃

i<ω yi. Since M ∈ Y,
we can find w ∈ M such that y ⊆ w and |w| < λ. By our choice of M , we can
assume that w ⊆ λ+ × ω. Let X := π0[w]. Again by our choice of M , we have
γX ∈ M and hX,i ∈ M for all i < ω. In particular, γX < δ. We can therefore find
i < ω such that, for all j ∈ [i, ω), we have X ∩D(j, δ) = X ∩D(j, γX). Unraveling
the definitions, this implies that gδ,i ↾ X = hX,i. But then gδ,i ∩ yi = hX,i ∩ yi, and
we have hX,i ∈ M , contradicting our choice of yi. □

Since (M,λ+×ω) is almost κ-guessed by S, we can find N ∈ S such that λ+×ω ∈
N ⊆ M and an e ∈ N such that e ∩N = gδ,i ∩N . By elementarity, e is a function
from λ+ to ω. Let γ := sup(N ∩ λ+). Since cf(γ) > ω, we can find j ≥ i such that
{α ∈ N ∩ λ+ | e(α) = j} is unbounded in γ. Let H := {α < λ+ | e(α) = j}. By
elementarity, H is unbounded in λ+. Moreover, for every x ∈ [H]ℵ0 ∩N , we have
x ⊆ D(j, δ), so, by elementarity,

N |= ∃β < λ+ (x ⊆ D(j, β))

But then, by another application of elementarity, we have

H(λ++) |= ∀x ∈ [H]ℵ0 ∃β < λ+ (x ⊆ D(j, β)).
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In particular, H witnesses CP(D).
For the “moreover” clause, suppose that m(ω, µ) ≤ λ+ for all µ < λ. We will

show that m(ω, λ+) = λ+. Using Lemma 4.5, fix a uniform, transitive ω-covering
matrix D for λ+ such that βD = λ. By hypothesis, for all i < ω and β < λ+, we can
fix a set Y(i, β) ⊆ [D(i, β)]ω such that |Y(i, β)| ≤ λ+ and, for all x ∈ [D(i, β)]ω,

there is y ∈ Y(i, β) such that |x ∩ y| = ω. Let H ∈ [λ+]λ
+

witness CP(D), let
π : H → λ+ be the unique order-preserving bijection, and let

Y := {π[x ∩H] | i < ω, β < λ+, x ∈ Y(i, β)}.
Clearly, we have Y ⊆ [λ+]ω and |Y| = λ+. To see that Y witnesses m(ω, λ+) = λ+,
fix an arbitrary x ∈ [λ+]ω. Let x̄ = π−1[x]. Then x̄ ∈ [H]ω, so we can fix i < ω
and β < λ+ such that x̄ ⊆ D(i, β). By our choice of Y(i, β), there is ȳ ∈ Y(i, β)
such that |x̄ ∩ ȳ| = ω. Then y := π[ȳ ∩H] is in Y and |x ∩ y| = ω, as desired. □

In [2], Cox and Krueger prove that GMP is consistent with arbitrarily large
values of the continuum. In particular, their methods allow for the construction of
a model in which GMP holds and the continuum is a singular cardinal of cofinality
ω1. In such a model, we necessarily have 2ω < 2ω1 , so GMP, in contrast with, for
instance, MAω1 , does not imply that 2ω1 = 2ω. However, as we now show, it turns
out that GMP does have a significant effect on 2ω1 , in fact forcing it to be as small
as possible relative to the value of 2ω.

The following corollary, together with the ensuing remark, yields clause (1) of
Theorem B. Similar corollaries can readily be obtained about the influence of prin-
ciples of the form wAGPYλ

(µ, µ+, λ++) on the relationship between 2µ and 2<µ

under appropriate hypotheses about the values of m(ν, µ+) for ν ≤ µ, where µ is
an arbitrary regular uncountable cardinal.

Corollary 4.15. Suppose that wAGPYλ
(λ++) holds for all singular λ of countable

cofinality, where

Yλ := {M ∈ Pω2
H(λ++) | M is (ω1, λ)-internally unbounded}.

Then, for every uncountable cardinal µ, we have

m(ω, µ) =

{
µ if cf(µ) ̸= ω

µ+ if cf(µ) = ω.

In particular,

2ω1 =

{
2ω if cf(2ω) ̸= ω1

(2ω)+ if cf(2ω) = ω1.

Proof. The proof is by induction on µ. The base case of µ = ω1 is trivial. Suppose
that µ = ν+ and we know that m(ω, ν) ≤ µ. Then, by [17, Proposition 2.4(v)],
we have m(ω, µ) = max{µ,m(ω, ν)} = µ. Suppose next that µ is a limit cardinal
of uncountable cofinality and m(ω, ν) < µ for all ν < µ. Then [17, Proposition
2.4(vi)] implies that m(ω, µ) = sup{m(ω, ν) | ν < µ} = µ. Finally, suppose that µ
is a singular cardinal of countable cofinality and m(ω, ν) < µ for all ν < µ. Then
the “moreover” clause of Theorem 4.13 implies that m(ω, µ) = µ+.

Now [17, Theorem 1.1] implies that, for all infinite cardinals σ < µ, we have

m(σ, µ) =

{
µ if cf(µ) ̸= cf(σ)

µ+ if cf(µ) = cf(σ),
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as desired.
To see the “in particular” clause, first note that, as proven in [13, Theorem 9.3],

wAGP(ω2) implies ¬wKH, so, a fortiori, the hypothesis of the corollary also implies
¬wKH. By Lemma 3.5, we therefore have 2ω1 = m(ω1, 2

ω), and the conclusion
follows. □

Remark 4.16. As the proof of Corollary 4.15 makes clear, to obtain the “in par-
ticular” clause, we only require ¬wKH together with the conclusion of the corol-
lary applied to m(ω1, 2

ω). It therefore suffices to assume wAGP(ω2) together with
wAGPYλ

(λ++) for all singular λ < 2ω of countable cofinality, as reflected in the
statement of Theorem B.

4.3. Pseudopowers. We end this section by investigating the effect of guessing
model principles on pseudopowers, leading up to the proof of Theorem A. We first
recall some necessary definitions; for efficiency, we opt to give these definitions in
the specific settings in which we will need them rather than in full generality.

Definition 4.17. Suppose that θ is an infinite regular cardinal and µ⃗ = ⟨µi | i < θ⟩
is a sequence of regular cardinals. We let

∏
µ⃗ denote

∏
i<θ µi. If f, g ∈

∏
µ⃗, then

we write f <∗ g to indicate that |{i < θ | g(i) ≤ f(i)}| < θ.

Recall that, if µ is a singular cardinal, then pp(µ) denotes the pseudopower of µ.
Since we will not need it here, we do not give the precise definition of pp(µ), referring
the reader to [17] for all necessary definitions or to [22] for a more encyclopedic
treatment. Instead, we simply note here that we always have pp(µ) ≥ µ+, and that
the following consequence of pp(µ) > µ+ follows immediately from [17, Observation
4.4].

Lemma 4.18. Suppose that µ is a singular cardinal and pp(µ) > µ+. Then there
is an increasing sequence of regular cardinals µ⃗ = ⟨µi | i < cf(µ)⟩ converging to µ
such that cf (

∏
µ⃗, <∗) = µ++.

We also recall that Shelah’s Strong Hypothesis (SSH) is the assertion that
pp(µ) = µ+ for every singular cardinal µ. Given a cardinal κ, we say that SSH
holds above κ if pp(µ) = µ+ for every singular cardinal µ > κ. Recall also that
the Singular Cardinals Hypothesis (SCH) is the assertion that, for every singular
strong limit cardinal µ, we have 2µ = µ+. As with SSH, we say that SCH holds
above some cardinal κ if 2µ = µ+ for every singular strong limit cardinal µ > κ. As
noted after Theorem 3.3, the characterization of SSH in terms of meeting numbers
makes it clear that SSH implies SCH. It is not as immediately obvious that, for an
arbitrary cardinal κ, SSH above κ implies SCH above κ, since the characterization
of SSH above κ in terms of meeting numbers is not as clean as that of Theorem
3.3. Nonetheless, it is true, and follows from related results in [17] and [22]:

Proposition 4.19. Let κ be an infinite cardinal such that SSH holds above κ. Then
SCH holds above κ.

Proof. Suppose not, and let µ > κ be the least witness to the failure of SCH above
κ. In particular, µ is strong limit, 2µ = µcf(µ) > µ+, and, by Silver’s Theorem
[24], we must have cf(µ) = ω. By the discussion after Theorem 3.3 above, we have
µω = 2ω ·m(ω, µ) = m(ω, µ), so we have m(ω, µ) > µ+.

Recall that cov(µ, µ, ω1, 2) is the least cardinality of a set X ⊆ Pµµ such that,
for every a ∈ Pω1

µ, there is b ∈ X such that a ⊆ b. By a straightforward argument
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(cf. [17, Proposition 2.4(viii)]), we have

m(ω, µ) ≤ max{cov(µ, µ, ω1, 2), sup{m(ω, χ) | χ < µ}}.
Since µ is strong limit, we have m(ω, χ) < µ for all χ < µ, and hence m(ω, µ) ≤
cov(µ, µ, ω1, 2). Now note that

• pp(χ) < µ for every singular χ < µ (because µ is strong limit and pp(µ) ≤
2µ for all µ); and

• for all χ ∈ (κ, µ), if χ is a singular cardinal of cofinality ω1, then pp(χ) = χ+

(because SSH holds above κ).

Therefore, [22, §IX, Conclusion 1.8] implies that pp(µ) = cov(µ, µ, ω1, 2). Since
cov(µ, µ, ω1, 2) ≥ m(ω, µ) > µ+, this contradicts the assumption that SSH holds
above κ. □

We now prove the main result of this subsection, indicating the impact of in-
stances of CP(D) on values of the form cf (

∏
µ⃗, <∗).

Theorem 4.20. Suppose that µ is a singular cardinal, θ = cf(µ), and µ⃗ = ⟨µi | i <
θ⟩ is an increasing sequence of regular cardinals converging to µ. Suppose moreover
that there is a θ-covering matrix for µ+, D = ⟨D(i, β) | i < θ, β < µ+⟩, such that
D respects µ⃗ and CP(D) holds. Then cf (

∏
µ⃗, <∗) = µ+.

Proof. Let D be as in the statement of the theorem, and let A ⊆ µ+ witness CP(D).
Let ⟨γη | η < µ⟩ enumerate the first µ-many elements of A in increasing order and,
for each i < θ, let δi := sup{γη | η < µi}. Note that cf(δi) = µi. For each
β < µ+, define a function gβ ∈

∏
µ⃗ as follows: for each i < θ, let gβ(i) be the least

η < µi such that sup(D(i, β) ∩ δi) < γη. This is well-defined, since D respects µ⃗
and therefore |D(i, β)| < µi = cf(δi).

We claim that {gβ | β < µ+} is cofinal in (
∏

µ⃗, <∗). To this end, fix f ∈
∏

µ⃗.
Let x = {γf(i) | i < θ}. Since x ∈ [A]≤θ and A witnesses CP(D), we can fix i < θ

and β < µ+ such that x ⊆ D(i, β), and hence x ⊆ D(j, β) for all j ∈ [i, θ). In
particular, for every j ∈ [i, θ), we have γf(j) ∈ D(j, β)∩ δj , and hence f(j) < gβ(j).
Therefore, f <∗ gβ , as desired. □

We obtain Theorem A as a corollary.

Proof of Theorem A. Suppose that wAGPYλ
(κ, κ, λ++) holds for all singular λ >

κ of countable cofinality. By [22, §2, Claim 2.4], if µ is a singular cardinal of
uncountable cardinality and the set of singular cardinals ν < µ for which pp(ν) =
ν+ is stationary in µ, then pp(µ) = µ+. Therefore, to establish SSH above κ, it
suffices to show that pp(µ) = µ+ for all singular µ > κ of countable cofinality.

Fix such a µ. By Lemma 4.18, it suffices to show that cf (
∏

µ⃗, <∗) = µ+ for
every increasing sequence of regular cardinals µ⃗ = ⟨µi | i < ω⟩ converging to µ.
Fix such a sequence µ⃗. By Lemma 4.5, we can fix a uniform, transitive ω-covering
matrix D for µ+ that respects µ⃗. By Theorem 4.13, CP(D) holds, and then, by
Theorem 4.20, we have cf (

∏
µ⃗, <∗) = µ+, as desired. □

5. Special trees and random reals

In this section, we take a slight detour to prove a variation of a theorem of Laver
[15] concerning special trees in random extensions of models of forcing axioms.
At the end of the section, we will rejoin our main narrative path by connecting
this result with Cox and Krueger’s indestructible guessing model principle [3], a
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strengthening of GMP that will also provide part of the motivation for the results
in Section 6.

Recall that a tree T of height ω1 is special if there is a function f : T → ω such
that, for all s, t ∈ T , if s <T t, then f(s) ̸= f(t). It is immediate that a special tree
cannot have an uncountable branch. Baumgartner introduced a generalization of
this notion of specialness that can also be satisfied by trees of height ω1 that have
uncountable branches; this notion was used to prove that PFA implies ¬wKH. In
order to avoid confusion with the more familiar notion of specialness, we will call
Baumgartner’s generalization B-specialness.

Definition 5.1 ([1, §7]). Suppose that T is a tree of height ω1. We say that
T is B-special if there is a function f : T → ω such that, for all s, t, u ∈ T , if
f(s) = f(t) = f(u) and s <T t, u, then t and u are <T -comparable.

This can indeed be seen as a generalization of the notion of specialness, since, if
T is a tree of height ω1 with no uncountable branches, then T is special if and only
if T is B-special. It is well-known that MAω1 implies that every tree of height and
size ω1 with no uncountable branch is special. An elaboration of this argument,
also due to Baumgartner [1, Theorem 7.10], shows that PFA implies that every tree
of height and size ω1 is B-special.

In [15], Laver proves that, if one forces with a measure algebra over any model
of MAω1 , then, in the resulting forcing extension, it remains true that every tree
of height and size ω1 with no uncountable branch is special. In particular, this
resolved positively the question of whether Suslin’s Hypothesis is consistent with
cf(2ω) = ω1. In this section, we modify Laver’s argument to prove an analogous
result indicating that, if one forces with a measure algebra over any model of PFA,
then, in the resulting forcing extension, every tree of height and size ω1 is B-special.

The following proposition will be useful.

Proposition 5.2 ([3, Proposition 4.3]). Suppose that T is a B-special tree of height
ω1, and suppose that W is an outer model of V with (ω1)

W = (ω1)
V . Then every

uncountable branch of T that is in W is also in V .

We will also need the following definition and lemma.

Definition 5.3. Suppose that T is a tree and B is a set of cofinal branches of T .
A function g : B → T is called a Baumgartner function if g is injective and

(1) for all b ∈ B, we have g(b) ∈ b;
(2) for all b, b′ ∈ B, if g(b) < g(b′), then g(b′) /∈ b.

If B is small, then a Baumgartner function with domain B always exists:

Lemma 5.4 ([1, Lemma 7.6]). Suppose that κ is a regular cardinal, T is a tree
of height κ, B is a set of cofinal branches of T , and |B| ≤ κ. Then there is a
Baumgartner function g : B → T .

Theorem 5.5. Suppose that PFA holds, κ is an infinite cardinal, and B is the
measure algebra on 2κ, with associated measure µ. Then, in V B, every tree of
height and size ω1 is B-special.

Proof. For notational simplicity, assume that κ ≥ ω2; the same ideas will work if
κ ∈ {ω, ω1}. Fix a B-name Ṫ for a tree of height and size ω1. Note that, since

⊩B “2ω = 2ω1 = κ”, we have ⊩B “Ṫ has at most κ-many uncountable branches”.
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Let C = Coll(ω1, κ) (as defined in V ). Since B has the c.c.c. and C is ω1-

closed, [27, Lemma 6] implies that every uncountable branch of Ṫ in the exten-
sion by B × C is already in the extension by B. In particular, in V C, we have
⊩B “Ṫ has at most ω1-many uncountable branches”. Therefore, working in V C and
letting Ḃ be a B-name for the set of all uncountable branches through Ṫ , Lemma
5.4 implies that we can find a B-name ġ : Ḃ → Ṫ that is forced to be a Baumgartner
function.

Still working in V C, let Ṫ0 be a B-name for the set

{t ∈ Ṫ | ∃b ∈ Ḃ ġ(b) <Ṫ t ∈ ḃ},

and let Ṫ1 be a B-name for Ṫ \ Ṫ0. Then Ṫ1 is forced to be a subtree of Ṫ (with the

induced ordering), and, since a tail of every element of Ḃ is forced to be in Ṫ0, we

have ⊩B “Ṫ1 has no uncountable branch”.
In V , C is ω1-closed and therefore does not add any new codes for Borel subsets

of 2κ. As a result, in V C, the measure algebra on 2κ is isomorphic to B, so,
when working in V C, we can still think of B as being the measure algebra on 2κ.
Therefore, the proof of the main result of [15] implies that, in V C, there is a c.c.c.

forcing poset P that adds a B-name for a specializing function for Ṫ1. Let us recall
how this poset is defined.

Work in V C. Without loss of generality, we may assume that the underlying set
of Ṫ is forced to be ω1, and therefore the underlying sets of Ṫ0 and Ṫ1 are forced
to be subsets of ω1. We can also assume that ⊩B “∀α, β < ω1(α <Ṫ β ⇒ α < β)”.

For all α < ω1, let Aα ⊆ B be a maximal antichain of conditions deciding the
truth value of the statement “α ∈ Ṫ1”. For all α < β < ω1, let A

′
αβ be a maximal

antichain of conditions b ∈ B such that one of the following holds:

• b forces at least one of α and β to be in Ṫ0; or
• b forces both α and β to be in Ṫ1 and b decides the truth value of the
statement “α <Ṫ1

β”.

For all γ < ω1, let Bγ be the complete subalgebra of B generated by
⋃

α≤γ Aα ∪⋃
α<β≤γ A

′
αβ . Since B has the c.c.c., each Bγ is countably generated and is thus

isomorphic to the measure algebra on 2ω. We can therefore fix a countable subset
B∗
γ ⊆ Bγ such that, for all b ∈ Bγ and all ε > 0, there is b∗ ∈ B∗

γ such that
µ(b∗ − b) < ε · µ(b∗).

We now define our poset P. The conditions in P are all functions p with domains
of the form Ep ×Wp, where Ep ∈ [ω1]

<ω and Wp ∈ [ω]<ω, such that

• for all (α, n) ∈ Ep×Wp, either p(α, n) = 0 or p(α, n) ∈ Bα and µ(p(α, n)) >
1
2 ;

• for all α < β in Ep and all n ∈ Wp, either p(α, n)∧ p(β, n) = 0 or p(α, n)∧
p(β, n) ⊩B “α ̸<Ṫ1

β”.

Note that, for a condition b ∈ B and ordinals α < β < ω1, if we write b ⊩B “α <Ṫ1

β”, then implicit in this assertion is the fact that b forces both α and β to be in Ṫ1.
Therefore, one of the ways in which we could have p(α, n) ∧ p(β, n) ⊩B “α ̸<Ṫ1

β”

in the above bullet point is for p(α, n) ∧ p(β, n) to force either α or β to be in Ṫ0.
If p, q ∈ P, then we let q ≤P p if and only if Eq ⊇ Ep,Wq ⊇ Wp, q(α, n) ≤B p(α, n)

for all (α, n) ∈ Ep ×Wp, and, for all such (α, n), if p(α, n) ̸= 0, then q(α, n) ̸= 0.
By [15, Lemma 3], P has the c.c.c. in V C. (Our poset P has some minor cosmetic

differences from the poset considered in [15] due to the fact that we are adding a
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name for a specializing function for a subtree of Ṫ rather than the entire tree, but
all of the arguments of [15] go through without change to our setting.) In V , let

Ṗ be a C-name for P. Then C ∗ Ṗ is proper. Note that, in V C, every condition of
P is in fact in V , since it is a function from a finite set of pairs of ordinals into
B. Therefore, in V , the set of conditions (c, ṗ) such that there is a function p ∈ V

for which c ⊩C “ṗ = p” is dense in C ∗ Ṗ, so we will assume that we are working
exclusively with such conditions and will write (c, p) instead of (c, ṗ).

We now isolate a collection of ω1-many dense subsets of C ∗ Ṗ to which we
will apply PFA. First note that, in V C×B, for all α ∈ T0, the fact that g is a
Baumgartner function implies that there is a unique uncountable branch b of T
such that g(b) <T α ∈ b. Denote the value g(b) for this unique branch b by ηα, and
note that ηα ∈ T1. If α ∈ T1, then let ηα = 0. In V , let η̇α be a C×B-name for ηα.

For each α < ω1, let Dα be the set of c ∈ C for which there exists a maximal
antichain A(c, α) of B such that, for every b ∈ A(c, α), (c, b) ∈ C × B decides the

truth value of the statement “α ∈ Ṫ1” and decides the value of η̇α. Since C is
ω1-closed and B has the c.c.c., Dα is dense in C. Let D∗

α be the set of (c, p) ∈ C ∗ Ṗ
such that c ∈ Dα. Then D∗

α is dense in C ∗ Ṗ.
Recall that, in V C, for every γ < ω1, we constructed Bγ to be a countably

generated complete subalgebra of B and also specified a countable subset B∗
γ ⊆ Bγ

such that, for all b ∈ Bγ and every ε > 0, there is b∗ ∈ B∗
γ such that µ(b∗ − b) <

ε · µ(b∗). In V , let ḣγ be a C-name for a bijection from ω to B∗
γ , and let Ȧγ be a

C-name for a countable generating set for Bγ . Since C is ω1-closed, ḣγ and Ȧγ are
forced to be elements of the ground model. For all γ < ω1 and k < ω, let E∗

γ,k be

the set of (c, p) ∈ C ∗ Ṗ such that

• c decides the value of ḣγ , say as some function hγ : ω → B;
• c decides the value of Ȧγ ;
• there is an n < ω such that (γ, n) ∈ dom(p), µ(p(γ, n)) > 1

2 , and µ(p(γ, n)−
hγ(k)) <

1
2 − 1

2µ(hγ(k)).

We claim that E∗
γ,k is dense in C ∗ Ṗ. To see this fix an arbitrary (c0, p0) ∈ C ∗ Ṗ.

First find a condition c1 ≤C c0, a function hγ : ω → B, and a set Aγ such that

c1 ⊩C “ḣγ = hγ and Ȧγ = Aγ”. Then, fix an n ∈ ω \Wp0 . Let ṗ1 be a C-name for

a condition in Ṗ that is forced by c1 to have the following properties:

• Eṗ1 = Ep0 ∪ {γ};
• Wṗ1 = Wp0 ∪ {n};
• for all (α,m) ∈ Ep0

×Wp0
, ṗ1(α,m) = p0(α,m);

• for all (α,m) ∈ (Eṗ1
×Wṗ1

)\(Ep0
×Wp0

), if (α,m) ̸= (γ, n), then ṗ1(α,m) =
0;

• ṗ1(γ, n) is an element b of Bγ such that
◦ hγ(k) ≤ b;
◦ 1

2 < µ(b) < 1
2 + 1

2µ(hγ(k)).

It is possible to satisfy the final requirement above due to the fact that Bγ is forced
to be atomless. Finally, find c2 ≤C c1 deciding the value of ṗ1 as some function
p1 ∈ V . Then (c2, p1) ∈ E∗

γ,k and (c2, p1) ≤C∗Ṗ (c0, p0).

Now apply PFA to find, in V , a filter G ⊆ C ∗ Ṗ that meets D∗
α for all α < ω1

and E∗
γ,k for all γ < ω1 and k < ω. Also, let H ⊆ B be a V -generic filter. Working
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in V [H], let T denote the realization of Ṫ . We will use G and H to construct a
function f : T → ω witnessing that T is B-special.

We first define subtrees T ∗
0 , T

∗
1 ⊆ T as follows. For every α < ω1, find a condition

(c∗α, p
∗
α) ∈ G ∩ D∗

α. Then, in V , A(c∗α, α) was a maximal antichain in B, so there
is a unique b∗α ∈ H ∩ A(c∗α, α). Moreover, we know that (c∗α, b

∗
α) decides the truth

value of the statement “α ∈ Ṫ1”. If (c∗α, b
∗
α) forces α to be in Ṫ1, then put α into

T ∗
1 ; otherwise, put α into T ∗

0 . In addition, (c∗α, b
∗
α) decides the value of η̇α; let η∗α

be this value. In V , let Ṫ ∗
0 and Ṫ ∗

1 be B-names for T ∗
0 and T ∗

1 , respectively.

Claim 5.6. For all α < β, both in T ∗
0 , if α ̸<T β, then either η∗β ̸<T α or η∗α ̸<T β.

Proof. Fix α < β, both in T ∗
0 , and suppose for the sake of contradiction that α ̸<T β

but η∗β <T α and η∗α <T β. Let c∗ be the greatest lower bound of c∗α and c∗β in
C, and let b∗ ≤ b∗α ∧ b∗β be a condition in H forcing that α ̸<T β, η∗β <T α, and

η∗α <T β. Then, in V , (c∗, b∗) ⊩C×B “η̇α = η∗α and η̇β = η∗α. In particular, there are

B-names ḋα, ḋβ for uncountable branches through Ṫ such that

(c∗, b∗) ⊩C×B “α ∈ ḋα, β ∈ ḋβ , ġ(ḋα) = η∗α, ġ(ḋβ) = η∗β”.

Since b∗ forces α ̸<T β, it must be the case that (c∗, b∗) forces ḋα and ḋβ to be
distinct branches of T , and hence η∗α ̸= η∗β . Since (c∗, b∗) forces η∗α, η

∗
β <T α, it

forces η∗α and η∗β to be <T -comparable. Suppose that η∗α < η∗β , in which case

(c∗, b∗) ⊩C×B “η∗α <T η∗β”. Since ġ is forced to be a Baumgartner function, it must

be the case that (c∗, b∗) ⊩C×B “η∗β /∈ ḋα”. However, (c∗, b∗) ⊩C×B “η∗β <Ṫ α ∈ ḋα”,
which is a contradiction. A symmetric argument yields a contradiction if η∗β < η∗α,
thus completing the proof of the claim. □

For each γ < ω1, since G ∩ E∗
γ,0 ̸= ∅, we can find a condition in G that decides

the value of ḣγ and Ȧγ , say as hγ and Aγ . Let B′
γ be the subalgebra of B generated

by Aγ (in V ).
For each α ∈ T ∗

1 and each n < ω, let

bα,n =
∧

{p(α, n) | (α, n) ∈ dom(p) and ∃c ∈ C (c, p) ∈ G}.

Note that bα,n is in B′
α (possibly equal to 0) and, if bα,n ̸= 0, then µ(bα,n) ≥ 1

2 . In

V , let Ḣ be the canonical B-name for the generic filter.

Claim 5.7. For every α ∈ T ∗
1 , there is n < ω such that bα,n ̸= 0 and bα,n ∈ H.

Proof. Fix α ∈ T ∗
1 , and suppose for the sake of contradiction that there is b ∈ H

such that, in V , we have

• b ⊩B “α ∈ Ṫ ∗
1 ”;

• b ⊩B “there is no n < ω such that bα,n ̸= 0 and bα,n ∈ Ḣ”.

In particular, for each n < ω such that bα,n ̸= 0, it must be the case that bα,n
and b are incompatible. Since each bα,n is in B′

α, we can assume that b is in
B′
α as well. We can therefore find k < ω such that µ(hα(k) − b) < 1

4µ(hα(k)),

and thus µ(hα(k) ∧ b) > 3
4µ(hα(k)). Now find (c, p) ∈ G ∩ E∗

α,k. Then we can

find n < ω such that (α, n) ∈ dom(p), µ(p(α, n)) > 1
2 , and µ(p(α, n) − hα(k)) <

1
2 − 1

2µ(hα(k)). In particular, since bα,n ≤ p(α, n) and µ(bα,n) ≥ 1
2 , we must

have µ(bα,n ∧ hα(k)) > 1
2µ(hα(k)). Altogether, this implies that bα,n and b are

compatible in B, contradicting our choice of b. □
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For each α ∈ T ∗
1 , let f(α) be the least n such that bα,n ̸= 0 and bα,n ∈ H. For

each α ∈ T ∗
0 , recall that we defined an ordinal η∗α such that η∗α <T α and η∗α ∈ T ∗

1 .
For such α, let f(α) = f(η∗α).

It remains to show that f witnesses that T is B-special. We first claim that
f ↾ T ∗

1 witnesses that T ∗
1 is special. To this end, fix α, β ∈ T ∗

1 and suppose that
f(α) = f(β) = n. Then we have bα,n ∧ bβ,n ∈ H. Find (c, p) ∈ G such that (α, n)
and (β, n) are both in dom(p). Then, by the definition of P in V C, we must have

c ⊩C “p(α, n) ∧ p(β, n) ⊩B “α ̸<Ṫ1
β””.

Since α, β ∈ T ∗
1 , we can find an extension c∗ of c such that (c∗, p) ∈ G and (c∗, b∗α ∧

b∗β) ⊩ “α, β ∈ Ṫ1”. Then p(α, n)∧ p(β, n)∧ b∗α ∧ b∗β is in H and forces that α ̸<Ṫ β.
Therefore, α and β are incomparable in T , so f ↾ T ∗

1 really does witness that T ∗
1 is

special.
Now suppose that α < β < γ < ω1, f(α) = f(β) = f(γ) = n, and α <T β, γ.

Suppose first that β ∈ T ∗
1 . Since f ↾ T ∗

1 witnesses that T ∗
1 is special, we must have

α ∈ T ∗
0 . But then we have η∗α <T α <T β, η∗α ∈ T ∗

1 , and f(η∗α) = f(α) = f(β),
which is again a contradiction. Thus, we must have β ∈ T ∗

0 ; similarly, we also have
γ ∈ T ∗

0 .
If α <T η∗β , then we reach a contradiction exactly as in the previous paragraph,

since f(α) = f(β) = f(η∗β) and η∗β ∈ T ∗
1 . Therefore, we must have η∗β ≤T α.

Similarly, η∗γ ≤T α. But then η∗β <T γ and η∗γ <T β, so, by Claim 5.6, it must be
the case that β <T γ. Therefore, f witnesses that T is B-special. □

As a corollary, we can show that an “indestructible” version of the negation of
the weak Kurepa Hypothesis is compatible with any possible value of the continuum
except ω1. More precisely:

Corollary 5.8. Suppose that PFA holds, κ ≥ ω2 is a cardinal of uncountable cofi-
nality, and B is the measure algebra on 2κ. Then, in V B, 2ω = κ and, for every tree

T of size and height ω1 and every outer model W of V B such that (ω1)
W = (ω1)

V B
,

T has at most ω1-many uncountable branches in W .

Proof. The fact that 2ω = κ in V B is a standard fact about random forcing. Let
T ∈ V B be a tree of size and height ω1, and let W be an outer model of V B with

(ω1)
W = (ω1)

V B
. By Theorem 5.5, T is B-special in V B. By [1, Theorem 7.4], it

follows that T has at most ω1-many uncountable branches in V B. By Proposition
5.2, every uncountable branch of T in W is already in V . Therefore, T has at most
ω1-many uncountable branches in W . □

We now connect the results in this section back to the main subject of this paper.
In [3], Cox and Krueger introduce the indestructible guessing model property :

Definition 5.9 ([3]). Let θ ≥ ω2 be a regular cardinal. M ∈ Pω2
H(θ) is said to be

an indestructible ω1-guessing model if it is an ω1-guessing model and remains an ω1-
guessing model in any forcing extension that preserves ω1. IGMP(θ) is the assertion
that there are stationarily many indestructible ω1-guessing models in Pω2

H(θ).
IGMP is the assertion that IGMP(θ) holds for all regular θ ≥ ω2.

In [3], Cox and Krueger show that IGMP follows from the conjunction of the
following two statements:

• for all regular θ ≥ ω2, there are stationarily many internally unbounded
ω1-guessing models in Pω2

H(θ);
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• every tree of size and height ω1 with no cofinal branches is special.

In [10], Krueger proves that if θ ≥ ω2 is a regular cardinal and N ≺ H(θ) is an
ω1-guessing model with ω1 ⊆ N , then N is internally unbounded. Therefore, IGMP
follows from the conjunction of GMP and the assertion that all trees of size and
height ω1 with no cofinal branches are special; in particular, it follows from PFA.

IGMP has some consequences that GMP does not have. For example, it implies
that there are no Suslin trees, whereas other work of Cox and Krueger [2] shows
that GMP is compatible with the existence of a Suslin tree (we give another model
for this conjunction in the next section by showing that GMP follows from the
forcing axiom PFA(S)).

By the argument of [3, Theorem 2.8], it is clear that IGMP(ω2) implies the
indestructible version of ¬wKH isolated in Corollary 5.8 in the case in which W is
a forcing extension of V . In Corollary 5.8, we saw that this indestructible version
of ¬wKH is compatible with any possible value of the continuum, including values
of cofinality ω1. In [3], Cox and Krueger show that IGMP is compatible with any
possible value of the continuum with cofinality at least ω2. The combination of
these two results naturally raises the following question:

Question 5.10. Is IGMP compatible with cf(2ω) = ω1? What about just IGMP(ω2)?

6. Forcing axioms for Suslin and almost Suslin trees

In this section, we continue investigations motivated by the study of IGMP, con-
necting it with the forcing axioms PFA(S) and PFA(T∗), introduced by Todorcevic
[25] and Krueger [11], respectively. In the process, we answer questions of Cox and
Krueger [3] and Krueger [11]. Let us begin by recalling the relevant definitions.

Definition 6.1. Suppose that T is an ω1-tree, i.e., a tree of height ω1, all of whose
levels are countable.

(1) T is an Aronszajn tree if it has no cofinal branches.
(2) T is a Suslin tree if it is an Aronszajn tree and has no uncountable an-

tichains.
(3) T is an almost Suslin tree if it has no stationary antichains, i.e., no an-

tichains A ⊆ T for which the set {ht(s) | s ∈ A} is stationary in ω1, where
ht(s) denotes the level of s in T .

We note that an almost Suslin tree need not be an Aronszajn tree, though in
this paper we will only be interested in almost Suslin trees that are Aronszajn.
Throughout this section, in accordance with established notation, we will always
use S to denote a Suslin tree and T ∗ to denote an almost Suslin Aronszajn tree.
With this convention, there will be no confusion introduced by the following slight
abuse of notation.

Definition 6.2. Let P be a forcing notion.

(1) For a Suslin tree S, we say that P is S-preserving if ⊩P “S is a Suslin tree”.
(2) For an almost Suslin Aronszajn tree T ∗, we say that P is T ∗-preserving if

⊩P “T ∗ is an almost Suslin Aronszajn tree”.

We now introduce the forcing axioms that form the subject of this section. We
note that in most other works, the forcing axioms MAω1(S) and PFA(S) require that
S be a coherent Suslin tree. Since coherence will not be necessary in any of our
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arguments, we choose to present the axioms in a more general form and not require
coherence. We note that, when we interpret a Suslin tree as a forcing notion, then
the forcing order is understood to be the reverse of the tree order.

Definition 6.3. If C is a class of forcing posets, then FA(C) is the assertion that,
for every P ∈ C and every collection D = {Dα | α < ω1} of ω1-many dense subsets
of P, there is a filter G ⊆ P such that G ∩Dα ̸= ∅ for all α < ω1.

(1) MAω1(S) is the assertion that S is a Suslin tree and FA(C) holds, where C
is the class of c.c.c. S-preserving posets.

(2) PFA(S) is the assertion that S is a Suslin tree and FA(C) holds, where C is
the class of proper S-preserving posets.

(3) If we start with a model satisfying PFA(S) and then force with the Suslin
tree S, then we say that the resulting forcing extension satisfies PFA(S)[S].
Asserting that PFA(S)[S] implies a statement φ should be understood as
asserting that, in any model of ZFC satisfying PFA(S) for some Suslin tree S,
we have ⊩S φ. MAω1(S)[S] is defined analogously, with MAω1(S) replacing
PFA(S).

(4) PFA(T∗) is the assertion that T ∗ is an almost Suslin Aronszajn tree and
FA(C) holds, where C is the class of proper T ∗-preserving posets.

Remark 6.4. The consistency of PFA(S) (and hence of PFA(S)[S]) and of PFA(T∗)
follows from the consistency of the existence of a supercompact cardinal in much
the same way that the consistency of PFA follows from the same hypothesis. For
sketches of the proof, see [25, Theorem 4.1] and [11, Theorem 2.6].

The following lemma, due to Woodin (cf. [33, Proof of Theorem 2.53]) will be
useful. Recall that, if P is a forcing poset and P ∈ M ≺ H(θ) for some regular
uncountable cardinal θ, then we say that a filterG ⊆ P isM -generic ifG∩D∩M ̸= ∅
for all dense subsets D of P that are elements of M .

Lemma 6.5. Suppose that C is a class of forcing posets and FA(C) holds. Then,
for every poset P ∈ C and all sufficiently large regular cardinals θ, the set

{M ∈ Pω2
H(θ) | |M | = ω1 ⊆ M ∧ ∃G ⊆ P [G is an M -generic filter]}

is stationary in Pω2
H(θ).

6.1. Suslin trees. In [3], Cox and Krueger ask whether IGMP implies p > ω1. In
this section, we prove that the axiom PFA(S)[S] implies IGMP. Since p = ω1 in any
forcing extension by a Suslin tree (cf. [5, Lemma 2]), and hence in any model of
PFA(S)[S], this answers Cox and Krueger’s question negatively. We also show that
PFA(S) implies GMP. Thus, models of PFA(S) provide examples of models in which
GMP holds and there exists a Suslin tree, and therefore IGMP fails, but forcing with
a particular Suslin tree yields a model of IGMP.

Given a tree T of height ω1 and a set C ⊆ ω1, let TC denote the set of s ∈ T
such that ht(s) ∈ C, with the inherited ordering from T . Note that, if S is a Suslin
tree and C ⊆ ω1 is unbounded, then SC is itself a Suslin tree.

The following theorem is due to Raghavan and Yorioka [20] under the additional
assumption that S is coherent, though they indicate that it was known beforehand
in the case in which Ṫ is a name for an Aronszajn tree. Since we remove the
requirement that S be coherent, and because we find our proof to be simpler than
that presented in [20], we include a proof.
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Theorem 6.6. Suppose that S is a Suslin tree and Ṫ is an S-name for a tree of
height and size ω1 with no cofinal branches. Then there is a forcing notion P(Ṫ )
such that P(Ṫ )× S is c.c.c. and ⊩P(Ṫ )×S “Ṫ is special”.

Proof. We may assume that it is forced by S that:

• the underlying set of Ṫ is ω1;
• for all α, β < ω1, if α <Ṫ β, then α < β.

We can therefore think of Ṫ as a name for a subset Ẋ ⊆ [ω1]
2, where, for all

α < β < ω1, we have
⊩S “α <Ṫ β ⇔ {α, β} ∈ Ẋ”.

By the argument immediately after the statement of Theorem 4.2 of [14], we can
find an unbounded C ⊆ ω1 and a subset K ⊆ [SC ]

2 such that for all t ∈ SC and all

α < β < htSC
(t), we have t ⊩S “{α, β} ∈ Ẋ” if and only if {s, r} ∈ K, where s and

r are the predecessors of t at levels α and β of SC , respectively. Since forcing with
SC is equivalent to forcing with S, for ease of notation we will assume that C = ω1

and write S instead of SC . Also, since the preceding sentences only mention pairs
{s, r} ∈ K such that s <S r or r <S s, we can assume that K only consists of pairs
that are comparable via <S .

Let P(Ṫ ) = P be the forcing notion whose conditions are all finite partial func-
tions p : S → ω with the property that, for all s, t ∈ dom(p), if p(s) = p(t), then
{s, t} /∈ K. Order P by reverse inclusion. We can think of P as the natural forcing

to add an S-name for a specializing function for Ṫ .

Claim 6.7. P× S is c.c.c.

Proof. Let ⟨(pη, sη) | η < ω1⟩ be a sequence of conditions in P × S. We will prove
that there are η0 < η1 such that (pη0

, sη0
) and (pη1

, sη1
) are compatible. Since

S is Suslin, and hence c.c.c., there is s∗ ∈ S such that s∗ ⊩S “{η < ω1 | sη ∈
Ġ} is uncountable, ” where Ġ is the canonical name for the S-generic filter. Let
G ⊆ S be a V -generic filter with s∗ ∈ G, and move to V [G]. Let A := {η < ω1 |
sη ∈ G}. By our choice of G, A is uncountable. Using the ∆-system lemma, find
an unbounded A′ ⊆ A such that {dom(pη) | η ∈ A′} forms a ∆-system, with root
R. Since each level of S is countable and the codomain of each pη is ω, by thinning
out A′ further if necessary, we may also assume the following.

• There is n < ω such that, for all η ∈ A′, Rη := dom(pη) \ R has size n.
Enumerate each Rη as {rηm | m < n}.

• For all η0, η1 ∈ A′, we have pη0 ↾ R = pη1 ↾ R.
• For all η0 < η1, both in A′, for all m0,m1 < n, and for all r ∈ R, we have

ht(r) < ht(rη0
m0

) < ht(rη1
m1

).

For all η0 < η1 in A′, we know that sη0
and sη1

are both in G and are therefore
compatible. Therefore, if we can find such η0 and η1 for which pη0 and pη1 are
compatible, then we will be finished. Suppose that this is not the case. We proceed
as in Baumgartner’s classical proof that the forcing to specialize an ω1-tree with
no cofinal branch is c.c.c. Namely, for each pair η < ξ, both from A′, our uni-
formization of A′ implies that the only obstacle to the compatibility of pη and pξ
would be the existence of mη,ξ,0,mη,ξ,1 < n such that pη(r

η
mη,ξ,0

) = pξ(r
ξ
mη,ξ,1

) and

{rηmη,ξ,0
, rξmη,ξ,1

} ∈ K. It follows from our assumptions on K that rηmη,ξ,0
<S rξmη,ξ,1

.

Let U be a uniform ultrafilter over A′. For each η ∈ A′, we can fix a set Yη ∈ U
and numbers mη,0,mη,1 < n such that, for all ξ ∈ Yη, we have η < ξ, mη,ξ,0 = mη,0,
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and mη,ξ,1 = mη,1. Now find an unbounded A′′ ⊆ A′ and numbers m0,m1 < n
such that mη,0 = m0 and mη,1 = m1 for all η ∈ A′′. Given η0 < η1, both in A′′,
find ξ ∈ Yη0 ∩ Yη1 . Then rηi

m0
<S rξm1

for each i < 2, so we have rη0
m0

<S rη1
m0

.

Also, {rηi
m0

, rξm1
} ∈ K for each i < 2, so, by our assumptions on Ṫ , we must have

{rη0
m0

, rη1
m0

} ∈ K, as well.
By the previous paragraph, the downward closure of {rηm0

| η ∈ A′′} is a cofinal
branch through S; let b′ denote this cofinal branch. Since S is Suslin in V , b′

generates a V -generic filter G′ over S. Let T ′ be the interpretation of Ṫ using G′.
For all η0 < η1 in A′′, we have {rη0

m0
, rη1

m0
} ∈ K, so the <T ′ -downward closure of

{ht(rηm0
) | η ∈ A′′} generates a cofinal branch in T ′, contradicting the fact that, in

V , we have ⊩S “Ṫ has no cofinal branches”. □

For each s ∈ S, let Ds := {p ∈ P | s ∈ dom(p)}, and note that Ds is a dense
open subset of P. Therefore, the generic object for P can be seen as a function from
S to ω. Let ġ be a canonical P-name for this function, and let ċ be a P × S-name
for a function from ω1 to ω such that, for all α < ω1 and all t ∈ S with ht(t) > α,
we have

(∅, t) ⊩P×S “ċ(α) = ġ(s)”,

where s is the predecessor of t on level α of S.
We will be done if we show that ċ is forced to be a specializing function for Ṫ .

Suppose for the sake of contradiction that there are (p, t) ∈ P× S and α < β < ω1

such that (p, t) ⊩P×S “α <Ṫ β and ċ(α) = ċ(β)”. We can assume that ht(t) > β.
Let s and r be the predecessors of t on levels α and β of S, respectively. We can
also assume that {s, r} ⊆ dom(p). Then we have {s, r} ∈ K and p(s) = p(r),
contradicting the fact that p is a condition in P. □

Corollary 6.8. MAω1(S)[S] implies that every tree of height and size ω1 with no
cofinal branches is special.

We now prove that PFA(S)[S] implies GMP. Since PFA(S)[S] also implies that all
trees of height and size ω1 with no cofinal branches are special, it will follow from
the discussion at the end of Section 5 that PFA(S)[S] implies IGMP. Our proof is a
modification of the proof from [31] of the fact that PFA implies GMP.

We first recall the covering and approximation properties, introduced by Hamkins
(cf. [6]).

Definition 6.9. Suppose that V ⊆ W are transitive models of ZFC and µ is a
regular uncountable cardinal.

(1) (V,W ) satisfies the µ-covering property if, for every x ∈ W such that x ⊆ V
and |x|W < µ, there is y ∈ V such that |y|V < µ and x ⊆ y.

(2) (V,W ) satisfies the µ-approximation property if, for all x ∈ W such that
x ⊆ V and x ∩ z ∈ V for all z ∈ V with |z| < µ, we in fact have x ∈ V .

A poset P has the µ-covering property (resp. µ-approximation property) if, for every
V -generic filter G ⊆ P, the pair (V, V [G]) has the µ-covering property (resp. µ-
approximation property).

For the rest of this subsection, let S denote a Suslin tree. If Ṫ is an S-name for
a tree of height and size ω1 with no cofinal branch, then P(Ṫ ) denotes the forcing

from Theorem 6.6 that adds an S-name for a specializing function for Ṫ . If P is
an S-preserving forcing notion and Ṫ is a P× S-name for a tree of height and size
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ω1 with no cofinal branch, then we will typically let Ṗ(Ṫ ) be a P-name for P(Ṫ )
(where, in V P, Ṫ is reinterpreted as an S-name). The following is analogous to,
and largely follows the proof of, [31, Lemma 4.6].

Lemma 6.10. Suppose that λ ≥ 2ω is an infinite cardinal, and let θ be a sufficiently
large regular cardinal. Assume that P preserves S, collapses 2λ to have cardinality
ω1, satisfies the ω1-covering and ω1-approximation properties, and continues to
satisfy the ω1-approximation property in V S. Then there is a P× S-name Ṫ1 for a
tree of height and size ω1 with no cofinal branches and a w ∈ H(θ) such that, for

every M ∈ Pω2
H(θ) such that ω1 ∪ {w} ⊆ M ≺ H(θ), if there is G ⊆ P ∗ Ṗ(Ṫ1)

that is M -generic, then, in V S, MS is an ω1-guessing model for λ.

Proof. Work for now in V , and let Ḃ be an S-name for (λ2)V
S

. Using the fact
that P collapses 2λ to have cardinality ω1 and satisfies the ω1-covering property,
let ċ be a P-name for a ⊆-increasing, continuous, and cofinal function from ω1 to

(Pω1
λ)V

P
. Since P satisfies the ω1-covering property, we can assume that, for all

α < ω1, we have ⊩P “ċ(α+1) ∈ V ”. Let ℓ̇ be a P× S-name for a bijection from ω1

to Ḃ, and let Ṫ be a P×S-name for {ℓ̇(η) ↾ ċ(α) | η, α < ω1}. Note that Ṫ is forced
to be a tree of height and size ω1. Moreover, since P has the ω1-approximation
property in V S , Ḃ is forced to be precisely the set of cofinal branches through Ṫ .
Since Ḃ is forced to have cardinality ω1 in V P×S , we can apply Lemma 5.4 to find
a P× S-name ġ for a Baumgartner function from Ḃ to Ṫ .

Let Ṫ0 be a P × S-name for the set {t ∈ Ṫ | ∃b ∈ Ḃ ġ(b) <Ṫ t ∈ b}, and let Ṫ1

be a P × S-name for Ṫ \ Ṫ0. Since Ṫ0 is forced to contain a tail of every b ∈ Ḃ,

it follows that Ṫ1 is forced to have no uncountable branches in V P×S . We can
therefore let Q̇ be a P-name for P(Ṫ1), where Ṫ1 is reinterpreted as an S-name in

V P. Since Q̇ is forced to add an S-name for a specializing function for Ṫ1, we can
fix a (P ∗ Q̇)× S-name ḟ for a specializing function from Ṫ1 to ω.

We claim that Ṫ1 is as desired. Let w be a set containing all relevant information,
including S, ċ, Ṫ , Ṫ0, Ṫ1, ḟ , ġ, and ℓ̇. Now fix M ∈ Pω2

H(θ) such that ω1 ∪ {w} ⊆
M ≺ H(θ), and suppose that G = G0 ∗ G1 ⊆ (P ∗ Q̇) ∩M is M -generic. We will
show that, in V S , MS is an ω1-guessing model for λ.

Let H be an S-generic filter over V and move to V [H]. Let c := ċG0 : ω1 →
Pω1(λ∩M), and note that c is ⊆-increasing and continuous, and c(α+1) ∈ M for
all α < ω1. Also, c is cofinal in (Pω1λ)

M , and, since S is ω1-distributive, it is also

cofinal in (Pω1λ)
M [H]. Let g := ġG0×H , T := ṪG0×H (and analogously for T0 and

T1), f := ḟ (G0∗G1)×H , B = ḂH , and ℓ := ℓ̇G0×H . Let B ↾ M [H] := {b ↾ M [H] | b ∈
B ∩M [H]}.

By elementarity and the fact that G0 ∗ G1 is M -generic, we have the following
facts:

• ℓ : ω1 → B ∩M [H] is a bijection.
• T = {b ↾ c(α) | b ∈ B ∩M [H], α < ω1}.
• B ↾ M [H] is a set of uncountable branches through T .
• dom(g) = B ∩M [H]; we will slightly abuse notation and identify dom(g)

with B ↾ M [H].
• g : B ↾ M [H] → T is a Baumgartner function.
• T = T0 ∪ T1.
• f : T1 → ω is a specializing function.
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Claim 6.11. B ↾ M [H] is the set of uncountable branches through T .

Proof. We have already seen that every element of B ↾ M [H] is an uncountable
branch through T . For the reverse inclusion, suppose that h is an uncountable
branch through T . We identify branches through T with their union, i.e., we think
of h as being of the form h : M [H] ∩ λ → 2. Since T1 is special and therefore
cannot have an uncountable branch, a tail of h must lie inside T0, i.e., we can find
α0 < ω1 such that, for all α ∈ [α0, ω1), we have h ↾ c(α) ∈ T0. For all such α, there
is a unique bα ∈ B ↾ M [H] such that g(bα) ⊊ h ↾ c(α) ⊊ bα. By Fodor’s Lemma,
there is a fixed t ∈ T and a stationary R ⊆ ω1 such that g(bα) = t for all α ∈ R.
Since g is injective, there is b ∈ B ↾ M [H] such that bα = b for all α ∈ R. Then
h ↾ c(α) ⊆ b for all α ∈ R, and since R is cofinal in ω1, this implies that h = b. □

We are now ready to prove that M [H] is an ω1-guessing model for λ in V [H].
Work in V [H], and let d ⊆ λ be M [H]-approximated. Let h : λ∩M [H] → 2 be the
characteristic function of d ∩M [H]. Then, for all α < ω1, we have d ∩ c(α + 1) ∈
M [H] and hence h ↾ c(α+ 1) ∈ M [H]. It follows that h ↾ c(α+ 1) ∈ T , and hence
h is an uncountable branch through T . By Claim 6.11, we have h ∈ B ↾ M [H],
so there is b ∈ B ∩ M [H] such that b ↾ M [H] = h. Let e := {η < λ | b(η) = 1}.
Then e ∈ M [H] and e ∩M [H] = d ∩M [H]. Therefore, d is guessed by M [H], as
desired. □

Theorem 6.12. PFA(S)[S] implies GMP.

Proof. Suppose that V satisfies PFA(S). We will prove that GMP holds in V S .

Given a cardinal λ ≥ ω2, let GMPλ denote the assertion that, for all sufficiently large
regular θ, there are stationarily many M ∈ Pω2H(θ) that are ω1-guessing models

for λ. By [31, Proposition 3.2], for every sufficiently large regular θ, if GMP|H(θ)|

holds, then there are stationarily many ω1-guessing models M ∈ Pω2H(θ). It

therefore suffices to prove that GMPλ holds for all λ ≥ 2ω.
Work in V . Fix λ ≥ 2ω and a sufficiently large regular cardinal θ, and let

P := Add(ω, 1) ∗ ˙Coll(ω1, 2
λ). Then P collapses 2λ to have cardinality ω1 and,

since Add(ω, 1) is ω1-Knaster and ˙Coll(ω1, 2
λ) is forced to be countably closed, P is

proper and preserves the fact that S is a Suslin tree. It is proven in [9] that P has
the ω1-covering and ω1-approximation properties. Since S is ω1-distributive, the
definition of P is the same in V and in V S ; in particular, the proof from [9] can be
carried out in V S to show that P has the ω1-approximation property in that model
as well. We can therefore apply Lemma 6.10 to find a P × S-name Ṫ for a tree of
height and size ω1 with no cofinal branches and a w ∈ H(θ) such that, for every

M ∈ Pω2
H(θ) such that ω1 ∪ {w} ⊆ M ≺ H(θ), if there is G ⊆ P ∗ Ṗ(Ṫ ) that is

M -generic, then MS is an ω1-guessing model for λ in V S .
In V P, by Theorem 6.6, P(Ṫ ) × S is c.c.c. In particular, it follows that, in V ,

P∗ Ṗ(Ṫ ) is proper and preserves S. Therefore, by PFA(S) and Lemma 6.5, the set of

M ∈ Pω2
H(θ) for which |M | = ω1 ⊆ M and there exists anM -generic G ⊆ P∗Ṗ(Ṫ )

is stationary in Pω2
H(θ). Let Ċ be an S-name for a club in (Pω2

H(θ))V
S

, and,

using Proposition 2.3, let ḟ be an S-name for a function from [H(θ)]2 → Pω2H(θ)

such that Ċḟ := {X ∈ Pω2
H(θ) | ∀z ∈ PωX ḟ(z) ⊆ X} is forced to be a subset of

Ċ. We can then find M ∈ Pω2
H(θ) such that ω1 ∪ {w, ḟ} ⊆ M ≺ H(θ) and such

that there exists an M -generic G ⊆ P ∗ Ṗ(Ṫ ).
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It follows that MS is an ω1-guessing model for λ in V S . We now show that
MS ∈ Ċ; since Ċ was an arbitrary name for a club in Pω2H(θ), this will imply

that GMPλ holds in V S . To see that MS ∈ Ċ, recall that ḟ ∈ M , and therefore,
for every S-name ż ∈ M for an element of PωH(θ), there is an S-name for ḟ(ż) in

M . It follows that MS ∈ Ċḟ ⊆ Ċ. □

Corollary 6.13. PFA(S)[S] implies IGMP.

We end this subsection by pulling back the previous results from V S to V ,
showing that PFA(S) also implies GMP.

Proposition 6.14. Suppose that P is a forcing notion such that |P| ≤ ω1 and P
has the ω1-covering property. Suppose moreover that θ is a sufficiently large regular
cardinal and M ∈ Pω2

H(θ) is such that M ≺ H(θ) and P∪{P} ⊆ M . If MP is an
ω1-guessing model in V P, then M is an ω1-guessing model in V .

Proof. Suppose that MP is an ω1-guessing model in V P but M is not an ω1-guessing
model in V . We can then fix a cardinal λ ∈ M and a set d ⊆ λ such that d is
(ω1,M)-approximated but not M -guessed.

Claim 6.15. In V P, d is (ω1,M
P)-approximated.

Proof. Fix a condition p ∈ P and a P-name ẏ ∈ M for an element of Pω1λ.
Since P has the ω1-covering property, and by elementarity, we can find q ≤P p and
z ∈ Pω1

(λ) ∩ M such that q ⊩P “ẏ ⊆ z”. Then d ∩ z ∈ M , so q ⊩P “d ∩ ẏ =
(d ∩ z) ∩ ẏ ∈ MP”. The conclusion follows by genericity. □

Therefore, since MP is an ω1-guessing model in V P, we can find a P-name ė ∈ M
for a subset of λ and a condition p ∈ P such that p ⊩P “d ∩MP = ė ∩MP”. Note
that, since P ⊆ M , we have MP ∩ λ = M ∩ λ.

Claim 6.16. There are conditions q0, q1 ≤P p and an ordinal α < λ such that
q0 ⊩P “α ∈ ė” and q1 ⊩P “α /∈ ė”.

Proof. If not, then, letting e∗ := {α < λ | ∃q ≤P p [q ⊩P “α ∈ ė”]}, we have that
e∗ ∈ M and p ⊩P “ė = e∗”. But then we would have e∗∩M = d∩M , contradicting
the assumption that d is not M -guessed. □

By elementarity, we can find q0, q1 ≤P p and an ordinal α ∈ λ ∩ M such that
q0 ⊩P “α ∈ ė” and q1 ⊩P “α /∈ ė”. If α ∈ d, then let q∗ = q1, and if α /∈ d, then let
q∗ = q0. In either case, we have q∗ ≤P p and q∗ ⊩P “ė ∩M ̸= d ∩M”, which is a
contradiction. □

Corollary 6.17. PFA(S) implies GMP.

Proof. Suppose that PFA(S) holds in V . Fix a regular θ ≥ ω2. By the proof of
Theorem 6.12, there are stationarily many M ∈ Pω2H(θ) such that MS is an ω1-
guessing model in V S . By Proposition 6.14, for each such M for which M ≺ H(θ)
and S ∪ {S} ⊆ M , we know that M is a guessing model in V . Therefore, GMP
holds in V . □
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6.2. Almost Suslin trees. As mentioned at the end of Section 5, work of Cox and
Krueger shows that IGMP follows from the conjunction of GMP and the assertion
that all trees of size and height ω1 with no cofinal branches are special, and that
IGMP implies that there are no Suslin trees. Together, these results raise a natural
question, asked already in [3], as to whether IGMP implies that all trees of height and
size ω1 with no cofinal branches are special. In this section, we prove that PFA(T∗)
implies IGMP. Since every special tree contains a stationary antichain, this answers
the question negatively. It also positively answers a question of Krueger from [11] as
to whether PFA(T∗) implies ¬wKH, since, as mentioned in Section 3, GMP implies
¬wKH.

The following proposition is a slight improvement of [3, Proposition 4.4 and
Corollary 4.5]. To simplify the statement, let us say that a tree of height ω1 is
persistently branchless if it has no cofinal branches and continues to have no cofinal
branches in any forcing extension that preserves ω1. Note that every special tree
T is persistently branchless, and, in fact, it is enough that TC be special for some
cofinal set C ⊆ ω1.

Proposition 6.18. Suppose that GMP holds and every tree T of size and height
ω1 with no cofinal branches is persistently branchless. Then IGMP holds.

Proof. Fix a regular cardinal θ ≥ ω2. It suffices to show that every ω1-guessing
model N ∈ Pω2

H(θ) with ω1 ⊆ N is an indestructible ω1-guessing model. To this
end, fix such an N , and fix a cardinal λ ∈ N . It suffices to prove that, in any
forcing extension of V in which ω1 is preserved, N continues to be an ω1-guessing
model for λ.

Since N is an ω1-guessing model with ω1 ⊆ N , [10, Theorem 1.4] implies that N
is internally unbounded. We can therefore fix a ⊆-increasing sequence ⟨Xi | i < ω1⟩
such that each Xi is an element of N ∩ Pω1

λ and
⋃

i<ω1
Xi = N ∩ λ. We now

define a tree T as in the proof of [3, Proposition 4.4]. The underlying set of T is all
pairs (i, x) ∈ N such that i < ω1 and x ⊆ Xi. We set (i, x) <T (j, y) if and only if
i < j and y ∩Xi = x.

Precisely as in [3], T is a tree of size and height ω1 with at most ω1-many cofinal
branches. Let B be the set of all cofinal branches through T , and, using Lemma
5.4, find a Baumgartner function g : B → T .

Now, as in the proof of Lemma 6.10, let T0 := {t ∈ T | ∃b ∈ B g(b) <T t ∈ b},
and let T1 := T \ T0. Since T0 contains a tail of every b ∈ B, it follows that T1 has
no cofinal branches and is therefore, by assumption, persistently branchless.

Now let W be any forcing extension of V in which ω1 is preserved, and let d ∈
PWλ be (ω1, N)-approximated inW . Then, for each i < ω1, we have (i, d∩Xi) ∈ T ,
and the set c = {(i, d ∩ Xi) | i < ω1} is a cofinal branch through T . Since T1 is
persistently branchless in V , it must be the case that a tail of c lies inside T0. Then,
precisely by the argument in the proof of Claim 6.11, we must in fact have c ∈ B,
i.e., c is already in V . Then d ∩ N =

⋃
i<ω1

d ∩ Xi is also in V and is clearly

(ω1, N)-approximated there, since d is (ω1, N)-approximated in W . Therefore,
since N is a guessing model in V , d∩N is N -guessed, i.e., there is e ∈ N such that
e ∩N = d ∩N . Clearly, this set e witnesses that d is N -guessed in W . Therefore,
N is an ω1-guessing model in W ; since W was arbitrary, N is an indestructible
ω1-guessing model in V . □
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For the rest of this subsection, let T ∗ denote an almost Suslin Aronszajn tree.
In [11, Definition 1.7], Krueger introduces the notion of a forcing poset P being
T ∗-proper. Although being T ∗-proper is a weakening of the conjunction of being
proper and T ∗-preserving, Krueger proves that PFA(T∗) is equivalent to FA(C),
where C is the class of T ∗-proper forcing posets [11, Proposition 2.5]. We will not
need the definition of T ∗-properness here, but just note the following facts:

Fact 6.19. (1) [11, Theorem 2.2] T ∗-properness is preserved under countable
support iterations.

(2) [11, Proposition 3.1] Every strongly proper forcing poset is T ∗-proper. In
particular, Cohen forcing is T ∗-proper.

(3) [11, Proposition 1.11] Every ω1-closed forcing poset is T ∗-proper.
(4) [23, §IX, Lemma 4.6] For every tree T of size and height ω1 with no cofinal

branches, there is a T ∗-proper forcing Q(T ) that adds an unbounded subset
A ⊆ ω1 and a specializing function f : TA → ω.

As noted at the end of [11], Fact 6.19(4) shows that PFA(T∗) implies that for
every tree T of size and height ω1 with no cofinal branches, there is an unbounded
A ⊆ ω1 such that TA is special; in particular, T is persistently branchless. There-
fore, by Proposition 6.18, to show that PFA(T∗) implies IGMP, it suffices to show
that PFA(T∗) implies GMP.

Theorem 6.20. PFA(T∗) implies IGMP.

Proof. Suppose that PFA(T∗) holds. As noted immediately before the statement
of the theorem, it suffices to prove that GMP holds. Since all of the ideas of this
proof are transparently present in the arguments of Subsection 6.1 of this paper
and Section 4 of [31], we provide only a sketch.

Claim 6.21. Suppose that λ is an uncountable cardinal and θ is a sufficiently large
regular cardinal. Assume that P satisfies the ω1-covering and ω1-approximation
properties and collapses 2λ to have size ω1. Then there is a P-name Ṫ1 for a tree
of height and size ω1 with no cofinal branches and a w ∈ H(θ) such that, letting

Q̇(Ṫ1) be a name for the poset in Fact 6.19(4), we have the following: for every

M ∈ Pω2H(θ) such that ω1 ∪ {w} ⊆ M ≺ H(θ), if there is G ⊆ P ∗ Q̇(Ṫ1) that is
M -generic, then M is a guessing model for λ.

Proof. The proof is almost identical to the proof of [31, Lemma 4.6], all of the
ideas of which are also present in the proof of 6.10 above, so we omit it. The
only difference between the proof of this claim and that of [31, Lemma 4.6] is that

in that paper the forcing Q̇(Ṫ1) is replaced by the ccc forcing to fully specialize

Ṫ1. However, it is evident from that proof that adding this complete specialization
function is not necessary; it suffices to specialize Ṫ1 restricted to some cofinal set
of levels, which is precisely what Q̇(Ṫ1) does. □

As in the proof of 6.12, it suffices to show that GMPλ holds for all uncountable
cardinals λ. Therefore, fix such a λ. Let P := Add(ω, 1) ∗ ˙Coll(ω1, 2

λ). Again as
in the proof of 6.12, P has the ω1-covering and ω1-approximation properties and
collapses 2λ to have size ω1. We can therefore apply Claim 6.21 to find a P-name Ṫ
for a tree of height and size ω1 with no cofinal branches and a w ∈ H(θ) such that,

for every M ∈ Pω2
H(θ) such that ω1 ∪ {w} ⊆ M ≺ H(θ), if there is G ⊆ P ∗ Q̇(Ṫ )

that is M -generic, then M is a guessing model for λ.
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Since P is a two-step iteration in which the first iterand is strongly proper and the
second is forced to be ω1-closed, Fact 6.19 implies that P is T ∗-proper. Also by Fact
6.19, Q̇(Ṫ ) is forced by P to be T ∗-proper, so P ∗ Q̇(Ṫ ) is T ∗-proper. Therefore, by
PFA(T∗) and Lemma 6.5, the set of M ∈ Pω2H(θ) such that ω1∪{w} ⊆ M ≺ H(θ)

and there exists an M -generic G ⊆ P ∗ Q̇(Ṫ ) is stationary in Pω2H(θ). But then,
by the previous paragraph, every element of this stationary set is a guessing model
for λ, so GMPλ holds, and, since λ was arbitrary, GMP holds, as desired. □

Our result shows that IGMP does not imply that all trees of size and height ω1

with no cofinal branches are special. However, IGMP implies that every such tree
is special on a dense subset.

Proposition 6.22. Assume IGMP. Let T be a tree of size and height ω1. Then
there is a dense subset S of T such that S is special.

Proof. Assume IGMP. Let T be a tree of size and height ω1. Note that the converse
of Proposition 6.18 holds as well: IGMP implies that every tree of size and height
ω1 with no cofinal branches is persistently branchless by [3, Theorem 3.6]. Hence
T is persistently branchless and therefore T is not ω1-distributive.

Let ġ be a T -name for a new function from ω into the ordinals. Using the name
ġ we can define a dense subset of T containing all nodes of T which decide the
value of ġ(n) for some n ∈ ω and are minimal such; formally S = {t ∈ T | ∃n ∈
ω((t ∥ ġ(n)) and ∀s < t(s ∦ ġ(n)))}. Note that S is dense since ġ is a name for a
new function. It is straightforward to define a specialization function f from S to
ω: for s ∈ S, set f(s) = n, where n is the minimal n ∈ ω such that s decides the
value of ġ(n) and no t < s decides the value of ġ(n). It is easy to verify that f is a
specialization function for S. □
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