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Abstract. We prove that reflection of the coloring number of graphs is consistent with non-
reflection of the chromatic number. Moreover, it is proved that incompactness for the chromatic
number of graphs (with arbitrarily large gaps) is compatible with each of the following compact-
ness principles: Rado’s conjecture, Fodor-type reflection, Δ-reflection, Stationary-sets reflection,
Martin’s Maximum, and a generalized Chang’s conjecture. This is accomplished by showing that,
under GCH-type assumptions, instances of incompactness for the chromatic number can be derived
from square-like principles that are compatible with large amounts of compactness.

In addition, we prove that, in contrast to the chromatic number, the coloring number does not
admit arbitrarily large incompactness gaps.

1. Introduction

Definition 1.1. A graph is a pair 𝒢 = (𝐺,𝐸), where 𝐸 ⊆ [𝐺]2. Elements of 𝐺 are called the
vertices of 𝒢, and elements of 𝐸 are called the edges of 𝒢. If 𝑥 ∈ 𝐺, then the neighborhood of 𝑥 in
𝒢 is 𝑁𝒢(𝑥) := {𝑦 ∈ 𝐺 | {𝑥, 𝑦} ∈ 𝐸}; if C is an ordering of 𝐺, then 𝑁C𝒢 (𝑥) := {𝑦 ∈ 𝑁𝒢(𝑥) | 𝑦 C 𝑥}.

For an arbitrary graph 𝒢, the set of vertices of 𝒢 will often be denoted by 𝑉 (𝒢), and the set of
edges by 𝐸(𝒢).

Definition 1.2. Suppose 𝒢 is a graph.

(1) A function 𝑐 on 𝑉 (𝒢) is called a chromatic coloring of 𝒢 if 𝑐(𝑥) ̸= 𝑐(𝑦) for all {𝑥, 𝑦} ∈ 𝐸(𝒢).
The chromatic number of 𝒢, denoted Chr(𝒢), is the least cardinal 𝜒 for which there exists
a chromatic coloring 𝑐 : 𝑉 (𝒢) → 𝜒.

(2) The coloring number of 𝒢, denoted Col(𝒢), is the least cardinal 𝜅 for which there exists a
well-ordering C of 𝑉 (𝒢) such that |𝑁C𝒢 (𝑥)| < 𝜅 for all 𝑥 ∈ 𝑉 (𝒢).

It is evident that Chr(𝒢) ≤ Col(𝒢) for every graph 𝒢.

By a classic result of de Bruijn and Erdős [dBE51], if 𝒢 is a graph, 𝑘 is a positive integer,
and all finite subgraphs of 𝒢 have chromatic number ≤ 𝑘, then Chr(𝒢) ≤ 𝑘. Questions involving
generalizations of this theorem (to infinite cardinal numbers, as well as to other cardinal functions)
have attracted a lot of attention; we highlight a number of known results regarding compactness
for chromatic and coloring numbers in Section 2.

Counterexamples to compactness are captured by the following concepts:

Definition 1.3. Suppose 𝒢 is a graph and 𝜇 ≤ 𝜅 are cardinals. 𝒢 is said to be (𝜇, 𝜅)-chromatic
(resp. (𝜇, 𝜅)-coloring) if Chr(𝒢) = 𝜅 (resp. Col(𝒢) = 𝜅) and Chr(𝒢′) ≤ 𝜇 (resp. Col(𝒢′) ≤ 𝜇) for
every subgraph 𝒢′ of 𝒢 with |𝑉 (𝒢′)| < |𝑉 (𝒢)|.

Date: June 15, 2018.
2010 Mathematics Subject Classification. Primary 03E35. Secondary 05C15, 05C63.
Key words and phrases. Compactness, Rado’s conjecture, Chang’s conjecture, Fodor-type reflection, Δ-reflection,

𝐶-sequence graph, chromatic number, coloring number, square principles, parameterized proxy principle.

1



2 CHRIS LAMBIE-HANSON AND ASSAF RINOT

In [Rin15], the second author introduces a family of graphs, denoted 𝐺(�⃗�), and investigates

their features. It is established there that if �⃗� is a coherent sequence of local clubs along a regular

cardinal 𝜅 and 𝐺 is a subset of 𝜅 all of whose proper initial segments are non-stationary, then 𝐺(�⃗�)
is (ℵ0, 𝜃)-chromatic for some cardinal 𝜃 ≤ 𝜅. In addition, in [Rin15], various constructions are given

of coherent sequences �⃗� and non-reflecting stationary sets 𝐺 for which 𝜃 — that is, Chr(𝐺(�⃗�)) —
is arbitrarily large.

In this paper, it is proved that if �⃗� is coherent, then 𝐺(�⃗�) is (ℵ0, 𝜃)-chromatic even if 𝐺 = 𝜅.
This eliminates the need for the existence of non-reflecting stationary sets, thereby opening the
door for compatibility of the incompactness for the chromatic number with compactness for the
coloring number.1

Furthermore, it is shown here that weaker forms of coherence of �⃗� suffice to infer that 𝐺(�⃗�)
is (𝜒, 𝜃)-chromatic, even when 𝜃 ≫ 𝜒. This allows the compatibility of the incompactness for the
chromatic number with very large cardinals.

To succinctly state some of the consequences of the work in this paper, let ℰ(𝜒, 𝜅) stand for the
assertion that there exists a (𝜒, 𝜅)-chromatic graph of size 𝜅. We have:

Theorem A. Assuming the consistency of large cardinal axioms,2 the following are consistent:

(1) (ℵ𝜔+1,ℵ𝜔)� (ℵ1,ℵ0) together with ℰ(ℵ0,ℵ𝜔+1);
(2) FRP(< ℵ3) together with ℰ(ℵ0,ℵ2);
(3) Rado’s Conjecture together with ℰ(ℵ2, 𝜅) holding for all regular 𝜅 > ℵ2;
(4) Martin’s Maximum together with ℰ(ℵ2, 𝜅) holding for all regular 𝜅 > ℵ2;
(5) 𝜒 is a supercompact cardinal together with ℰ(𝜒, 𝜅) holding for all regular 𝜅 > 𝜒;
(6) (a) ∆ℵ𝜔2 ,ℵ𝜔2+1

together with ℰ(ℵ0,ℵ𝜔2+1);

(b) ∆𝜅 together with ℰ(ℵ0, 𝜅), where 𝜅 is inaccessible;

(7) (a) Reflection of stationary subsets of 𝐸ℵ2
ℵ0

together with ℰ(ℵ0,ℵ2);

(b) Reflection of stationary subsets of ℵ𝜔+1 together with ℰ(ℵ0,ℵ𝜔+1);
(c) Reflection of stationary subsets of 𝜅 together with ℰ(ℵ0, 𝜅), where 𝜅 is the least inac-

cessible cardinal.

Proof. The proofs of all of the statements rely on Corollary 3.13(2). (1) then follows from Corollary
4.6, (2) from Corollary 4.5, and (3) and (4) from Corollary 4.8. (5) follows from Corollary 4.7, (6)(a)
from Corollary 4.2, (6)(b) from Theorem 4.4, and (7) from Theorem 4.1 and [HLH16, S3.3]. �

To put Theorem A into context, let us point out a few relationships between the above principles
and reflection of cardinal functions.

Fact. (1) If (ℵ𝜔+1,ℵ𝜔) � (ℵ1,ℵ0) holds, and 𝜃 < 𝜅 ≤ ℵ𝜔+1 are infinite cardinals, then every
𝜅-sized graph, all of whose strictly smaller subgraphs have coloring number ≤ 𝜃, has coloring
number ≤ 𝜃+.

(2) FRP(< 𝜒) is equivalent to the assertion that any graph of size < 𝜒 of uncountable coloring
number has an ℵ1-sized subgraph of uncountable coloring number.

(3) Rado’s Conjecture is equivalent to the assertion that any tree whose comparability graph
is uncountably chromatic has an ℵ1-sized subtree whose comparability graph is uncountably
chromatic.

1The existence of a non-reflecting stationary set implies incompactness for the coloring number; see Lemma 2.17.
2The strength needed differs depending on the statement; see Section 4 for the precise large cardinal axioms that

are used.
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(4) If there exists an (ℵ0,≥ ℵ1)-coloring graph of size 𝜅, then there exists a tree of size ≤ 𝜅ℵ0

whose comparability graph is (ℵ0,≥ ℵ1)-chromatic. In particular, Rado’s Conjecture implies
FRP.

(5) Suppose that 𝜃 < 𝜒 ≤ 𝜅 are infinite cardinals such that 𝜒 is strongly compact. Then every
graph of size 𝜅 and chromatic number > 𝜃 has a subgraph of size < 𝜒 and chromatic number
> 𝜃.

(6) Suppose that 𝜃 < 𝜒 ≤ 𝜅 are infinite cardinals such that 𝜅 is singular or ∆𝜒,𝜅 holds. Then
every graph of size 𝜅 and coloring number > 𝜃 has a strictly smaller subgraph of coloring
number > 𝜃.

Proof. (1) By Lemma 2.20 below. (2) By Theorem 3.1 of [FSSU12]. (3) By Theorem 6 of [Tod83].
(4) This will appear in [FSTPU17]. (5) By the proof of Theorem 1 of [dBE51]. (6) By [She75b]
(See also Proposition 2.23 below). �

On the purely combinatorial side, we prove that the combination of GCH and square-like prin-
ciples gives rise to incompactness graphs. In order to state the next theorem, we shall need the
following definition (for missing notions, see the Notation subsection below).

Definition 1.4 ([BR19]). For infinite regular cardinals 𝜒 < 𝜅, the principle �(𝜅,⊑𝜒) asserts the

existence of a sequence �⃗� = ⟨𝐶𝛼 | 𝛼 < 𝜅⟩ satisfying the following:

∙ for every limit ordinal 𝛼 < 𝜅, 𝐶𝛼 is a club in 𝛼;
∙ for every 𝛼 < 𝜅 and �̄� ∈ acc(𝐶𝛼), if otp(𝐶𝛼) ≥ 𝜒, then 𝐶�̄� = 𝐶𝛼 ∩ �̄�;
∙ for every club 𝐷 in 𝜅, there exists some 𝛼 ∈ acc(𝐷) such that 𝐷 ∩ 𝛼 ̸= 𝐶𝛼.

The principle �(𝜅,⊑𝜔) is commonly denoted by �(𝜅).

Theorem B. Suppose that 𝜆 is an uncountable cardinal and that GCH and �(𝜆+) both hold.

(1) If 𝜆 is regular, then there exists an (ℵ0,≥ 𝜆)-chromatic graph of size 𝜆+;
(2) If 𝜆 is singular, then there exists an (ℵ0, 𝜆

+)-chromatic graph of size 𝜆+.

More generally, suppose that ℵ0 ≤ cf(𝜒) = 𝜒 < 𝜆 are cardinals and that GCH and �(𝜆+,⊑𝜒) both
hold.

(1) If 𝜆 is regular, then there exists a (𝜒,≥ 𝜆)-chromatic graph of size 𝜆+;
(2) If 𝜆 is singular, then there exists a (𝜒, 𝜆+)-chromatic graph of size 𝜆+.

The preceding is an improvement in a certain direction upon results of the second author from
[Rin15], in which it is proved that, for any infinite cardinal 𝜆, CH𝜆 +�𝜆 entails the existence of an
(ℵ0, 𝜇)-chromatic graph for all infinite 𝜇 ≤ 𝜆, and if, additionally, 𝜆 is singular, then the existence
of an (ℵ0, 𝜆

+)-chromatic graph, as well.
In addition, it is a curious and a counterintuitive fact that the reflection of stationary sets actually

helps in achieving a maximal degree of incompactness:

Theorem C. Suppose that 𝜆 is an uncountable cardinal and that GCH and �(𝜆+) both hold. If
Refl(𝑆) holds for some stationary 𝑆 ⊆ 𝜆+, then there exists an (ℵ0, 𝜆

+)-chromatic graph of size
𝜆+.

Finally, we apply the techniques of this paper to address a question about possible chromatic
spectra of graphs, a topic whose study was initiated in [Rin17c]. It is proved:

Theorem D. The following statement is equiconsistent with ZFC. GCH holds, and for every
infinite cardinal 𝜅, there exists a graph 𝒢 satisfying:

∙ 𝒢 has size and chromatic number 𝜅;
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∙ for every infinite cardinal 𝜆 < 𝜅, there exists a cofinality-preserving, GCH-preserving forcing
extension in which Chr(𝒢) = 𝜆.

Organization of this paper. Section 2 is graph-theoretic in nature. In Subsection 2.1, we first
list various compactness and incompactness results for the chromatic numbers. Then, we turn
to generalize the results from [Rin15] concerning the 𝐶-sequence graph, motivating the study of
various 𝐶-sequences that is carried out in later sections. In Subsection 2.2, we collect various
compactness and incompactness results for the coloring numbers. In addition, it is established that
for every infinite cardinal 𝜇 and every graph 𝒢, if every strictly smaller subgraph 𝒢′ of 𝒢 satisfies
Col(𝒢′) ≤ 𝜇, then Col(𝒢) ≤ 𝜇++. We also provide a couple of sufficient conditions that allow one
to reduce the bound 𝜇++ down to 𝜇+, which is the best one can hope for.

Section 3 is set-theoretic in nature. It is dedicated to constructing 𝐶-sequences for which the
corresponding 𝐶-sequence graphs witness incompactness for the chromatic number with a very
large gap. Among other things, Subsection 3.2 is concluded with the proofs of Theorems B and
C. In Subsection 3.3, we analyze a notion of forcing for introducing 𝐶-sequences for which the
corresponding 𝐶-sequence graphs exhibit a maximal degree of incompactness for the chromatic
number.

In Section 4, we combine the method of Subsection 3.3 with various methods for producing
models of compactness, thus demonstrating that incompactness for the chromatic number of graphs
is compatible with a wide array of set-theoretic compactness principles.

In Section 5, we provide a proof of Theorem D.

Notation. For an infinite cardinal 𝜆, write CH𝜆 for the assertion that 2𝜆 = 𝜆+. Suppose that
𝐶,𝐷 are sets of ordinals. Write acc(𝐶) := {𝛼 ∈ 𝐶 | sup(𝐶 ∩ 𝛼) = 𝛼 > 0}, nacc(𝐶) := 𝐶 ∖ acc(𝐶),
and acc+(𝐶) := {𝛼 < sup(𝐶) | sup(𝐶 ∩ 𝛼) = 𝛼 > 0}. Write cl(𝐶) := 𝐶 ∪ acc+(𝐶). For any
𝑗 < otp(𝐶), denote by 𝐶(𝑗) the unique element 𝛿 ∈ 𝐶 for which otp(𝐶 ∩ 𝛿) = 𝑗. For any ordinal 𝜎,
write succ𝜎(𝐶) := {𝐶(𝑗 + 1) | 𝑗 < 𝜎 & 𝑗 + 1 < otp(𝐶)}. Write 𝐷 ⊑ 𝐶 iff there exists some ordinal
𝛽 such that 𝐷 = 𝐶 ∩ 𝛽. Write 𝐷 𝜒⊑ 𝐶 if either 𝐷 ⊑ 𝐶 or cf(sup(𝐷)) < 𝜒. Write 𝐷 ⊑𝜒 𝐶 if either
𝐷 ⊑ 𝐶 or (otp(𝐶) < 𝜒 and nacc(𝐶) consists only of successor ordinals). For an ordinal 𝜂 and an
infinite, regular cardinal 𝜒, write 𝐸𝜂

𝜒 := {𝛼 < 𝜂 | cf(𝛼) = 𝜒}.
Suppose that 𝜅 is a regular uncountable cardinal. Let Reg(𝜅) := {𝜒 | ℵ0 ≤ cf(𝜒) = 𝜒 < 𝜅}.

Denote by NS+
𝜅 the collection of all stationary subsets of 𝜅; whenever 𝑉 ′ is some class extending

𝑉 , denote by (NS+
𝜅 )𝑉 the collection of all stationary subsets of 𝜅, as computed in 𝑉 . For 𝑆 ∈ NS+

𝜅 ,
Refl(𝑆) is the assertion that every stationary subset of 𝑆 reflects; Refl*(𝑆) is the assertion that, for
every 𝜅-directed closed set-forcing P, P “ Refl(𝑆).”

2. Compactness for chromatic and coloring numbers

In this section, we outline a number of known graph theoretic results about compactness and
incompactness for chromatic and coloring numbers and then prove some combinatorial results that
are behind Theorems A,B,C,D of the paper. We begin by looking at chromatic numbers.

2.1. Chromatic numbers. Compactness and incompactness for the chromatic number of graphs
have been the focus of a great deal of work over the last half century. The following lists some of
the notable results that have been achieved through this work, providing some historical context
and motivation for the questions considered in this paper.

Results 2.1 (Incompactness for the chromatic number).

∙ (Erdős-Hajnal, [EH68]) If 2ℵ0 = ℵ1, then there exists an (ℵ0,ℵ1)-chromatic graph of size
ℵ2.
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∙ (Galvin, [Gal73]) If 2ℵ0 = 2ℵ1 < 2ℵ2 , then there exists an (ℵ0,ℵ2)-chromatic graph of size
(2ℵ1)+.

∙ (Todorcevic, [Tod83]) If 𝜅 is a regular uncountable cardinal and there exists a nonreflecting
stationary subset of 𝐸𝜅

𝜔, then there exists an (ℵ0,≥ ℵ1)-chromatic graph of size 𝜅.
∙ (Baumgartner, [Bau84]) It is consistent with GCH that there exists an (ℵ0,ℵ2)-chromatic

graph of size ℵ2.
∙ (Komjáth, [Kom88]) It is consistent with 2ℵ0 = ℵ3 that there exists an (ℵ0,ℵ2)-chromatic

graph of size ℵ2.
∙ (Todorcevic, 1986 and, independently, Rinot, 2014 [both unpublished]) Martin’s Axiom

entails the existence of an (ℵ0, 2
ℵ0)-chromatic graph of size 2ℵ0 .

∙ (Komjáth, [Kom88]) It is consistent with 2ℵ0 = ℵ𝜔1+1 that there exists an (ℵ0,ℵ1)-chromatic
graph of size ℵ𝜔1 .

∙ (Shelah, [She90]) It is consistent with GCH that there exists an (ℵ0,ℵ1)-chromatic graph
of size ℵ𝜔1 .

∙ (Soukup, [Sou90]) For any cardinal 𝜅, it is consistent that 2ℵ0 ≥ 𝜅 and there exists an
(ℵ0, (2

ℵ0)+)-chromatic graph of size (2ℵ0)+.
∙ (Shelah, [She90]) If 𝑉 = 𝐿, then (GCH holds, and) for every regular non-weakly compact

cardinal 𝜅, there exists an (ℵ0, 𝜅)-chromatic graph of size 𝜅.
∙ (Shelah, [She13]) If 𝜇 < 𝜅 are regular cardinals, 𝜅𝜇 = 𝜅, and there is a non-reflectioning

stationary subset of 𝐸𝜅
𝜇 , then there exists a (𝜇,≥ 𝜇+)-chromatic graph of size 𝜅.

∙ (Rinot, [Rin15]) If 𝜆 is an infinite cardinal, 2𝜆 = 𝜆+, and �𝜆 holds, then there exists an
(ℵ0, 𝜇)-chromatic graph of size 𝜆+ for all infinite 𝜇 ≤ 𝜆. If, additionally, 𝜆 is singular, then
there exists an (ℵ0, 𝜆

+)-chromatic graph of size 𝜆+.

Results 2.2 (Compactness for the chromatic number).

∙ (de Bruijn-Erdős, [dBE51]) If 𝜒 = ℵ0 or 𝜒 is strongly compact, 𝜃 < 𝜒, and 𝒢 is a graph such
that every subgraph of size < 𝜒 has chromatic number at most 𝜃, then 𝒢 has chromatic
number at most 𝜃.

∙ (Foreman-Laver, [FL88]) Relative to a large cardinal hypothesis, it is consistent with GCH
that there does not exist an (ℵ0,ℵ2)-chromatic graph of size ℵ2.

∙ (Shelah, [She90]) Relative to a large cardinal hypothesis, it is consistent with GCH that,
whenever 1 ≤ 𝑛 < 𝜔 and 𝒢 is an ℵ𝜔+1-sized graph such that every subgraph of size < ℵ𝜔

has chromatic number at most ℵ𝑛, it follows that 𝒢 has chromatic number at most ℵ𝑛.3

∙ (Unger, [Ung15]) Relative to a large cardinal hypothesis, it is consistent with GCH that,
whenever 1 ≤ 𝛼 < 𝜔1 and 𝒢 is an ℵ𝜔1+1-sized graph such that every subgraph of size < ℵ𝜔1

has chromatic number at most ℵ𝛼+1, it follows that 𝒢 has chromatic number at most ℵ𝛼+1.

Definition 2.3. Let Γ be a set of ordinals. A 𝐶-sequence over Γ is a sequence �⃗� = ⟨𝐶𝛼 | 𝛼 ∈ Γ⟩
such that, for all limit 𝛼 ∈ Γ, 𝐶𝛼 is a club subset of 𝛼. For any binary relation ℛ, the sequence �⃗�
is said to be ℛ-coherent, if, for all 𝛼 ∈ Γ and all �̄� ∈ acc(𝐶𝛼), we have �̄� ∈ Γ and 𝐶�̄� ℛ 𝐶𝛼. For

any ordinal 𝜇, the sequence �⃗� is said to be 𝜇-bounded if, for all 𝛼 ∈ Γ, we have otp(𝐶𝛼) ≤ 𝜇.

Definition 2.4 (The 𝐶-sequence graph, [Rin15]). To any 𝐶-sequence �⃗� = ⟨𝐶𝛼 | 𝛼 < 𝛾⟩ and any

subset 𝐺 ⊆ 𝛾, we attach a graph 𝐺(�⃗�) := (𝐺,𝐸), by letting:

∙ 𝐸 := {{𝛼, 𝛽} ∈ [𝐺]2 | 𝛼 ∈ 𝑁𝛽}, where for all 𝛽 < 𝛾:
∙ 𝑁𝛽 := {𝛼 ∈ 𝐶𝛽 ∩𝐺 | min(𝐶𝛼) > sup(𝐶𝛽 ∩ 𝛼) ≥ min(𝐶𝛽)}.

3The case 𝑛 = 0 remains open to this date.
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Remark 2.5. Note that 𝑁∈
𝐺(�⃗�)

(𝛽) of Definition 1.1 coincides with 𝑁𝛽. In particular, for any infinite

cardinal 𝜇, if �⃗� is 𝜇-bounded, then Col(𝐺(�⃗�)) ≤ 𝜇+.

Remark 2.6. One of the referees asked us to mention the Hajnal-Máté graphs, and to elaborate on
the history of Definition 2.4.

A Hajnal-Máté graph [HM75] is a graph 𝒢 = (𝜔1, 𝐸) satisfying that for every 𝛽 < 𝜔1, 𝑁
∈
𝒢 (𝛽)

is either finite, or a cofinal subset of 𝛽 of order-type 𝜔. So, in essence, such graphs 𝒢 are derived
from an 𝜔-bounded 𝐶-sequence over 𝜔1.

By Theorem 8.1 of [HM75], 𝑉 = 𝐿 entails the existence of a Hajnal-Máté graph which is un-
countably chromatic. Their idea is to use ♢+(𝜔1) (indeed, considerably weaker prediction principles
suffice) to construct an 𝜔-bounded 𝐶-sequence ⟨𝐶𝛼 | 𝛼 < 𝜔1⟩ in such a way that for every function
𝑐 : 𝜔1 → 𝜔, there exists some 𝛽 < 𝜔1 such that 𝑐(𝛽) ∈ 𝑐[𝐶𝛽].

The 𝐶-sequence graphs are somewhat similar in the sense that they build on the same strategy
for ensuring a high chromatic number for the graph. However, the definition of the edge relation
of the 𝐶-sequence graph is slightly more involved, as it is meant to ensure that, at the same time,
smaller subgraphs will have a small chromatic number. The definition was conceived in 2012, after
Rinot noticed some similarity between the construction of [She13, S1] that just appeared in the
arXiv, and Definition 1.3 of [Rin14b] that was submitted for publication a year before. Later on,
in 2013, the 𝐶-sequence graphs from [Rin15] served as building blocks in Rinot’s solution of the
infinite weak Hedetniemi conjecture [Rin17a].

Throughout this subsection, we fix infinite regular cardinals 𝜒 < 𝜅, a 𝐶-sequence �⃗� over 𝜅, and
a cofinal subset 𝐺 of 𝜅, satisfying the following two hypotheses:

(ℵ) For all 𝛼 ∈ 𝜅 ∖𝐺, we have 𝐶𝛼 ∩𝐺 = ∅;
(i) For all 𝛼 ∈ 𝐺 and �̄� ∈ acc(𝐶𝛼) ∩ cof(𝜒), we have �̄� ∈ 𝐺 and 𝐶�̄� = 𝐶𝛼 ∩ �̄�.

Note that if �⃗� is 𝜒⊑-coherent, then we could have simply taken 𝐺 to be 𝜅. Now, let us study

the corresponding graph 𝐺(�⃗�) = (𝐺,𝐸).

Definition 2.7. For any ordinal 𝛿 ≤ 𝜅, we say that 𝑐 : 𝛿 → 𝜒 is a suitable coloring if the following
hold:

∙ 𝑐 is 𝐸-chromatic, that is, for all {𝛼, 𝛽} ∈ 𝐸 ∩ [𝛿]2, we have 𝑐(𝛼) ̸= 𝑐(𝛽);
∙ |𝑐[𝑁𝛾 ]| < 𝜒 for all 𝛾 < 𝜅.

So, a suitable coloring is one that is easy to extend to a larger domain while keeping it chromatic.
Indeed, this is the content of Lemma 2.11 below.

Definition 2.8. For all 𝜂 ≤ 𝜅, write 𝐺𝜂
𝜒 := {𝛾 ∈ 𝐺 ∩ 𝜂 | cf(𝛾) = 𝜒}.

Lemma 2.9. For every 𝛿 < 𝜅 and every coloring 𝑐 : 𝛿 → 𝜒, the following are equivalent:

(1) 𝑐 is suitable;
(2) 𝑐 is 𝐸-chromatic, and |𝑐[𝑁𝛾 ]| < 𝜒 for all 𝛾 ∈ 𝐺𝛿+1

𝜒 .

Proof. Towards a contradiction, suppose that 𝛿 < 𝜅, 𝑐 : 𝛿 → 𝜒 is an 𝐸-chromatic coloring, |𝑐[𝑁𝛾 ]| <
𝜒 for all 𝛾 ∈ 𝐺𝛿+1

𝜒 , and yet there exists some 𝛾* < 𝜅 such that |𝑐[𝑁𝛾* ]| = 𝜒. In particular, by
hypothesis (ℵ), we have 𝛾* ∈ 𝐺.

Pick a subset 𝐼 ⊆ 𝑁𝛾* ∩ 𝛿 of order-type 𝜒 such that 𝑐 � 𝐼 is injective. Put 𝛾 := sup(𝐼), so

that 𝛾 ∈ (acc(𝐶𝛾*) ∪ {𝛾*}) ∩ 𝐸𝛿+1
𝜒 . By hypothesis (i), then, 𝛾 ∈ 𝐺𝛿+1

𝜒 and 𝐶𝛾 = 𝐶𝛾* ∩ 𝛾, so

𝑁𝛾 ∩ 𝐼 = 𝑁𝛾* ∩ 𝐼. Finally, by 𝛾 ∈ 𝐺𝛿+1
𝜒 , we have 𝜒 > |𝑐[𝑁𝛾 ]| ≥ |𝑐[𝑁𝛾* ∩ 𝐼]| = 𝜒. This is a

contradiction. �
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We thank D. Soukup for pointing out the following Lemma.

Lemma 2.10. 𝐺(�⃗�) is triangle-free.

Proof. Suppose 𝛼 < 𝛽 < 𝛾 are in 𝐺 and {𝛼, 𝛽}, {𝛽, 𝛾} ∈ 𝐸.

∘ By {𝛽, 𝛾} ∈ 𝐸, we have min(𝐶𝛽) > sup(𝐶𝛾 ∩ 𝛽), so that 𝐶𝛽 ∩ 𝐶𝛾 = ∅.
∘ By {𝛼, 𝛽} ∈ 𝐸, we have 𝛼 ∈ 𝐶𝛽, so that 𝛼 /∈ 𝐶𝛾 .
∘ By 𝛼 /∈ 𝐶𝛾 and 𝛼 < 𝛾, we have {𝛼, 𝛾} /∈ 𝐸. �

Lemma 2.11. (1) For all 𝛿 < 𝜅, the following holds: for every 𝑥 ∈ [𝜒]𝜒, every 𝜀 ≤ 𝛿, and
every suitable coloring 𝑐 : 𝜀 → 𝜒, there exists a suitable coloring 𝑐′ : 𝛿 → 𝜒 extending 𝑐 such
that 𝑐′[𝛿 ∖ 𝜀] ⊆ 𝑥;

(2) If there is a club 𝐷 in 𝜅 such that 𝐷∩𝜂 = 𝐶𝜂 for all 𝜂 ∈ acc(𝐷)∩𝐺𝜅
𝜒, then Chr(𝐺(�⃗�)) ≤ 𝜒.

Proof. (1) By induction on 𝛿 < 𝜅.
I The case 𝛿 = 0 is trivial. J
I Suppose that 𝛿 is an ordinal < 𝜅 for which the claim holds. Given 𝑥 ∈ [𝜒]𝜒 and a suitable

coloring 𝑐 : 𝜀 → 𝜒 with 𝜀 ≤ 𝛿 + 1, put 𝑦 := 𝑐[𝑁𝛿], so that |𝑦| < 𝜒. Fix an arbitrary 𝜉 ∈ 𝑥 ∖ 𝑦.
If 𝜀 = 𝛿 + 1, then we are done by taking 𝑐′ := 𝑐. Thus, suppose that 𝜀 ≤ 𝛿 and appeal to the

induction hypothesis with 𝑥 ∖ {𝜉} and 𝑐 to find a suitable coloring 𝑐* : 𝛿 → 𝜒 extending 𝑐 with
𝑐*[𝛿 ∖ 𝜀] ⊆ 𝑥 ∖ {𝜉}. Finally, let 𝑐′ : 𝛿 + 1 → 𝜒 be the unique extension of 𝑐* that satisfies 𝑐′(𝛿) = 𝜉.

Evidently, 𝑐′[(𝛿 + 1) ∖ 𝜀] ⊆ 𝑥. We verify that 𝑐′ is suitable, using the criteria of Lemma 2.9.
As 𝑐′ � 𝛿 = 𝑐* and the latter is 𝐸-chromatic, to show that 𝑐′ is 𝐸-chromatic it suffices to verify

that, for all 𝛼 ∈ 𝑁𝛿, we have 𝑐′(𝛼) ̸= 𝑐′(𝛿), i.e., 𝑐′(𝛼) ̸= 𝜉. Let 𝛼 ∈ 𝑁𝛿 be arbitrary. If 𝛼 < 𝜀, then
𝑐′(𝛼) = 𝑐*(𝛼) = 𝑐(𝛼) ∈ 𝑐[𝑁𝛿] = 𝑦 and hence 𝑐′(𝛼) ̸= 𝜉. If 𝛼 ≥ 𝜀, then 𝑐′(𝛼) = 𝑐*(𝛼) ∈ 𝑐*[𝛿 ∖ 𝜀] ⊆
𝑥 ∖ {𝜉}, and hence 𝑐′(𝛼) ̸= 𝜉.

In addition, as 𝑐′[𝑁𝛾 ] = 𝑐*[𝑁𝛾 ] for all 𝛾 ≤ 𝛿 and 𝑐* is suitable, we infer that |𝑐′[𝑁𝛾 ]| < 𝜒 for all

𝛾 ∈ 𝐺𝛿+2
𝜒 = 𝐺𝛿+1

𝜒 . J
I Suppose that 𝛿 is a limit ordinal < 𝜅 and that the claim holds for all 𝜂 < 𝛿. Given 𝑥 ∈ [𝜒]𝜒

and a suitable coloring 𝑐 : 𝜀 → 𝜒 with 𝜀 ≤ 𝛿, put 𝑦 := 𝑐[𝑁𝛿] and fix some 𝜉 ∈ 𝑥 ∖ 𝑦.
If 𝜀 = 𝛿, then we are done by taking 𝑐′ := 𝑐. Thus, suppose this is not the case, so that

𝜖 := min(𝐶𝛿 ∖ 𝜀) is < 𝛿.
We shall recursively construct a ⊆-increasing chain of suitable colorings {𝑐𝜂 : 𝜂 → 𝜒 | 𝜂 ∈

𝐶𝛿 ∪ {𝛿}} satisfying all of the following for all 𝜂 ∈ 𝐶𝛿 ∪ {𝛿}:

(i) 𝑐𝜂 � 𝜀 ⊆ 𝑐;
(ii) 𝑐𝜂[𝜂 ∖ 𝜀] ⊆ 𝑥;

(iii) 𝑐𝜂[𝑁𝛿 ∖ (𝜖 + 1)] ⊆ {𝜉};
(iv) 𝑐−1

𝜂 {𝜉} ⊆ 𝑁𝛿 ∪ (𝜖 + 1).

Of course, if we succeed, then 𝑐′ := 𝑐𝛿 will be as sought. We proceed as follows.

∙ For 𝜂 ∈ 𝐶𝛿 ∩ 𝜖, we simply let 𝑐𝜂 := 𝑐 � 𝜂.
∙ For 𝜂 = 𝜖, we appeal to the induction hypothesis and find a suitable coloring 𝑐𝜂 : 𝜂 → 𝜒

extending 𝑐 such that 𝑐𝜂[𝜂 ∖ 𝜀] ⊆ 𝑥.4

∙ For 𝜂 ∈ nacc(𝐶𝛿) above 𝜖, let 𝜀′ := sup(𝐶𝛿 ∩ 𝜂), so that 𝜀 ≤ 𝜖 ≤ 𝜀′ < 𝜂 < 𝛿. By the
induction hypothesis, we may pick a suitable coloring 𝑑 : 𝜂 → 𝜒 extending 𝑐𝜀′ and satisfying

4Of course, if 𝜖 = 𝜀, then 𝑐𝜂 = 𝑐.
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𝑑[𝜂 ∖ 𝜀′] ⊆ 𝑥 ∖ {𝜉}. Then, we define 𝑐𝜂 : 𝜂 → 𝜒 by letting, for all 𝛽 < 𝜂:

𝑐𝜂(𝛽) :=

{︃
𝜉 if 𝛽 ∈ 𝑁𝛿 ∖ (𝜖 + 1);

𝑑(𝛽) otherwise.

As 𝑑 extends 𝑐𝜀′ and the latter is assumed to satisfy Clause (iii) above, we get that 𝑐𝜂
extends 𝑐𝜀′ . We also have 𝑐𝜂[𝜂 ∖ 𝜀′] ⊆ 𝑑[𝜂 ∖ 𝜀′] ∪ {𝜉} = 𝑥, so 𝑐𝜂 is seen to satisfy Clauses
(i)–(iv) above. Since 𝑑 is suitable, and 𝑐𝜂 differs from 𝑑 by at most a single color, we have
|𝑐𝜂[𝑁𝛾 ]| < 𝜒 for all 𝛾 < 𝜅. Thus, to prove that 𝑐𝜂 is suitable, it suffices to verify that it is
𝐸-chromatic.

Towards a contradiction, suppose that 𝛼 < 𝛽 < 𝜂 are such that {𝛼, 𝛽} ∈ 𝐸 and yet
𝑐𝜂(𝛼) = 𝑐𝜂(𝛽). Since 𝑑 is 𝐸-chromatic, the definition of 𝑐𝜂 makes it clear that 𝛽 ≥ 𝜖 + 1
and 𝑐𝜂(𝛼) = 𝑐𝜂(𝛽) = 𝜉.

∘ By 𝑐𝜂(𝛽) = 𝜉 and 𝛽 ≥ 𝜖 + 1, Clause (iv) implies that 𝛽 ∈ 𝑁𝛿.
∘ By 𝛽 ∈ 𝑁𝛿 and 𝜖 ∈ 𝐶𝛿, we have min(𝐶𝛽) > sup(𝐶𝛿 ∩ 𝛽) ≥ 𝜖.
∘ By {𝛼, 𝛽} ∈ 𝐸, we have 𝛼 ∈ 𝐶𝛽, so that 𝛼 ≥ min(𝐶𝛽) > 𝜖.
∘ By 𝑐𝜂(𝛼) = 𝜉 and 𝛼 ≥ 𝜖 + 1, Clause (iv) implies that 𝛼 ∈ 𝑁𝛿.

Altogether, we have established that {𝛼, 𝛽, 𝛿} is a triangle, contradicting Lemma 2.10.
∙ For 𝜂 ∈ acc(𝐶𝛿) ∪ {𝛿} above 𝜖, let 𝑐𝜂 :=

⋃︀
𝜂′∈𝐶𝛿∩𝜂 𝑐𝜂′ . We now verify that 𝑐𝜂 is suitable,

using the criteria of Lemma 2.9.
As 𝑐𝜂 is the limit of a chain of 𝐸-chromatic colorings, it is 𝐸-chromatic. Next, let

𝛾 ∈ 𝐺𝜂+1
𝜒 be arbitrary.

∘ If 𝛾 < 𝜂, then, for 𝜂′ := min(𝐶𝛿 ∖ 𝛾), we have that |𝑐𝜂[𝑁𝛾 ]| = |𝑐𝜂′ [𝑁𝛾 ]| < 𝜒.
∘ If 𝛾 = 𝜂, then, by 𝛾 ∈ (acc(𝐶𝛿) ∪ {𝛿}) ∩ 𝐺 and hypothesis (ℵ), we infer that 𝛿 ∈ 𝐺.

Then, by cf(𝛾) = 𝜒 and hypothesis (i), we have 𝑁𝛾 = 𝑁𝛿 ∩ 𝜂, so that

𝑐𝜂[𝑁𝛾 ] = 𝑐𝜂[𝑁𝛿] = 𝑐𝜖[𝑁𝛿] ∪
⋃︁

{𝑐𝜂′ [𝑁𝛿 ∖ 𝜖] | 𝜖 ∈ 𝜂′ ∈ 𝐶𝛿 ∩ 𝜂}.

It then follows from Clause (iii) above that 𝑐𝜂[𝑁𝛾 ] ⊆ 𝑐𝜖[𝑁𝛿]∪{𝑐min(𝐶𝛿∖(𝜖+1))(𝜖), 𝜉}, and
hence |𝑐𝜂[𝑁𝛾 ]| < 𝜒. J

(2) Put 𝜖 := min(𝐷) and 𝑁 := {𝛼 ∈ 𝐷 | min(𝐶𝛼) > sup(𝐷 ∩ 𝛼) ≥ 𝜖}. Just as in the proof
of the case in which 𝛿 is a limit ordinal in Clause (1), we recursively construct a chain of suitable
colorings {𝑐𝜂 : 𝜂 → 𝜒 | 𝜂 ∈ 𝐷 ∪ {𝜅}} satisfying the following two requirements for all 𝜂 ∈ 𝐷 ∪ {𝜅}:

∙ 𝑐𝜂[𝑁 ∖ (𝜖 + 1)] ⊆ {0};
∙ 𝑐−1

𝜂 {0} ⊆ 𝑁 ∪ (𝜖 + 1).

Then 𝑐𝜅 �𝐺 witnesses that Chr(𝐺(�⃗�)) ≤ 𝜒. �

In Remark 2.6, we outlined the strategy for ensuring that a Hajnal-Máté graph is uncountably
chromatic. For a 𝐶-sequence graph, we have the following variation.

Definition 2.12. We say that an ordinal 𝛿 < 𝜅 captures a sequence ⟨𝐴𝑖 | 𝑖 < 𝜃⟩ if the following
two conditions hold:

∙ min(𝐶𝛿) ≥ min(𝐴0);
5

∙ for all 𝑖 < min{𝛿, 𝜃}, there exists 𝜄 ∈ otp(𝐶𝛿) such that 𝐶𝛿(𝜄), 𝐶𝛿(𝜄 + 1) ∈ 𝐴𝑖.

Lemma 2.13. Suppose that 0 < 𝜃 < 𝜅, and that any sequence ⟨𝐴𝑖 | 𝑖 < 𝜃⟩ of cofinal subsets of 𝐺

is captured by some ordinal 𝛿 ∈ 𝐺 ∖ 𝜃. Then Chr(𝐺(�⃗�)) > 𝜃.

5This is not a typing error. We do mean 𝐴0.
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Proof. Let 𝑐 : 𝐺 → 𝜃 be an arbitrary coloring. We shall show that 𝑐 is not chromatic.
Let 𝑖 < 𝜃 be arbitrary. Put 𝐻𝑖 := {𝛼 ∈ 𝐺 | 𝑐(𝛼) = 𝑖} and 𝑀𝑖 := {min(𝐶𝛼) | 𝛼 ∈ 𝐻𝑖}.
I If sup(𝑀𝑖) = 𝜅, then define 𝑓𝑖 : 𝜅 → 𝐻𝑖 by stipulating:

𝑓𝑖(𝜂) := min{𝛼 ∈ 𝐻𝑖 | min(𝐶𝛼) > 𝜂}.
I If sup(𝑀𝑖) < 𝜅, then let 𝑓𝑖 : 𝜅 → 𝐺 ∖ sup(𝑀𝑖) be the order-preserving bijection.

Consider the club 𝐷 :=
⋂︀

𝑖<𝜃{𝛽 < 𝜅 | 𝑓𝑖[𝛽] ⊆ 𝛽 > 0}. For each 𝑖 < 𝜃, let 𝐴𝑖 be some sparse
enough cofinal subset of Im(𝑓𝑖) such that the following two conditions hold:

(1) min(𝐴𝑖) ≥ min(𝐷);
(2) for every 𝛽 < 𝛼, both from 𝐴𝑖, we have 𝐷 ∩ (𝛽, 𝛼) ̸= ∅.

Now, fix some 𝛿 ∈ 𝐺 ∖ 𝜃 that captures ⟨𝐴𝑖 | 𝑖 < 𝜃⟩. Set 𝑗 := 𝑐(𝛿). Note that sup(𝑀𝑗) = 𝜅,
because otherwise

sup(𝑀𝑗) = 𝑓𝑗(0) < min(𝐷) ≤ min(𝐴0) ≤ min(𝐶𝛿),

contradicting the fact that 𝑗 = 𝑐(𝛿) entails sup(𝑀𝑗) ≥ min(𝐶𝛿).
Pick 𝜄 ∈ otp(𝐶𝛿) such that 𝐶𝛿(𝜄), 𝐶𝛿(𝜄+1) ∈ 𝐴𝑗 . Denote 𝛽 := 𝐶𝛿(𝜄) and 𝛼 := 𝐶𝛿(𝜄+1). Recalling

Clause (2) above, let us fix some 𝛾 ∈ 𝐷∩ (𝛽, 𝛼). By 𝛼 ∈ 𝐴𝑗 and sup(𝑀𝑗) = 𝜅, we have 𝛼 ∈ Im(𝑓𝑗),
so let us fix 𝜂 < 𝜅 such that 𝑓𝑗(𝜂) = 𝛼. Then min(𝐶𝛼) > 𝜂.

By 𝑓𝑗 [𝛾] ⊆ 𝛾 < 𝛼 = 𝑓𝑗(𝜂), we have 𝜂 ≥ 𝛾, and hence

min(𝐶𝛼) > 𝜂 ≥ 𝛾 > 𝛽 = sup(𝐶𝛿 ∩ 𝛼) = 𝐶𝛿(𝜄) ≥ min(𝐶𝛿).

It follows that {𝛼, 𝛿} ∈ 𝐸. Recalling that 𝛼 ∈ Im(𝑓𝑗) ⊆ 𝐻𝑗 , we conclude that 𝑐(𝛼) = 𝑗 = 𝑐(𝛿),

which means that 𝑐 is not a chromatic coloring of 𝐺(�⃗�). �

Thus we have established that 𝜒⊑-coherent and capturing 𝐶-sequences give rise to graphs wit-
nessing incompactness for the chromatic number. In later sections, we shall address the existence
of such 𝐶-sequences.

2.2. Coloring numbers. In this subsection, we discuss compactness and incompactness for the
coloring number of graphs. The primary new result is Theorem 2.16, indicating that there is a limit
to the amount of incompactness that can be exhibited by the coloring number. We also review
some of the previously known results about obtaining instances of compactness and incompactness
for the coloring number, in particular in connection with general set-theoretic reflection principles
such as ∆-reflection and Fodor-type reflection. First, a basic observation.

Lemma 2.14 (folklore). Suppose 𝒢 = (𝐺,𝐸) is a graph, 𝜇 is an infinite cardinal, and there are
subsets 𝐴,𝐵 ⊆ 𝐺 such that 𝜇 ≤ |𝐴| < |𝐵| and, for every 𝑦 ∈ 𝐵, |𝑁𝒢(𝑦)∩𝐴| ≥ 𝜇. Then Col(𝒢) > 𝜇.

Proof. Suppose not, and let C be a well-ordering of 𝐺 such that, for all 𝑥 ∈ 𝐺, |𝑁C𝒢 (𝑥)| < 𝜇. We
can then find 𝑦 ∈ 𝐵 ∖

⋃︀
𝑥∈𝐴𝑁C𝒢 (𝑥), and, in turn, 𝑥 ∈ (𝑁𝒢(𝑦) ∩ 𝐴) ∖ 𝑁C𝒢 (𝑦). But then we have

{𝑥, 𝑦} ∈ 𝐸, 𝑥 /∈ 𝑁C𝒢 (𝑦), and 𝑦 /∈ 𝑁C𝒢 (𝑥), which is a contradiction. �

The next few lemmas deal with graphs of the form 𝒢 = (𝜅,𝐸). For each 𝛼 < 𝜅, we denote by
𝒢𝛼 the induced subgraph (𝛼,𝐸 ∩ [𝛼]2) .

The following Lemma is essentially due to Shelah [She75a] and can be found in its present form
in [Kom87].

Lemma 2.15 (Shelah). Suppose 𝒢 = (𝜅,𝐸) is a graph over some regular uncountable cardinal 𝜅.
For an infinite cardinal 𝜇 < 𝜅, consider the set

𝑆𝜇(𝒢) := {𝛼 < 𝜅 | |𝑁𝒢(𝛽) ∩ 𝛼| ≥ 𝜇 for some 𝛽 ≥ 𝛼}.
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(1) If 𝑆𝜇(𝒢) is stationary in 𝜅, then Col(𝒢) > 𝜇.
(2) If 𝑆𝜇(𝒢) is non-stationary in 𝜅 and Col(𝒢𝛼) ≤ 𝜇 for every 𝛼 < 𝜅, then Col(𝒢) ≤ 𝜇. �

We now show that a graph can exhibit only a limited amount of incompactness with respect to
the coloring number. This is in sharp contrast to the situation for the chromatic number.

Theorem 2.16. Suppose that 𝜇 and 𝜅 are infinite cardinals such that 𝜅 is regular and is not the
successor of a singular cardinal of cofinality cf(𝜇). If 𝒢 = (𝜅,𝐸) is a graph and Col(𝒢𝛼) ≤ 𝜇 for
every 𝛼 < 𝜅, then Col(𝒢) ≤ 𝜇+.

Proof. Assume for sake of contradiction that Col(𝒢𝛼) ≤ 𝜇 for every 𝛼 < 𝜅, but Col(𝒢) > 𝜇+. Then
𝜅 > 𝜇+, and by Lemma 2.15(2), 𝑆𝜇+(𝒢) is stationary in 𝜅. For each 𝛼 ∈ 𝑆𝜇+(𝒢), fix 𝛿𝛼 ≥ 𝛼 such

that |𝑁𝒢(𝛿𝛼) ∩ 𝛼| ≥ 𝜇+, and then let 𝜀𝛼 < 𝛼 be least such that |𝑁𝒢(𝛿𝛼) ∩ 𝜀𝛼| = 𝜇.
By Fodor’s Lemma, let us fix 𝜀* < 𝜅 and a stationary 𝑆 ⊆ 𝑆𝜇+(𝒢) such that, for all 𝛼 ∈ 𝑆,

𝜀𝛼 = 𝜀*.

Claim 2.16.1. There exists ℰ ⊆ 𝜀* such that:

(1) |ℰ|+ < 𝜅;
(2) {𝛼 ∈ 𝑆 | |𝑁𝒢(𝛿𝛼) ∩ ℰ| = 𝜇} is stationary.

Proof. Let 𝜆 := |𝜀*|.
I If 𝜅 > 𝜆+, then we simply let ℰ := 𝜀*.
I If 𝜅 = 𝜆+, then, by assumption, we have cf(𝜆) ̸= cf(𝜇). Fix a bijection 𝑓 : 𝜆 ↔ 𝜀*. For every

𝛼 ∈ 𝑆, there is 𝑖𝛼 < 𝜆 such that |𝑁𝒢(𝛿𝛼) ∩ 𝑓 [𝑖𝛼]| = 𝜇. Fix an 𝑖* < 𝜆 and a stationary 𝑆′ ⊆ 𝑆 such
that, for all 𝛼 ∈ 𝑆′, 𝑖𝛼 = 𝑖*. Then ℰ := 𝑓 [𝑖*] is as desired. �

Fix ℰ as given by the preceding claim, so that 𝑆′ := {𝛼 ∈ 𝑆 | |𝑁𝒢(𝛿𝛼)∩ ℰ| = 𝜇} is stationary. In
particular, ∆ := {𝛿𝛼 | 𝛼 ∈ 𝑆′} is cofinal in 𝜅. By 𝜅 > |ℰ|+, find 𝛾 ∈ (𝜀*, 𝜅) such that |∆∩𝛾| ≥ |ℰ|+.
Now ℰ ⊆ 𝛾, ∆ ∩ 𝛾 ⊆ 𝛾, 𝜇 ≤ |ℰ| < |∆ ∩ 𝛾| and, for all 𝛿 ∈ ∆ ∩ 𝛾, |𝑁𝒢𝛾 (𝛿) ∩ ℰ| ≥ 𝜇. Thus, by
Lemma 2.14, Col(𝒢𝛾) > 𝜇, contradicting our assumption. �

We remark that Theorem 2.16 is consistently sharp:

Lemma 2.17 (Shelah, [She75a, Lemma 3.1(1)]). Suppose 𝜇 < 𝜅 are infinite regular cardinals and
there exists a non-reflecting stationary subset of 𝐸𝜅

𝜇. Then there exists a (𝜇, 𝜇+)-coloring graph of
size 𝜅.

Proof. Let Γ ⊆ 𝐸𝜅
𝜇 be stationary and non-reflecting. Fix a 𝜇-bounded 𝐶-sequence over Γ, �⃗� = ⟨𝐶𝛼 |

𝛼 ∈ Γ⟩, and then derive a graph 𝒢 := (𝜅,𝐸) by letting 𝐸 := {{𝛼, 𝛽} ∈ [𝜅]2 | 𝛽 ∈ Γ, 𝛼 ∈ 𝐶𝛽}.6

We first show that, for all 𝛾 < 𝜅, Col(𝒢𝛾) ≤ 𝜇. We proceed by induction on 𝛾. Thus, suppose
𝛾 < 𝜅 and, for all 𝜂 < 𝛾, Col(𝒢𝜂) ≤ 𝜇. If 𝛾 = 𝛾0+1, then fix a well-ordering C0 of 𝛾0 witnessing that
Col(𝒢𝛾0) ≤ 𝜇, and let C := C0 ∪ {(𝛾0, 𝛼) | 𝛼 < 𝛾0}. Then C is a well-ordering of 𝛾 witnessing that
Col(𝒢𝛾) ≤ 𝜇. We may thus assume that 𝛾 is a limit ordinal. Let 𝜈 := cf(𝛾). As Γ is non-reflecting,
fix a club 𝐷 in 𝛾 such that otp(𝐷) = 𝜈, 𝐷∩Γ = ∅ and 0 ∈ 𝐷. For 𝑖 < 𝜈, let 𝐼𝑖 denote the half-open
interval [𝐷(𝑖), 𝐷(𝑖+ 1)), and let C𝑖 be a well-ordering of 𝐼𝑖 witnessing that the graph (𝐼𝑖, 𝐸 ∩ [𝐼𝑖]

2)
has coloring number at most 𝜇. For each 𝛼 < 𝛾, let 𝑖𝛼 be the unique 𝑖 < 𝜈 such that 𝛼 ∈ 𝐼𝑖. Now
define a well-ordering C of 𝛾 by letting 𝛼C 𝛽 iff one of the following two conditions holds:

∙ 𝑖𝛼 < 𝑖𝛽;
∙ 𝑖𝛼 = 𝑖𝛽 = 𝑖 and 𝛼C𝑖 𝛽.

6Recall Definition 2.3 and Remark 2.6.



REFLECTION ON COLORING AND CHROMATIC 11

C is easily seen to be a well-ordering of 𝛾. To see that it witnesses Col(𝒢𝛾) ≤ 𝜇, fix 𝛽 < 𝛾. Then

𝑁C𝒢𝛾
(𝛽) =

⎛⎝𝑁∈
𝒢𝛾

(𝛽) ∩
⋃︁
𝑖<𝑖𝛽

𝐼𝑖

⎞⎠ ∪𝑁
C𝑖𝛽

(𝐼𝑖𝛽 ,𝐸∩[𝐼𝑖𝛽 ]
2)

(𝛽).

The second component of this union has size less than 𝜇 by the fact thatC𝑖𝛽 witnesses Col(𝐼𝑖𝛽 , 𝐸∩
[𝐼𝑖𝛽 ]2) ≤ 𝜇. To deal with the first component, first notice that, if 𝛽 ∈ Γ, then 𝛽 /∈ 𝐷, so

sup(
⋃︀

𝑖<𝑖𝛽
𝐼𝑖) < 𝛽; by the fact that �⃗� is 𝜇-bounded, it follows that the first component has size less

than 𝜇. If 𝛽 /∈ Γ, then the first component is empty. This finishes the proof that Col(𝒢𝛾) ≤ 𝜇.

We finally show that Col(𝒢) = 𝜇+. Since �⃗� is 𝜇-bounded, we have |𝑁∈
𝒢 (𝛽)| ≤ 𝜇 for all 𝛽 < 𝜅,

so that Col(𝒢) ≤ 𝜇+. Suppose for sake of contradiction that Col(𝒢) < 𝜇+, and let C be a well-
ordering of 𝜅 witnessing this. Define a function 𝑓 : 𝜅 → 𝜅 by stipulating 𝑓(𝛼) := sup(𝑁C𝒢 (𝛼)).
As Γ is stationary, we can find 𝛽 ∈ Γ such that 𝑓 [𝛽] ⊆ 𝛽. In particular, for all 𝛼 ∈ 𝐶𝛽, we have
𝛽 /∈ 𝑁C𝒢 (𝛼), and hence 𝛼C 𝛽. But then |𝑁C𝒢 (𝛽)| ≥ |𝐶𝛽| = 𝜇, which is a contradiction. �

Corollary 2.18. Suppose that 𝜇 and 𝜅 are infinite cardinals, with 𝜅 regular. If 𝒢 = (𝜅,𝐸) is a
graph, and, for every 𝛼 < 𝜅, Col(𝒢𝛼) ≤ 𝜇, then Col(𝒢) ≤ 𝜇++.

Proof. If 𝜅 ≤ 𝜇+ or if 𝜅 is not the successor of a singular cardinal of cofinality cf(𝜇), then Col(𝒢) ≤
𝜇+ trivially or by Theorem 2.16, respectively. If 𝜅 > 𝜇+ and 𝜅 is the successor of a cardinal of
cofinality cf(𝜇), then apply Theorem 2.16 with 𝜇+ in place of 𝜇 to obtain Col(𝒢) ≤ 𝜇++. �

To the best of our knowledge, it is unknown whether Corollary 2.18 is consistently sharp:

Question 2.19. Is it consistent that for some infinite cardinals 𝜇 < 𝜅, there exists a graph 𝒢 = (𝜅,𝐸)
with Col(𝒢) = 𝜇++, and yet Col(𝒢𝛼) ≤ 𝜇 for all 𝛼 < 𝜅?

We can show that certain instances of Chang’s Conjecture give us situations in which Corollary
2.18 is not sharp. For instance, we have the following.

Lemma 2.20. Suppose that 𝜆 is a singular cardinal of countable cofinality and (𝜆+, 𝜆)� (ℵ1,ℵ0)
holds.

(1) If 𝒢 = (𝜆+, 𝐸) and Col(𝒢𝛼) ≤ ℵ0 for all 𝛼 < 𝜆+, then Col(𝒢) ≤ ℵ1.
(2) In some forcing extension, (𝜆+, 𝜆) � (ℵ1,ℵ0) remains valid and there exists a graph 𝒢 =

(𝜆+, 𝐸) such that Col(𝒢𝛼) ≤ ℵ0 for all 𝛼 < 𝜆+, and Col(𝒢) = ℵ1.

Proof. (1) Suppose not, and let 𝒢 be a counterexample. By Lemma 2.15(2), 𝑆ℵ1(𝒢) is stationary
in 𝜆+. As in the proof of Theorem 2.16, this allows us to find 𝜀* < 𝜆+ and a cofinal set ∆ ⊆ 𝜆+

such that, for all 𝛿 ∈ ∆, |𝑁𝒢(𝛿) ∩ 𝜀*| ≥ ℵ0. By (𝜆+, 𝜆) � (ℵ1,ℵ0), we can find an elementary
substructure 𝑀 ≺ (𝐻(𝜆++),∈, 𝐸, 𝜀*,∆) such that |𝑀 ∩ 𝜆+| = ℵ1 and |𝑀 ∩ 𝜆| = ℵ0.

Let 𝐵 = ∆∩𝑀 and note that, by elementarity, 𝐵 is cofinal in sup(𝑀 ∩𝜆+) and hence |𝐵| = ℵ1.
Also by elementarity, for every 𝛿 ∈ 𝐵, |𝑁𝒢(𝛿) ∩𝑀 ∩ 𝜀*| ≥ ℵ0. Therefore, applying Lemma 2.14 to
𝐴 := 𝑀 ∩ 𝜀* and 𝐵, we obtain Col(𝒢sup(𝑀∩𝜆+)) > ℵ0, contradicting our assumptions.

(2) Let P be the standard poset for adding a non-reflecting stationary subset of 𝐸𝜆+

𝜔 (cf. [Cum10,
Example 6.5]), and work in the forcing extension by P. As P is 𝜆+-strategically closed and (𝜅1, 𝜆1)�
(𝜅0, 𝜆0) is preserved by 𝜅1-strategically closed forcing,7 (𝜆+, 𝜆) � (ℵ1,ℵ0) holds. Now, appeal to
Lemma 2.17. �

7Recall Definition 3.18.
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Corollary 2.21. Suppose that (ℵ𝜔+1,ℵ𝜔) � (ℵ1,ℵ0) holds. If 𝜇 is an infinite cardinal and 𝒢
is a graph of size ≤ ℵ𝜔·2 all of whose strictly smaller subgraphs have coloring number ≤ 𝜇, then
Col(𝒢) ≤ 𝜇+.

Proof. Suppose not, and write 𝜅 for the size of 𝒢. Clearly, 𝜇 < 𝜅. By Shelah’s compactness theorem
for singular cardinals [She75b], 𝜅 must be regular. It then follows from Theorem 2.16 that 𝜅 = ℵ𝜔+1

and 𝜇 = ℵ0, contradicting Lemma 2.20(1) with 𝜆 = ℵ𝜔. �

We next recall a strong reflection principle, introduced by Magidor and Shelah in [MS94].

Definition 2.22 (Magidor-Shelah, [MS94]). Suppose 𝜆 ≤ 𝜅 are infinite cardinals, with 𝜅 regular.
∆𝜆,𝜅 is the assertion that, for every stationary 𝑆 ⊆ 𝐸𝜅

<𝜆 and every algebra 𝐴 on 𝜅 with fewer than
𝜆 operations, there is a subalgebra 𝐴′ of 𝐴 such that, letting 𝜂 = otp(𝐴′), we have:

(1) 𝜂 is a regular cardinal;
(2) 𝜂 < 𝜆;
(3) 𝑆 ∩𝐴′ is stationary in sup(𝐴′).

∆𝜆 is the assertion that, for all regular 𝜈 ≥ 𝜆, ∆𝜆,𝜈 holds.

Instances of this reflection principle imply instances of compactness for the coloring number.
The following Proposition follows from the arguments of [She75b, S2] and [MS94, S2]. We provide
a direct proof for completeness.

Proposition 2.23. Suppose ℵ0 ≤ 𝜇 < 𝜅 = cf(𝜅) and there is a cardinal 𝜆 such that 𝜇 < 𝜆 ≤ 𝜅 and
∆𝜆,𝜅 holds. Then any 𝜅-sized graph of coloring number > 𝜇 has a (< 𝜅)-sized subgraph of coloring
number > 𝜇.

Proof. Let 𝒢 be a graph of size 𝜅 such that, for every smaller subgraph 𝒢′ of 𝒢, Col(𝒢′) ≤ 𝜇.
Suppose for sake of contradiction that Col(𝒢) > 𝜇. Without loss of generality, 𝑉 (𝒢) = 𝜅. Then,
by Lemma 2.15,

𝑆0 := {𝛼 < 𝜅 | |𝑁𝒢(𝛽) ∩ 𝛼| ≥ 𝜇 for some 𝛽 ≥ 𝛼}
is stationary in 𝜅. It is easily seen that this implies that 𝑆 := 𝑆0 ∩𝐸𝜅

cf(𝜇) is stationary in 𝜅. Let 𝐴

be an algebra on 𝜅 equipped with the following functions:

∙ a function 𝑓 on 𝜅 such that, for each 𝛼 ∈ 𝑆, 𝑓(𝛼) is the least 𝛿 ≥ 𝛼 such that |𝑁𝒢(𝛿)∩𝛼| ≥ 𝜇;
∙ for each 𝜁 < 𝜇, a function 𝑔𝜁 on 𝜅 such that, for each 𝛼 ∈ 𝑆, 𝑔𝜁(𝛼) is the unique element 𝜖

of 𝑁𝒢(𝑓(𝛼)) such that otp(𝑁𝒢(𝑓(𝛼)) ∩ 𝜖) = 𝜁;
∙ for each 𝜁 < 𝜇, a constant function ℎ𝜁 on 𝜅 taking value 𝜁.

Apply ∆𝜆,𝜅 to 𝐴 and 𝑆 to find a subalgebra 𝐴′ such that 𝜂 := otp(𝐴′) is a regular cardinal < 𝜆
and 𝑆 ∩ 𝐴′ is stationary in sup(𝐴′). Since 𝐴′ is closed under ℎ𝜁 for 𝜁 < 𝜇, we have 𝜇 ⊆ 𝐴′. Let
𝜋 : 𝐴′ → 𝜂 be the unique order-preserving bijection, and let ℋ := (𝜂, 𝐹 ) be the graph on 𝜂 defined
by {𝛼, 𝛿} ∈ 𝐹 iff {𝜋−1(𝛼), 𝜋−1(𝛿)} ∈ 𝐸. Note that, since 𝐴′ ∩ 𝑆 is stationary in sup(𝐴′), 𝑇 := 𝜋[𝑆]
is stationary in 𝜂. Also, since 𝐴′ is closed under 𝑓 and 𝑔𝜁 for each 𝜁 < 𝜇 and 𝜇 ⊆ 𝐴′, we have that,
for all 𝛼 ∈ 𝑇 , there is 𝛿 ≥ 𝛼 such that |𝑁ℋ(𝛿) ∩ 𝛼| ≥ 𝜇. Therefore, by Lemma 2.15, Col(ℋ) > 𝜇.
But 𝜋 witnesses that ℋ and 𝒢 �𝐴′ := (𝐴′, 𝐸 ∩ [𝐴′]2) are isomorphic graphs, so that Col(𝒢 �𝐴′) > 𝜇,
contradicting the assumption that every smaller subgraph of 𝒢 has coloring number at most 𝜇. �

In [FJS+10], Fuchino et al. introduce the following reflection principle.

Definition 2.24 (Fuchino et al., [FJS+10]). Let 𝜅 be a cardinal of uncountable cofinality. The
Fodor-type Reflection Principle for 𝜅 (FRP(𝜅)) is the assertion that, for every stationary 𝑆 ⊆ 𝐸𝜅

𝜔

and every function 𝑔 : 𝑆 → [𝜅]≤ℵ0 , there is 𝐼 ∈ [𝜅]ℵ1 such that:
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(1) cf(𝐼) = 𝜔1;
(2) 𝑔(𝛼) ⊆ 𝐼 for all 𝛼 ∈ 𝐼 ∩ 𝑆;
(3) for every regressive 𝑓 : 𝑆 ∩ 𝐼 → 𝜅 such that 𝑓(𝛼) ∈ 𝑔(𝛼) for all 𝛼 ∈ 𝑆 ∩ 𝐼, there is 𝜉 < 𝜅

such that 𝑓−1“{𝜉} is stationary in sup(𝐼).

For an uncountable cardinal 𝜆, FRP(< 𝜆) is the assertion that FRP(𝜅) holds for every regular,
uncountable 𝜅 < 𝜆.

Note that FRP(ℵ1) is trivially true, so the first interesting case is FRP(ℵ2). In [Miy10], Miyamoto
shows that the consistency strength of FRP(ℵ2) is precisely that of a Mahlo cardinal. In particular,
starting in a model with a Mahlo cardinal, 𝜅, he produces a forcing extension in which 𝜅 = ℵ2 and
GCH and FRP(ℵ2) both hold.

As mentioned in the Introduction, in [FSSU12], it is proven that instances of FRP are in fact
equivalent to instances of compactness for countable coloring numbers.

Fact 2.25 (Fuchino et al., [FSSU12, Theorem 3.1]). For any cardinal 𝜆 ≥ ℵ2, FRP(< 𝜆) is
equivalent to the assertion that, if 𝒢 is a graph such that |𝑉 (𝒢)| < 𝜆 and Col(𝒢′) ≤ ℵ0 for every
subgraph 𝒢′ of 𝒢 with |𝑉 (𝒢′)| ≤ ℵ1, then Col(𝒢) ≤ ℵ0.

In general, stationary reflection assumptions of the form Refl(𝑆) are not sufficient to imply
instances of compactness for the coloring number. For example, in [FSSU12], Fuchino et al. produce

a model in which Refl(𝑆ℵ2
ℵ0

) holds and yet FRP(ℵ2) fails. By Fact 2.25, there is an (ℵ0,≥ ℵ1)-coloring

graph of size ℵ2 in this model. Nevertheless, it is the case that Shelah’s model from [She91] for
exhibiting the maximum possible extent of stationary reflection also exhibits the maximum possible
extent of compactness for the coloring number.

Fact 2.26 (implicit in Shelah, [She91]). Suppose there is a proper class of supercompact cardinals.
Then there is a class forcing extension in which ZFC holds and, for every infinite cardinal 𝜇 and
every graph 𝒢, if Col(𝒢) > 𝜇, then there is a subgraph 𝒢′ of 𝒢 such that |𝑉 (𝒢)| = Col(𝒢) = 𝜇+.

3. Obtaining coherent and capturing 𝐶-sequences

Throughout this section, 𝜅 denotes a regular, uncountable cardinal.

In [BR17] and [BR18], as an alternative foundation for constructing 𝜅-Souslin trees, Brodsky and
Rinot introduce the parameterized proxy principle P−(𝜅, . . .). As will soon be made clear, the main
results of Subsection 2.1 suggest that instances of this proxy principle give rise to incompactness
graphs. The goal of this section is to establish this connection.

Definition 3.1 (special case of [BR17]). Suppose that:

∙ ℛ is a binary relation over [𝜅]<𝜅;
∙ 𝜃 is a cardinal such that 1 ≤ 𝜃 ≤ 𝜅;
∙ 𝒮 is a nonempty collection of stationary subsets of 𝜅;
∙ 𝜎 is an ordinal ≤ 𝜅.

The principle P−(𝜅, 2,ℛ, 𝜃,𝒮, 2, 𝜎) asserts the existence of a sequence �⃗� = ⟨𝐶𝛼 | 𝛼 < 𝜅⟩ such that:

∙ for every limit ordinal 𝛼 < 𝜅, 𝐶𝛼 is a club subset of 𝛼;
∙ for every limit ordinal 𝛼 < 𝜅 and every �̄� ∈ acc(𝐶𝛼), we have 𝐶�̄� ℛ 𝐶𝛼;
∙ for every sequence ⟨𝐴𝑖 | 𝑖 < 𝜃⟩ of cofinal subsets of 𝜅 and every 𝑆 ∈ 𝒮, there exist stationarily

many 𝛼 ∈ 𝑆 such that for all 𝑖 < min{𝛼, 𝜃}:

sup{𝛽 ∈ 𝐶𝛼 | succ𝜎(𝐶𝛼 ∖ 𝛽) ⊆ 𝐴𝑖} = 𝛼.

Finally, P(𝜅, 2,ℛ, 𝜃,𝒮, 2, 𝜎) asserts that P−(𝜅, 2,ℛ, 𝜃,𝒮, 2, 𝜎) and ♢(𝜅) both hold.
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Looking at Lemmas 2.11 and 2.13, we see that if �⃗� witnesses the validity of P−(𝜅, 2, 𝜒⊑, 𝜃, {𝜅}, 2, 2),

then the graph 𝐺(�⃗�) with 𝐺 := acc(𝜅) is very close to being (𝜒,≥ 𝜃+)-chromatic. Specifically, by

Lemma 2.11, we have Chr(𝐺(�⃗� � 𝛿)) ≤ 𝜒 for every 𝛿 < 𝜅, so that 𝐺(�⃗�) is indeed (𝜒, 𝜇)-chromatic
for some cardinal 𝜇. Now, to establish that 𝜇 ≥ 𝜃+, we would like to take advantage of Lemma 2.13,
however the first bullet of Definition 2.12 is not addressed by the proxy principle. Nevertheless, in
Theorem 3.12 below, we provide four scenarios in which this missing feature may be added.

Another worry is to derive instances of the proxy principle from simple combinatorial hypotheses
(such as the conjunction of � and ♢) and via forcing. The former approach is taken in Subsec-
tion 3.2, and the latter approach is taken in Subsection 3.3.

The first subsection, Subsection 3.1, develops some of the machinery needed to establish the
results of Subsection 3.2. However, due to its technical nature, the reader may prefer to first read
Subsection 3.2 before digging into Subsection 3.1.

3.1. Postprocessing functions. The next two definitions are taken from [BR19].

Definition 3.2. 𝒦(𝜅) := {𝑥 ∈ 𝒫(𝜅) | 𝑥 is a nonempty club subset of sup(𝑥)}.

Definition 3.3. A function Φ : 𝒦(𝜅) → 𝒦(𝜅) is a postprocessing function if for every 𝑥 ∈ 𝒦(𝜅):

∙ Φ(𝑥) is a club in sup(𝑥);
∙ acc(Φ(𝑥)) ⊆ acc(𝑥);
∙ for all �̄� ∈ acc(Φ(𝑥)), we have Φ(𝑥) ∩ �̄� = Φ(𝑥 ∩ �̄�).

The function Φ is said to be acc-preserving iff acc(Φ(𝑥)) = acc(𝑥) for every 𝑥.

By convention, for every postprocessing function Φ and every 𝑥 ∈ 𝒫(𝜅) ∖𝒦(𝜅), we set Φ(𝑥) = 𝑥.
The point is that, for various binary relations ℛ, if ⟨𝐶𝛼 | 𝛼 < 𝜅⟩ is an ℛ-coherent 𝐶-sequence, then
so is ⟨Φ(𝐶𝛼) | 𝛼 < 𝜅⟩.

Remark 3.4. Note that the composition of (acc-preserving) postprocessing functions is again an
(acc-preserving) postprocessing function.

Example 3.5 ([BR18]). Suppose that 𝜉 < 𝜅 is an ordinal. Define Φ𝜉 : 𝒦(𝜅) → 𝒦(𝜅) by stipulating:

Φ𝜉(𝑥) :=

{︃
𝑥 ∖ 𝑥(𝜉) if otp(𝑥) > 𝜉;

𝑥 otherwise.

Then Φ𝜉 is a postprocessing function. �

Example 3.6 ([BR19, Lemma 2.8]). Suppose that Z = ⟨𝑍𝑥,𝛽 | 𝑥 ∈ 𝒦(𝜅), 𝛽 ∈ nacc(𝑥)⟩ is a matrix
of elements of 𝒫(𝜅). For each 𝑥 ∈ 𝒦(𝜅), define 𝑔𝑥,Z : 𝑥 → sup(𝑥) by stipulating:

𝑔𝑥,Z(𝛽) :=

⎧⎪⎨⎪⎩
𝛽 if 𝛽 ∈ acc(𝑥);

min((𝑍𝑥,𝛽 ∩ 𝛽) ∪ {𝛽}) if 𝛽 = min(𝑥);

min (((𝑍𝑥,𝛽 ∩ 𝛽) ∪ {𝛽}) ∖ (sup(𝑥 ∩ 𝛽) + 1)) otherwise.

Then:

(1) 𝑔𝑥,Z is strictly increasing, continuous, and cofinal in sup(𝑥);
(2) acc(Im(𝑔𝑥,Z)) = acc(𝑥) and nacc(Im(𝑔𝑥,Z)) = 𝑔𝑥,Z[nacc(𝑥)];

(3) if 𝑍𝑥,𝛽 = 𝑍𝑥∩�̄�,𝛽 for all 𝑥 ∈ 𝒦(𝜅), �̄� ∈ acc(𝑥) and 𝛽 ∈ nacc(𝑥∩ �̄�), then 𝑥
ΦZ↦→ Im(𝑔𝑥,Z) is an

acc-preserving postprocessing function. �
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Lemma 3.7. Suppose that 𝐵 ⊆ 𝜅, and define Φ : 𝒦(𝜅) → 𝒦(𝜅) by stipulating:

Φ(𝑥) :=

{︃
cl(nacc(𝑥) ∩𝐵) if sup(nacc(𝑥) ∩𝐵) = sup(𝑥);

𝑥 ∖ sup(nacc(𝑥) ∩𝐵) otherwise.

Then Φ is a postprocessing function.

Proof. Let 𝑥 ∈ 𝒦(𝜅) be arbitrary. It is easy to see that Φ(𝑥) is a club in sup(𝑥), and acc(Φ(𝑥)) ⊆
acc(𝑥). Next, suppose that �̄� ∈ acc(Φ(𝑥)). Put 𝜀 := sup(nacc(𝑥) ∩ 𝐵). There are two cases to
consider:
I If 𝜀 < sup(𝑥), then sup(nacc(𝑥 ∩ �̄�) ∩ 𝐵) = 𝜀 < �̄�, and hence Φ(𝑥 ∩ �̄�) = (𝑥 ∩ �̄�) ∖ 𝜀 =

(𝑥 ∖ 𝜀) ∩ �̄� = Φ(𝑥) ∩ �̄�.
I If 𝜀 = sup(𝑥), then sup(nacc(𝑥 ∩ �̄�) ∩ 𝐵) = �̄�, and hence Φ(𝑥 ∩ �̄�) = cl(nacc(𝑥 ∩ �̄�) ∩ 𝐵) =

cl(nacc(𝑥) ∩𝐵) ∩ �̄� = Φ(𝑥) ∩ �̄�. �

The next lemma provides a tool for transforming a witness to P−(𝜅, 2,ℛ, 1, . . .) into a witness
to P−(𝜅, 2,ℛ, 𝜅, . . .). This is of interest, because, by Lemma 2.13, having value 𝜅 as the fourth
parameter of the proxy principle is tied to having maximal degree of incompactness.

Lemma 3.8. Let 𝜌 ∈ acc(𝜅), and suppose that ♢(𝜅) holds. Then there exists a postprocessing

function Φ𝜌 : 𝒦(𝜅) → 𝒦(𝜅) such that, for every sequence �⃗� = ⟨𝐴𝑖 | 𝑖 < 𝜅⟩ of cofinal subsets of 𝜅,

there exists some stationary subset 𝐺 ⊆ 𝜅 that codes �⃗�, as follows. For every 𝑥 ∈ 𝒦(𝜅):

(1) if sup(nacc(𝑥) ∩𝐺) = sup(𝑥), otp(𝑥) ≤ 𝜌, and (cf(sup(𝑥)))+ = 𝜅, then for all 𝑖 < sup(𝑥):

sup(nacc(Φ𝜌(𝑥)) ∩𝐴𝑖) = sup(𝑥);

(2) if otp(nacc(𝑥) ∩𝐺) = sup(𝑥) > 𝜌, then for all 𝑖 < sup(𝑥):

sup(nacc(Φ𝜌(𝑥)) ∩𝐴𝑖) = sup(𝑥);

(3) if otp(𝑥) is a cardinal ≤ 𝜌 whose successor is 𝜅, and nacc(𝑥) ⊆ 𝐺, then, for all 𝜎 < otp(𝑥)
and all 𝑖 < sup(𝑥):

sup{𝛽 ∈ 𝑥 | succ𝜎(Φ𝜌(𝑥) ∖ 𝛽) ⊆ 𝐴𝑖} = sup(𝑥).

Proof. Fix a ♢(𝜅)-sequence, ⟨𝑆𝛽 | 𝛽 < 𝜅⟩. Denote 𝜆 := |𝜌|.
I If 𝜅 = 𝜆+, then attach an injection 𝜙𝑥 : sup(𝑥) → otp(𝑥) × 𝜆 to each 𝑥 ∈ 𝒦(𝜅) in such a

way that 𝜙𝑥∩�̄� ⊆ 𝜙𝑥 for all 𝑥 ∈ 𝒦(𝜅) and all �̄� ∈ acc(𝑥). This is indeed possible, as established in
[BR19, Lemma 3.3].
I If 𝜅 ̸= 𝜆+, then let 𝜙𝑥 : sup(𝑥) → sup(𝑥) × 𝜆 be such that 𝜙𝑥(𝛽) = (𝛽, 0) for all 𝛽 < sup(𝑥).
Next, fix a bijection 𝑓 : 𝜅 ↔ 𝜅× 𝜅 such that 𝑓 �𝜆 is a bijection from 𝜆 to 𝜌×𝜆. Fix a surjection

𝑔 : 𝜅 → 𝜅 such that 𝑔 � 𝜆 satisfies that, for every 𝑗, 𝜎 < 𝜆, the set {𝑘 < 𝜆 | 𝑔“(𝑘, 𝑘 + 𝜎) = {𝑗}} is
cofinal in 𝜆. Fix a bijection 𝜋 : 𝜅× 𝜅 ↔ 𝜅 and let

𝐸 := {𝛼 < 𝜅 | 𝜋[𝛼× 𝛼] = 𝑓−1[𝛼× 𝛼] = 𝑔[𝛼] = 𝛼 = 𝜔𝛼}.
Of course, every element of 𝐸 is an indecomposable ordinal.

Let 𝑥 ∈ 𝒦(𝜅) be arbitrary. Put

𝑁𝑥 := {𝛽 ∈ nacc(𝑥) ∩ 𝐸 | for all 𝜀, 𝛾 < 𝛽, there exists 𝜏 ∈ 𝛽 ∖ 𝛾 with 𝜋(𝜀, 𝜏) ∈ 𝑆𝛽} .
Define ℎ𝑥 : nacc(𝑥) → otp(𝑥) by letting, for all 𝛾 ∈ 𝑥:

ℎ𝑥(𝛾) :=

{︃
otp{𝛽 ∈ 𝑁𝑥 ∩ 𝛾 | 𝑆𝛽 = 𝑆𝛾 ∩ 𝛽, otp(𝑥 ∩ 𝛽) > 𝜌} if otp(𝑥) > 𝜌;

otp{𝛽 ∈ 𝑁𝑥 ∩ 𝛾 | 𝑆𝛽 = 𝑆𝛾 ∩ 𝛽} (mod 𝜆) otherwise.
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Then, define 𝜑𝑥 : nacc(𝑥) → sup(𝑥) by letting:

𝜑𝑥(𝛽) :=

{︃
𝜀 if 𝜀 < 𝛽 & 𝜙𝑥(𝜀) = 𝑓(𝑔(ℎ𝑥(𝛽)));

0 otherwise.

As 𝜙𝑥 is injective, 𝜑𝑥 is well-defined. Define Z = ⟨𝑍𝑥,𝛽 | 𝑥 ∈ 𝒦(𝜅), 𝛽 ∈ nacc(𝑥)⟩ by stipulating:

𝑍𝑥,𝛽 := {𝜏 < 𝛽 | 𝜋(𝜑𝑥(𝛽), 𝜏) ∈ 𝑆𝛽}.
Let Φ𝜌 be given by Example 3.5. Let ΦZ be given by Example 3.6. Note that the definition of

ℎ𝑥 prevents ΦZ from being a postprocessing function. Nonetheless, we have the following Claim.

Claim 3.8.1. Φ𝜌 := Φ𝜌 ∘ ΦZ is a postprocessing function.

Proof. Let 𝑥 ∈ 𝒦(𝜅) be arbitrary. By Clauses (1) and (2) of Example 3.6, ΦZ(𝑥) is a club in sup(𝑥)
with acc(ΦZ(𝑥)) = acc(𝑥). Consequently, Φ𝜌(𝑥) is a club in sup(𝑥) with acc(Φ𝜌(𝑥)) ⊆ acc(𝑥). Next,
suppose that �̄� ∈ acc(Φ𝜌(𝑥)). There are two cases to consider:
I If otp(𝑥) ≤ 𝜌, then otp(ΦZ(𝑥)) ≤ 𝜌, so that Φ𝜌(𝑥) = ΦZ(𝑥) and Φ𝜌(𝑥 ∩ �̄�) = ΦZ(𝑥 ∩ �̄�). Thus

it suffices to prove that 𝑔𝑥,Z(𝛾) � �̄� = 𝑔𝑥∩�̄�,Z.
Clearly, 𝑁𝑥∩�̄� = 𝑁𝑥 ∩ �̄�, and so, by otp(𝑥 ∩ �̄�) < otp(𝑥) ≤ 𝜌, we have ℎ𝑥∩�̄� ⊆ ℎ𝑥. Consequently,

𝜑𝑥∩�̄� ⊆ 𝜑𝑥 and 𝑍𝑥∩�̄�,𝛽 = 𝑍𝑥,𝛽 for all 𝛽 ∈ nacc(𝑥∩�̄�). It then immediately follows that 𝑔𝑥∩�̄�,Z ⊆ 𝑔𝑥,Z.
I If otp(𝑥) > 𝜌, then, by acc(ΦZ(𝑥)) = acc(𝑥), we have otp(ΦZ(𝑥)) > 𝜌, and hence Φ𝜌(𝑥) =

ΦZ(𝑥) ∖ (ΦZ(𝑥))(𝜌). But 𝜌 is a nonzero limit ordinal, so that ΦZ(𝑥)(𝜌) = 𝑥(𝜌) and hence Φ𝜌(𝑥) =
ΦZ(𝑥) ∖ 𝑥(𝜌). By �̄� ∈ acc(ΦZ(𝑥) ∖ 𝑥(𝜌)), we have otp(𝑥 ∩ �̄�) > 𝜌, so a similar argument shows that
Φ𝜌(𝑥 ∩ �̄�) = ΦZ(𝑥 ∩ �̄�) ∖ 𝑥(𝜌).

Let 𝜁 denote the unique element of 𝑥 satisfying otp(𝑥 ∩ 𝜁) = 𝜌 + 1. Then we have established
that Φ𝜌(𝑥) = Im(𝑔𝑥,Z � (𝑥 ∖ 𝜁)) and Φ𝜌(𝑥 ∩ �̄�) = Im(𝑔𝑥∩�̄�,Z � ((𝑥 ∩ �̄�) ∖ 𝜁)). Thus it suffices to prove
that 𝑔𝑥,Z(𝛾) � [𝜁, �̄�) = 𝑔𝑥∩�̄�,Z � [𝜁, �̄�).

Clearly, 𝑁𝑥∩�̄� = 𝑁𝑥 ∩ �̄�, and so, by otp(𝑥) > otp(𝑥 ∩ �̄�) > 𝜌, we have ℎ𝑥∩�̄� ⊆ ℎ𝑥. Consequently,
𝜑𝑥∩�̄� ⊆ 𝜑𝑥 and 𝑍𝑥∩�̄�,𝛽 = 𝑍𝑥,𝛽 for all 𝛽 ∈ nacc(𝑥 ∩ �̄�). It then immediately follows that 𝑔𝑥∩�̄�,Z =
𝑔𝑥,Z � �̄�. �

Next, suppose that ⟨𝐴𝑖 | 𝑖 < 𝜅⟩ is a sequence of cofinal subsets of 𝜅. Let 𝜋0 : 𝜅 → 𝜅 be such that
𝜋0(𝜀) = 𝑖0 iff 𝜋(𝑖0, 𝑖1) = 𝜀 for some 𝑖1. For all 𝜀 < 𝜅, let 𝐵𝜀 := 𝐴𝜋0(𝜀).

Consider the club 𝐷 := 𝐸 ∩ △𝜀<𝜅(acc+(𝐵𝜀)), the set 𝑆 := {𝜋(𝜀, 𝜏) | 𝜀 < 𝜅, 𝜏 ∈ 𝐵𝜀}, and the
stationary set 𝐺 := {𝛽 ∈ 𝐷 | 𝑆 ∩ 𝛽 = 𝑆𝛽}.

Claim 3.8.2. For every 𝑥 ∈ 𝒦(𝜅) and 𝛾 ∈ 𝐺, nacc(𝑥) ∩𝐺 ∩ 𝛾 = {𝛽 ∈ 𝑁𝑥 ∩ 𝛾 | 𝑆𝛾 ∩ 𝛽 = 𝑆𝛽}.

Proof. Let 𝑥 ∈ 𝒦(𝜅) be arbitrary. For all 𝛾 ∈ 𝐺, we have 𝑆𝛾 = 𝑆 ∩ 𝛾. Thus, let us prove that
nacc(𝑥) ∩𝐺 = {𝛽 ∈ 𝑁𝑥 | 𝑆 ∩ 𝛽 = 𝑆𝛽}.

(⊆): Let 𝛽 ∈ nacc(𝑥) ∩ 𝐺 be arbitrary. Then 𝛽 ∈ 𝐷 ⊆ 𝐸 and 𝑆 ∩ 𝛽 = 𝑆𝛽. By 𝛽 ∈ 𝐷, we also
have 𝛽 ∈

⋂︀
𝜀<𝛽 acc+(𝐵𝜀). Thus, for all 𝜀, 𝛾 < 𝛽, there is some 𝜏 ∈ 𝐵𝜀∩ (𝛽 ∖𝛾) such that 𝜋(𝜀, 𝜏) ∈ 𝑆

and (since 𝛽 ∈ 𝐸) 𝜋(𝜀, 𝜏) < 𝛽, giving 𝜋(𝜀, 𝜏) ∈ 𝑆 ∩ 𝛽 = 𝑆𝛽. Thus 𝛽 ∈ 𝑁𝑥.
(⊇): Suppose that 𝛽 ∈ 𝑁𝑥 satisfies 𝑆 ∩ 𝛽 = 𝑆𝛽. By 𝛽 ∈ 𝑁𝑥 ⊆ nacc(𝑥) ∩ 𝐸, it remains to show

that 𝛽 ∈
⋂︀

𝜀<𝛽(acc+(𝐵𝜀)). Consider any 𝜀, 𝛾 < 𝛽. Since 𝛽 ∈ 𝑁𝑥, we can fix 𝜏 ∈ 𝛽 ∖ 𝛾 such that

𝜋(𝜀, 𝜏) ∈ 𝑆𝛽. That is, 𝜋(𝜀, 𝜏) ∈ 𝑆 ∩ 𝛽 and 𝜏 ∈ 𝐵𝜀 ∩ (𝛽 ∖ 𝛾), as required. �

Claim 3.8.3. Suppose that 𝑥 ∈ 𝒦(𝜅), sup(nacc(𝑥)∩𝐺) = sup(𝑥), otp(𝑥) ≤ 𝜌, and (cf(sup(𝑥)))+ =
𝜅. Then sup(nacc(Φ𝜌(𝑥)) ∩𝐴𝑖) = sup(𝑥) for all 𝑖 < sup(𝑥).

Proof. Denote 𝛿 := sup(𝑥). Since 𝜆 is a cardinal < 𝜅 and (cf(𝛿))+ = 𝜅, we have 𝜆 ≤ cf(𝛿) < 𝜅, so
that cf(𝛿) = 𝜆. By otp(𝑥) ≤ 𝜌, we have Φ𝜌(𝑥) = ΦZ(𝑥), so that nacc(Φ𝜌(𝑥)) = 𝑔𝑥,Z[nacc(𝑥)].
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Let 𝑖, 𝛼 < 𝛿 be arbitrary. We shall find 𝛽 ∈ nacc(𝑥) such that 𝑔𝑥,Z(𝛽) ∈ 𝐴𝑖 ∖ 𝛼. By increasing
𝛼, we may assume that 𝛼 > 𝑖 and 𝛼 ∈ nacc(𝑥) ∩ 𝐺. In particular, 𝜋[𝛼 × 𝛼] = 𝛼, and we may
find some 𝜀 < 𝛼 such that 𝜋0(𝜀) = 𝑖. As Im(𝜙𝑥) ⊆ 𝜌 × 𝜆 and 𝑓 � 𝜆 is a bijection from 𝜆 to 𝜌 × 𝜆,
𝑗 := 𝑓−1(𝜙𝑥(𝜀)) is an element of 𝜆.

Let 𝑀𝑥 := nacc(𝑥) ∩ 𝐺. By Claim 3.8.2, for all 𝛾 ∈ 𝑀𝑥, ℎ𝑥(𝛾) = otp(𝑀𝑥 ∩ 𝛾) (mod 𝜆). By
sup(𝑀𝑥) = 𝛿 and cf(𝛿) = 𝜆, we know that ℎ𝑥[𝑀𝑥 ∖ (𝛼 + 1)] is co-bounded in 𝜆. By the choice of
𝑔, then, we may pick 𝑘 ∈ ℎ𝑥[𝑀𝑥 ∖ (𝛼 + 1)] such that 𝑔(𝑘) = 𝑗. Pick 𝛽 ∈ 𝑀𝑥 ∖ (𝛼 + 1) such that
ℎ𝑥(𝛽) = 𝑘. Then 𝑓(𝑔(ℎ𝑥(𝛽))) = 𝜙𝑥(𝜀) and 𝜀 < 𝛼 < 𝛽 so that 𝜑𝑥(𝛽) = 𝜀, and hence

𝑍𝑥,𝛽 = {𝜏 < 𝛽 | 𝜋(𝜀, 𝜏) ∈ 𝑆 ∩ 𝛽} = 𝐵𝜀 ∩ 𝛽.

By 𝜀 < 𝛼 < 𝛽,𝛼 ∈ nacc(𝑥), and 𝛽 ∈ 𝐺 ⊆ acc+(𝐵𝜀), we have

𝑔𝑥,Z(𝛽) ∈ 𝐵𝜀 ∖ (sup(𝑥 ∩ 𝛽) + 1) ⊆ 𝐴𝑖 ∖ (𝛼 + 1),

as sought. �

Claim 3.8.4. Suppose that 𝑥 ∈ 𝒦(𝜅) and otp(nacc(𝑥)∩𝐺) = sup(𝑥) > 𝜌. Then sup(nacc(Φ𝜌(𝑥))∩
𝐴𝑖) = sup(𝑥) for all 𝑖 < sup(𝑥).

Proof. Denote 𝛿 := sup(𝑥). As 𝛿 is an accumulation point of 𝐸, we know that 𝛿 is indecomposable.
By otp(𝑥) > 𝜌, let 𝜁 denote the unique element of 𝑥 satisfying otp(𝑥∩𝜁) = 𝜌+1. Then nacc(Φ𝜌(𝑥)) =
𝑔𝑥,Z[nacc(𝑥 ∖ 𝜁)].

Let 𝑖 < 𝛼 < 𝛿 be arbitrary. We shall find 𝛽 ∈ nacc(𝑥∖𝜁) such that 𝑔𝑥,Z(𝛽) ∈ 𝐴𝑖∖𝛼. By increasing
𝛼, we may assume that 𝛼 ∈ nacc(𝑥)∩𝐺 ∖ 𝜁. In particular, 𝛼 ∈ 𝐸, and we may fix some 𝜀 < 𝛼 such
that 𝜋0(𝜀) = 𝑖. Put 𝑗 := 𝑓−1(𝜙𝑥(𝜀)). By 𝛼 ∈ 𝐺 ⊆ 𝐸, we have 𝑗 < 𝛼. By 𝛼 ∈ 𝐸, we may also fix
𝑘 < 𝛼 such that 𝑔(𝑘) = 𝑗.

Let 𝑀𝑥 := nacc(𝑥)∩𝐺∖𝜁. By otp(𝑥∩𝜁) = 𝜌+1 and Claim 3.8.2, for all 𝛾 ∈ 𝑀𝑥, ℎ𝑥(𝛾) = otp(𝑀𝑥∩
𝛾). As otp(nacc(𝑥) ∩𝐺) = 𝛿 and the latter is indecomposable, we have otp(𝑀𝑥) = 𝛿 > 𝛼 > 𝑘, and
hence we may pick some 𝛽 ∈ 𝑀𝑥 such that ℎ𝑥(𝛽) = 𝑘. Then 𝑓(𝑔(ℎ𝑥(𝛽))) = 𝜙𝑥(𝜀), 𝜑𝑥(𝛽) = 𝜀, and
𝑍𝑥,𝛽 = 𝐵𝜀 ∩ 𝛽. Then 𝑔𝑥,Z(𝛽) ∈ 𝐵𝜀 ∖ (sup(𝑥 ∩ 𝛽) + 1) ⊆ 𝐴𝑖 ∖ (𝛼 + 1), as sought. �

Claim 3.8.5. Suppose that 𝑥 ∈ 𝒦(𝜅), otp(𝑥) is a cardinal ≤ 𝜌 whose successor is 𝜅, and nacc(𝑥) ⊆
𝐺. Then, for all 𝑖 < sup(𝑥) and 𝜎 < otp(𝑥), we have

sup{𝛽 ∈ 𝑥 | succ𝜎(Φ𝜌(𝑥) ∖ 𝛽) ⊆ 𝐴𝑖} = sup(𝑥).

Proof. Denote 𝛿 := sup(𝑥). Clearly, otp(𝑥) = 𝜆 and Φ𝜌(𝑥) = Im(𝑔𝑥,Z).
By nacc(𝑥) ⊆ 𝐺, we get from Claim 3.8.2 that ℎ𝑥 : nacc(𝑥) → 𝜆 is the order-preserving bijection.

Let 𝑖 < 𝛼 < 𝛿 be arbitrary, and let 𝜎 < 𝜆 be arbitrary. By increasing 𝛼, we may assume that
𝛼 ∈ nacc(𝑥) and there exists 𝜀 < 𝛼 such that 𝐵𝜀 = 𝐴𝑖. As Im(𝜙𝑥) ⊆ 𝜌× 𝜆 and 𝑓 � 𝜆 is a bijection
from 𝜆 to 𝜌× 𝜆, 𝑗 := 𝑓−1(𝜙𝑥(𝜀)) is an element of 𝜆. By the choice of 𝑔, then, we may pick a large
enough 𝑘 ∈ (otp(𝑥∩𝛼), 𝜆) such that 𝑔“(𝑘, 𝑘+𝜎+ 2) = {𝑗}. Let 𝛽 ∈ 𝑥 be such that otp(𝑥∩𝛽) = 𝑘.
Then succ𝜎(Φ𝜌(𝑥) ∖ 𝑔𝑥,Z(𝛽))) ⊆ 𝐴𝑖. �

This completes the proof. �

The next lemma provides a tool for transforming a witness to P−(𝜅, 2,ℛ, 1, {𝐸𝜅
𝜃 }, . . .) into a

witness to P−(𝜅, 2,ℛ, 𝜃, . . .).

Lemma 3.9. Suppose that 𝜃 < 𝜅 are regular, infinite cardinals and ♢(𝜅) holds. Then there exists an
acc-preserving postprocessing function Φ : 𝒦(𝜅) → 𝒦(𝜅) satisfying the following: For every sequence
⟨𝐴𝑖 | 𝑖 < 𝜃⟩ of cofinal subsets of 𝜅, there exists some stationary subset 𝐺 ⊆ 𝜅 such that, for all
𝑥 ∈ 𝒦(𝜅), if sup(nacc(𝑥) ∩ 𝐺) = sup(𝑥) and cf(sup(𝑥)) = 𝜃, then sup(nacc(Φ(𝑥)) ∩ 𝐴𝑖) = sup(𝑥)
for all 𝑖 < 𝜃.
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Proof. We follow the proof of Lemma 3.8 as much as possible. Fix a ♢(𝜅)-sequence, ⟨𝑆𝛽 | 𝛽 < 𝜅⟩.
Fix a bijection 𝜋 : 𝜅× 𝜅 ↔ 𝜅, and let 𝐸 := {𝛼 < 𝜅 | 𝜋[𝛼× 𝛼] = 𝛼}.

Let 𝑥 ∈ 𝒦(𝜅) be arbitrary. Put

𝑁𝑥 := {𝛽 ∈ nacc(𝑥) ∩ 𝐸 | for all 𝜀, 𝛾 < 𝛽, there exists 𝜏 ∈ 𝛽 ∖ 𝛾 with 𝜋(𝜀, 𝜏) ∈ 𝑆𝛽} .
Define ℎ𝑥 : nacc(𝑥) → 𝜃 by letting for all 𝛾 ∈ 𝑥:

ℎ𝑥(𝛾) := otp({𝛽 ∈ 𝑁𝑥 ∩ 𝛾 | 𝑆𝛽 = 𝑆𝛾 ∩ 𝛽}) (mod 𝜃).

Define Z = ⟨𝑍𝑥,𝛽 | 𝑥 ∈ 𝒦(𝜅), 𝛽 ∈ nacc(𝑥)⟩ by stipulating:

𝑍𝑥,𝛽 := {𝜏 < 𝛽 | 𝜋(ℎ𝑥(𝛽), 𝜏) ∈ 𝑆𝛽}.
Let ΦZ be the corresponding acc-preserving postprocessing function given by Example 3.6.
Next, suppose that ⟨𝐴𝑖 | 𝑖 < 𝜃⟩ is a sequence of cofinal subsets of 𝜅. Let ⟨𝐵𝜀 | 𝜀 < 𝜅⟩ be a

sequence of cofinal subsets of 𝜅 such that for all 𝑖 < 𝜃, {𝜀 < 𝜃 | 𝐵𝜀 = 𝐴𝑖} is cofinal in 𝜃. Consider
the club 𝐷 := 𝐸 ∩ △𝜀<𝜅(acc+(𝐵𝜀)), the set 𝑆 := {𝜋(𝜀, 𝜏) | 𝜀 < 𝜅, 𝜏 ∈ 𝐵𝜀}, and the stationary set
𝐺 := {𝛽 ∈ 𝐷 | 𝑆 ∩ 𝛽 = 𝑆𝛽}.

Claim 3.9.1. Suppose that 𝑥 ∈ 𝒦(𝜅), sup(nacc(𝑥) ∩𝐺) = sup(𝑥), and cf(sup(𝑥)) = 𝜃. Then:

(1) nacc(𝑥) ∩𝐺 ∩ 𝛾 = {𝛽 ∈ 𝑁𝑥 ∩ 𝛾 | 𝑆𝛾 ∩ 𝛽 = 𝑆𝛽} for every 𝛾 ∈ 𝐺;
(2) sup(nacc(ΦZ(𝑥)) ∩𝐴𝑖) = sup(𝑥) for all 𝑖 < 𝜃.

Proof. (1) By the proof of Claim 3.8.2.
(2) Denote 𝛿 := sup(𝑥). Let 𝑖 < 𝜃 and 𝛼 < 𝛿 be arbitrary. As nacc(ΦZ(𝑥)) = 𝑔𝑥,Z[nacc(𝑥)], we

shall want to find 𝛽 ∈ nacc(𝑥) such that 𝑔𝑥,Z(𝛽) ∈ 𝐴𝑖 ∖ 𝛼.
Let 𝑀𝑥 := nacc(𝑥) ∩ 𝐺. By Clause (1), for all 𝛾 ∈ 𝑀𝑥, ℎ𝑥(𝛾) = otp(𝑀𝑥 ∩ 𝛾) (mod 𝜃). By

sup(𝑀𝑥) = 𝛿 and cf(𝛿) = 𝜃, we know that ℎ𝑥[𝑀𝑥 ∖ (𝛼 + 1)] is co-bounded in 𝜃. Pick 𝜀 ∈ ℎ𝑥[𝑀𝑥 ∖
(𝛼 + 1)] such that 𝐵𝜀 = 𝐴𝑖. Pick 𝛽 ∈ 𝑀𝑥 ∖ (𝛼 + 1) such that ℎ𝑥(𝛽) = 𝜀. By 𝛽 ∈ 𝐸, we have

𝑍𝑥,𝛽 = {𝜏 < 𝛽 | 𝜋(𝜀, 𝜏) ∈ 𝑆 ∩ 𝛽} = 𝐵𝜀 ∩ 𝛽.

By 𝛼 ∈ nacc(𝑥) ∩ 𝛽 and 𝛽 ∈ 𝐺 ⊆ acc+(𝐵𝜀), we have

𝑔𝑥,Z(𝛽) ∈ 𝐵𝜀 ∖ (sup(𝑥 ∩ 𝛽) + 1) ⊆ 𝐴𝑖 ∖ (𝛼 + 1),

as sought. �

Therefore the postprocessing function ΦZ satisfies the needed requirements. �

3.2. Combinatorial constructions. In Theorem 3.11 below, we give a list of sufficient conditions
for P−(𝜅, 2,⊑, 𝜅, {𝜅}, 2, 2) to hold. Later on, in Corollary 3.13, we prove that P−(𝜅, 2,⊑, 𝜅, {𝜅}, 2, 2)
entails the existence of a (𝐶-sequence) graph of size 𝜅 which is (ℵ0, 𝜅)-chromatic.

The idea is to use the postprocessing functions from the preceding subsection to turn simple
instances of the proxy principle into more substantial ones. The simplest instance of the proxy
principle, being P−(𝜅, 2,⊑, 1, {𝑆}, 2, 1), is denoted by �−(𝑆):

Definition 3.10 ([BR17]). For a stationary subset 𝑆 ⊆ 𝜅, �−(𝑆) asserts the existence of a ⊑-
coherent 𝐶-sequence, ⟨𝐶𝛼 | 𝛼 < 𝜅⟩, such that for every cofinal subset 𝐴 ⊆ 𝜅, there exists some
𝛼 ∈ 𝑆 for which sup(nacc(𝐶𝛼) ∩𝐴) = 𝛼.

Theorem 3.11. Suppose that 𝜅 is a regular cardinal ≥ ℵ2, satisfying at least one of the following:

(1) ♢(𝜅) +�−(Reg(𝜅));
(2) ♢(𝜅) +�−(𝑇 ) + Refl(𝑇 ) for some stationary 𝑇 ⊆ 𝜅;
(3) ♢(𝜅) +�−(𝐸𝜅

𝜆) and 𝜅 = 𝜆+;
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(4) ♢(𝜅) +�−(𝜅) + Refl(𝐸𝜅
<𝜆) and 𝜅 = 𝜆+;

(5) CH𝜆 +�(𝜅) + Refl(𝐸𝜅
<i𝜔

) and 𝜅 = 𝜆+ > i𝜔;
(6) GCH +�(𝜅) + Refl(𝐸𝜅

𝜔) and 𝜅 is a successor cardinal.

Then P(𝜅, 2,⊑, 𝜅, {𝜅}, 2, 2) holds.

Proof. First, let us simplify some things:

∙ By [Rin17b], (5) ∨ (6) =⇒ (2).
∙ By the exact same proof as that of [Rin17b, Lemma 4.12], if ♢(𝜅) +�−(𝜅) holds, then for

every partition 𝜅 = 𝑇0 ⊎ 𝑇1, there exists some 𝑖 < 2 such that �−(𝑇𝑖) holds. In particular,
by taking 𝑇0 = 𝐸𝜅

<𝜆 and 𝑇1 = 𝐸𝜅
𝜆 , we see that (4) =⇒ (2) ∨ (3).

∙ By [BR18], ♢(𝜅) + P−(𝜅, 2,⊑, 𝜅, {𝜅}, 2, 1) is equivalent to P(𝜅, 2,⊑, 𝜅, {𝜅}, 2, 𝑛) for every
positive integer 𝑛.

Altogether, it suffices to prove that (1) ∨ (2) ∨ (3) =⇒ P−(𝜅, 2,⊑, 𝜅, {𝜅}, 2, 1).

(1) Let �⃗� = ⟨𝐶𝛼 | 𝛼 < 𝜅⟩ be a witness to �−(Reg(𝜅)). Let Φ𝜔 be given by Lemma 3.8. Denote

𝐶∙
𝛼 := Φ𝜔(𝐶𝛼). To see that ⟨𝐶∙

𝛼 | 𝛼 < 𝜅⟩ witnesses P−(𝜅, 2,⊑, 𝜅, {𝜅}, 2, 1), let �⃗� = ⟨𝐴𝑖 | 𝑖 < 𝜅⟩ be
an arbitrary sequence of cofinal subsets of 𝜅. Let 𝐺 be the stationary set given by Lemma 3.8 for

�⃗�.

Claim 3.11.1. 𝑆 := {𝛼 < 𝜅 | otp(nacc(𝐶𝛼) ∩𝐺) = 𝛼} is stationary.

Proof. As �⃗� witnesses �−(Reg(𝜅)), we know that 𝑇 := {𝛼 ∈ Reg(𝜅) | sup(nacc(𝐶𝛼) ∩ 𝐺) = 𝛼} is
stationary. For all 𝛼 ∈ 𝑇 , we have 𝛼 ≥ otp(nacc(𝐶𝛼) ∩𝐺) ≥ cf(𝛼) = 𝛼 and hence 𝛼 ∈ 𝑆. �

Let 𝛼 ∈ 𝑆 ∖ (𝜔 + 1) be arbitrary. Put 𝑥 := 𝐶𝛼 and 𝜌 := 𝜔. Then otp(nacc(𝑥)∩𝐺) = sup(𝑥) > 𝜌,
and hence sup(nacc(Φ𝜌(𝑥)) ∩ 𝐴𝑖) = 𝛼 for all 𝑖 < sup(𝑥). That is, {𝛼 < 𝜅 | ∀𝑖 < 𝛼[sup(nacc(𝐶∙

𝛼) ∩
𝐴𝑖) = 𝛼]} covers the stationary set 𝑆 ∖ (𝜔 + 1).

(2) Let �⃗� = ⟨𝐶𝛼 | 𝛼 < 𝜅⟩ be a witness to �−(𝑇 ). As made clear by the proof of the previous
clause, it suffices to prove the following.

Claim 3.11.2. {𝛼 < 𝜅 | otp(nacc(𝐶𝛼) ∩𝐺) = 𝛼} is stationary for every stationary 𝐺 ⊆ 𝜅.

Proof. Suppose that 𝐺 is a counterexample. As �⃗� witnesses�−(𝑇 ), we altogether infer the existence
of some 𝜀 < 𝜅 such that the following set is stationary:

𝑇 ′ := {𝛼 ∈ 𝑇 | sup(nacc(𝐶𝛼) ∩𝐺) = 𝛼 & otp(nacc(𝐶𝛼) ∩𝐺) = 𝜀}.

By Refl(𝑇 ), pick 𝛿 ∈ 𝐸𝜅
>𝜔 such that 𝑇 ′∩ 𝛿 is stationary. Fix 𝛼 < 𝛽 both from 𝑇 ′∩acc(𝐶𝛿). Then

nacc(𝐶𝛽)∩𝐺 is a proper end-extension of nacc(𝐶𝛼)∩𝐺, contradicting the fact that otp(nacc(𝐶𝛽)∩
𝐺) = 𝜀 = otp(nacc(𝐶𝛼) ∩𝐺). �

(3) Let �⃗� = ⟨𝐶𝛼 | 𝛼 < 𝜅⟩ be a witness to �−(𝐸𝜅
𝜆). By ♢(𝜅), fix a matrix ⟨𝑆𝜌

𝛾 | 𝜌 < 𝜅, 𝛾 < 𝜅⟩
such that for every sequence ⟨𝑆𝜉 | 𝜉 < 𝜅⟩ of subsets of 𝜅, the set {𝛾 < 𝜅 | ∀𝜌 < 𝛾(𝑆𝜌

𝛾 = 𝑆𝜌 ∩ 𝛾)}
is stationary. In particular, for every cofinal 𝑆 ⊆ 𝜅 and 𝜌 < 𝜅, 𝐺𝜌(𝑆) := {𝛾 < 𝜅 | 𝑆𝜌

𝛾 = 𝑆 ∩
𝛾 & sup(𝑆𝜌

𝛾) = 𝛾} is stationary. We distinguish two cases:
I Suppose that, for every cofinal 𝑆 ⊆ 𝜅, the set {𝛼 < 𝜅 | otp(nacc(𝐶𝛼) ∩ 𝐺0(𝑆)) = 𝛼} is

stationary. Define Z = ⟨𝑍𝑥,𝛽 | 𝑥 ∈ 𝒦(𝜅), 𝛽 ∈ nacc(𝑥)⟩ by stipulating 𝑍𝑥,𝛽 := 𝑆0
𝛽. Let ΦZ be the

corresponding postprocessing function given by Example 3.6.
As made clear by the proof of Clause (1), it now suffices to prove the following.

Claim 3.11.3. {𝛼 < 𝜅 | otp(nacc(ΦZ(𝐶𝛼)) ∩𝐺) = 𝛼} is stationary for every stationary 𝐺 ⊆ 𝜅.
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Proof. Let 𝐺 be an arbitrary stationary subset of 𝜅. In particular, 𝐺 is cofinal in 𝜅, so that
𝑇 := {𝛼 < 𝜅 | otp(nacc(𝐶𝛼) ∩𝐺0(𝐺)) = 𝛼} is stationary. Let 𝛼 ∈ 𝑇 and 𝛽 ∈ nacc(𝐶𝛼) ∩𝐺0(𝐺) be
arbitrary. Then 𝑍𝐶𝛼,𝛽 = 𝑆0

𝛽 = 𝐺 ∩ 𝛽 and sup(𝑍𝐶𝛼,𝛽) = 𝛽, so that 𝑔𝐶𝛼,Z(𝛽) ∈ 𝐺 ∩ 𝛽. Consequently,

𝛼 ≥ otp(nacc(ΦZ(𝐶𝛼)) ∩𝐺) ≥ otp(nacc(𝐶𝛼) ∩𝐺0(𝐺))) = 𝛼.
Thus, we have established that {𝛼 < 𝜅 | otp(nacc(ΦZ(𝐶𝛼)) ∩ 𝐺) = 𝛼} covers the stationary set

𝑇 . �

I Suppose that there exists some cofinal 𝑆0 ⊆ 𝜅 and a club 𝐸 ⊆ 𝜅 such that 𝐸 ⊆ {𝛼 < 𝜅 |
otp(nacc(𝐶𝛼) ∩ 𝐺0(𝑆0)) < 𝛼}. Let Φ𝐵 be the postprocessing function given by Lemma 3.7 for
𝐵 := 𝐺0(𝑆0). Denote 𝐶∘

𝛼 := Φ𝐵(𝐶𝛼).

Claim 3.11.4. For some nonzero 𝜌 < 𝜅, for every cofinal 𝑆 ⊆ 𝜅, the following set is stationary:

{𝛼 ∈ 𝐸𝜅
𝜆 | otp(𝐶∘

𝛼) = 𝜌 & sup(nacc(𝐶∘
𝛼) ∩𝐺𝜌(𝑆)) = 𝛼}.

Proof. Suppose not. For each nonzero 𝜌 < 𝜅, pick a counterexample 𝑆𝜌. As 𝑇 := {𝛾 ∈ △𝜌<𝜅 acc+(𝑆𝜌) |
∀𝜌 < 𝛾(𝑆𝜌

𝛾 = 𝑆𝜌 ∩ 𝛾)} is stationary and �⃗� witnesses �−(𝐸𝜅
𝜆), the set 𝑅 := {𝛼 ∈ 𝐸𝜅

𝜆 ∩ 𝐸 |
sup(nacc(𝐶𝛼) ∩ 𝑇 ) = 𝛼} is stationary.

Let 𝛼 ∈ 𝑅 be arbitrary. By 𝑇 ∖ 1 ⊆ 𝐺0(𝑆0) = 𝐵, we have 𝐶∘
𝛼 = cl(nacc(𝐶𝛼) ∩ 𝐵). Put

𝜌𝛼 := otp(𝐶∘
𝛼). By 𝛼 ∈ 𝐸, we have 𝜌𝛼 < 𝛼. But then, by 𝑇 ∖ (𝜌𝛼 + 1) ⊆ 𝐵 ∩ 𝐺𝜌𝛼(𝑆𝜌𝛼), we have

sup(nacc(𝐶∘
𝛼) ∩ 𝐺𝜌𝛼(𝑆𝜌𝛼)) = 𝛼. We can now fix a stationary 𝑅′ ⊆ 𝑅 and 𝜌 < 𝜅 such that, for all

𝛼 ∈ 𝑅′, 𝜌𝛼 = 𝜌. But then {𝛼 ∈ 𝐸𝜅
𝜆 | otp(𝐶∘

𝛼) = 𝜌 & sup(nacc(𝐶∘
𝛼) ∩ 𝐺𝜌(𝑆𝜌)) = 𝛼} covers the

stationary set 𝑅′, contradicting the choice of 𝑆𝜌. �

Let 𝜌 be given by the preceding. Clearly, 𝜌 is a limit ordinal. Define Z = ⟨𝑍𝑥,𝛽 | 𝑥 ∈ 𝒦(𝜅), 𝛽 ∈
nacc(𝑥)⟩ by stipulating 𝑍𝑥,𝛽 := 𝑆𝜌

𝛽, and let ΦZ be the corresponding postprocessing function given

by Example 3.6. Put 𝑇 := {𝛼 ∈ 𝐸𝜅
𝜆 | otp(ΦZ(𝐶∘

𝛼)) ≤ 𝜌}.

Claim 3.11.5. {𝛼 ∈ 𝑇 | sup(nacc(ΦZ(𝐶∘
𝛼)) ∩𝐺) = 𝛼} is stationary for every stationary 𝐺 ⊆ 𝜅.

Proof. Let 𝐺 be an arbitrary stationary subset of 𝜅. By Claim 3.11.4, 𝑇 ′ := {𝛼 ∈ 𝑇 | sup(nacc(𝐶∘
𝛼)∩

𝐺𝜌(𝐺)) = 𝛼} is stationary. Let 𝛼 ∈ 𝑇 ′ and 𝛽 ∈ nacc(𝐶∘
𝛼)∩𝐺𝜌(𝐺) be arbitrary. Then 𝑍𝐶𝛼,𝛽 = 𝑆𝜌

𝛽 =

𝐺∩𝛽 and sup(𝑍𝐶𝛼,𝛽) = 𝛽, so that 𝑔𝐶𝛼,Z(𝛽) ∈ 𝐺∩𝛽. Consequently, sup(nacc(ΦZ(𝐶∘
𝛼))∩𝐺) = 𝛼. �

Let Φ𝜌 be given by Lemma 3.8. Denote 𝐶∙
𝛼 := Φ𝜌(ΦZ(𝐶∘

𝛼)). To see that ⟨𝐶∙
𝛼 | 𝛼 < 𝜅⟩ witnesses

P−(𝜅, 2,⊑, 𝜅, {𝜅}, 2, 1), let �⃗� = ⟨𝐴𝑖 | 𝑖 < 𝜅⟩ be an arbitrary sequence of cofinal subsets of 𝜅. Let 𝐺

be the stationary set given by Lemma 3.8 for �⃗�.
Fix an arbitrary 𝛼 ∈ 𝑇 such that sup(nacc(ΦZ(𝐶∘

𝛼)) ∩ 𝐺) = 𝛼. Write 𝑥 := ΦZ(𝐶∘
𝛼). Then

sup(nacc(𝑥) ∩𝐺) = sup(𝑥), otp(𝑥) ≤ 𝜌, and (cf(sup(𝑥)))+ = 𝜅, and hence the choice of Φ𝜌 entails
that sup(nacc(Φ𝜌(𝑥)) ∩ 𝐴𝑖) = sup(𝑥) for all 𝑖 < sup(𝑥). That is, sup(nacc(𝐶∙

𝛼) ∩ 𝐴𝑖) = 𝛼 for all
𝑖 < 𝛼. �

The purpose of the next theorem is to make a connection between the proxy principle and the
concept of capturing from Definition 2.12. We remind the reader that the definition of the binary
relations 𝜒⊑ and ⊑𝜒 may be found in the Notation subsection of the paper’s Introduction.

Theorem 3.12. Suppose that 𝜒 < 𝜅 are infinite regular cardinals, and 𝜃 < 𝜅 is nonzero.

(1) If P−(𝜅, 2, 𝜒⊑, 𝜅, {𝐸𝜅
≥𝜒}, 2, 2) holds, then there exists a 𝜒⊑-coherent 𝐶-sequence over 𝜅 such

that 𝑆(�⃗�) = {𝛿 < 𝜅 | 𝛿 captures �⃗�} is stationary for every sequence �⃗� = ⟨𝐴𝑖 | 𝑖 < 𝜅⟩ of
cofinal subsets of 𝜅.
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(2) If P−(𝜅, 2,⊑𝜒, 𝜅, {𝜅}, 2, 2) holds, then there exists a ⊑𝜒-coherent 𝐶-sequence over 𝜅 such

that 𝑆(�⃗�) = {𝛿 < 𝜅 | 𝛿 captures �⃗�} is stationary for every sequence �⃗� = ⟨𝐴𝑖 | 𝑖 < 𝜅⟩ of
cofinal subsets of 𝜅.

(3) If P(𝜅, 2, 𝜒⊑, 𝜃, {𝐸𝜅
≥𝜒}, 2, 1) holds, then there exists a 𝜒⊑-coherent 𝐶-sequence over 𝜅 such

that 𝑆(�⃗�) = {𝛿 < 𝜅 | 𝛿 captures �⃗�} is stationary for every sequence �⃗� = ⟨𝐴𝑖 | 𝑖 < 𝜃⟩ of
cofinal subsets of 𝜅.

(4) If P(𝜅, 2,⊑𝜒, 𝜃, {𝜅}, 2, 1) holds, then there exists a ⊑𝜒-coherent 𝐶-sequence over 𝜅 such that

𝑆(�⃗�) = {𝛿 < 𝜅 | 𝛿 captures �⃗�} is stationary for every sequence �⃗� = ⟨𝐴𝑖 | 𝑖 < 𝜃⟩ of cofinal
subsets of 𝜅.

Proof. (1) Let �⃗� = ⟨𝐶𝛿 | 𝛿 < 𝜅⟩ be a witness to P−(𝜅, 2, 𝜒⊑, 𝜅, {𝐸𝜅
≥𝜒}, 2, 2). Denote 𝐶𝜉

𝛿 := Φ𝜉(𝐶𝛿),
where Φ𝜉 is the postprocessing function from Example 3.5. We claim that there exists some 𝜉 < 𝜅

such that ⟨𝐶𝜉
𝛿 | 𝛿 < 𝜅⟩ is as sought.

Suppose not. Then for each 𝜉 < 𝜅, let us fix a sequence ⟨𝐴𝜉
𝑖 | 𝑖 < 𝜅⟩ of cofinal subsets of 𝜅 such

that, for club many 𝛿 < 𝜅, at least one of the following two conditions fails:

∙ min(𝐶𝜉
𝛿 ) ≥ min(𝐴𝜉

0);

∙ for all 𝑖 < 𝛿, there exists 𝜄 ∈ otp(𝐶𝜉
𝛿 ) such that 𝐶𝜉

𝛿 (𝜄), 𝐶𝜉
𝛿 (𝜄 + 1) ∈ 𝐴𝜉

𝑖 .

Fix a bijection 𝜋 : 𝜅 ↔ 𝜅 × 𝜅. For each 𝑗 < 𝜅, put 𝐴𝑗 := 𝐴𝜉
𝑖 iff 𝜋(𝑗) := (𝑖, 𝜉). As �⃗� witnesses

P−(𝜅, 2,⊑, 𝜅, {𝐸𝜅
≥𝜒}, 2, 2), the following set is stationary:

𝑆 := {𝛿 ∈ 𝐸𝜅
≥𝜒 | 𝜋[𝛿] = 𝛿 × 𝛿 & ∀𝑗 < 𝛿[sup{𝛾 ∈ 𝐶𝛿 | succ2(𝐶𝛿 ∖ 𝛾) ⊆ 𝐴𝑗} = 𝛿]}.

Let 𝜉 < 𝜅 and 𝛿 ∈ 𝑆 ∖ (𝜉 + 1) be arbitrary. For each 𝑖 < 𝛿 there exists some 𝑗 < 𝛿 such that

𝜋(𝑗) = (𝑖, 𝜉) and some 𝛾 ∈ 𝐶𝜉
𝛿 such that succ2(𝐶

𝜉
𝛿 ∖ 𝛾) ⊆ 𝐴𝑗 . Thus, we have established that, for

every 𝜉 < 𝜅,

{𝛿 < 𝜅 | ∀𝑖 < 𝛿∃𝜄 ∈ otp(𝐶𝜉
𝛿 )[𝐶𝜉

𝛿 (𝜄), 𝐶𝜉
𝛿 (𝜄 + 1) ∈ 𝐴𝜉

𝑖 ]}
covers the stationary set 𝑆 ∖ (𝜉 + 1). So this must mean that, for some club 𝐸𝜉 ⊆ 𝜅, we have

min(𝐶𝜉
𝛿 ) < min(𝐴𝜉

0) for every 𝛿 ∈ 𝑆 ∩ 𝐸𝜉.
Let 𝐸 := △𝜉<𝜅𝐸𝜉. Following the proof of [Rin14a, Claim 3.2.1], we consider the club 𝐷 := {𝛿 ∈

𝐸 | ∀𝜉 < 𝛿[min(𝐴𝜉
0) < 𝛿]}, the set 𝑆′ := {𝛽 ∈ 𝑆 | otp(𝐶𝛽) = 𝛽}, and the set 𝐵 := {𝛽 ∈ acc(𝐷)∩𝑆′ |

sup((𝐷 ∩ 𝛽) ∖ 𝐶𝛽) = 𝛽}. There are three cases to consider, each of which leads to a contradiction.
I If 𝐵 ̸= ∅, then let us pick 𝛽 ∈ 𝐵 and 𝛼 ∈ (𝐷 ∩ 𝛽) ∖𝐶𝛽. For all 𝜉 < 𝛼, by 𝛽 ∈ 𝑆′ ∩𝐸𝜉, we have

𝐶𝛽(𝜉) = min(𝐶𝜉
𝛽) < min(𝐴𝜉

0) < 𝛼. Since the map 𝜉 ↦→ 𝐶𝛽(𝜉) is increasing and continuous, we then

get that 𝐶𝛽(𝛼) = 𝛼, contradicting the fact that 𝛼 /∈ 𝐶𝛽.
I If 𝑆′ is non-stationary, then, by Fodor’s lemma, there exists some 𝜀 < 𝜅 such that 𝑇𝜀 =

{𝛽 ∈ 𝑆 ∩ 𝐷 | otp(𝐶𝛽) = 𝜀} is stationary. Let 𝜁 := sup𝜉<𝜀 min(𝐴𝜉
0). Pick 𝛽 ∈ 𝑇𝜀 above 𝜁. Then

𝐶𝛽(𝜉) = min(𝐶𝜉
𝛽) < min(𝐴𝜉

0) ≤ 𝜁 for all 𝜉 < 𝜀. Consequently, 𝛽 = sup(𝐶𝛽) ≤ 𝜁, contradicting the

fact that 𝛽 > 𝜁.
I If 𝐵 = ∅ and 𝑆′ is stationary, then let us fix some 𝜀 < 𝜅 such that 𝑆𝜀 := {𝛽 ∈ 𝑆′ |

sup((𝐷 ∩ 𝛽) ∖ 𝐶𝛽) = 𝜀} is stationary. For every pair of ordinals 𝛼 < 𝛽 both in acc(𝐷 ∖ 𝜀) ∩ 𝑆𝜀,
we have 𝛼 ∈ acc(𝐶𝛽) ∩ 𝐸𝜅

≥𝜒 and hence 𝐶𝛼 ⊑ 𝐶𝛽. So {𝐶𝛿 | 𝛿 ∈ acc(𝐷 ∖ 𝜀) ∩ 𝑆𝜀} is a ⊑-chain,

converging to the club 𝐶 :=
⋃︀
{𝐶𝛿 | 𝛿 ∈ acc(𝐷 ∖ 𝜀) ∩ 𝑆𝜀}. Put 𝐴 := acc(𝐶). As �⃗� witnesses

P−(𝜅, 2, 𝜒⊑, 𝜅, {𝐸𝜅
≥𝜒}, 2, 2), we may pick some 𝛽 ∈ acc(𝐶)∩𝐸𝜅

≥𝜒 such that sup(nacc(𝐶𝛽)∩𝐴) = 𝛽,

so that nacc(𝐶𝛽)∩acc(𝐶∩𝛽) ̸= ∅ and hence 𝐶𝛽 ̸= 𝐶∩𝛽. On the other hand, by definition of 𝐶, we
have 𝛽 ∈ acc(𝐶𝛿)∩𝐸𝜅

≥𝜒 for some 𝛿 ∈ acc(𝐷 ∖ 𝜀)∩𝑆𝜀, and then 𝐶 ∩ 𝛽 = (𝐶 ∩ 𝛿)∩ 𝛽 = 𝐶𝛿 ∩ 𝛽 = 𝐶𝛽.
This is a contradiction.
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(2) Let �⃗� = ⟨𝐶𝛿 | 𝛿 < 𝜅⟩ be a witness to P−(𝜅, 2,⊑𝜒, 𝜅, {𝜅}, 2, 2). Let Γ := {𝛿 ∈ acc(𝜅) |
∀𝛾 ∈ acc(𝐶𝛿)[𝐶𝛿 ∩ 𝛾 = 𝐶𝛾 ]} denote the so-called support of �⃗� (cf. [BR19]). For each 𝜉 < 𝜅, let Φ𝜉

be the postprocessing function from Example 3.5, and then put:

𝐶𝜉
𝛿 :=

{︃
Φ𝜉(𝐶𝛿) if 𝛿 ∈ Γ;

𝐶𝛿 otherwise.

It is not hard to see that ⟨𝐶𝜉
𝛿 | 𝛿 < 𝜅⟩ is ⊑𝜒-coherent. As in the previous case, we claim that there

exists some 𝜉 < 𝜅 such that ⟨𝐶𝜉
𝛿 | 𝛿 < 𝜅⟩ is as sought. The verification is nearly identical, and

differs in a single point, as follows. In the above proof, we identified a stationary subset 𝑆 of 𝐸𝜅
≥𝜒

and a club 𝐷 ⊆ 𝜅 and derived a contradiction by inspecting the sets:

∙ 𝑆′ := {𝛽 ∈ 𝑆 | otp(𝐶𝛽) = 𝛽} and
∙ 𝐵 := {𝛽 ∈ acc(𝐷) ∩ 𝑆′ | sup((𝐷 ∩ 𝛽) ∖ 𝐶𝛽) = 𝛽}.

This time, 𝑆 will be the following subset of 𝜅:

𝑆 := {𝛿 < 𝜅 | 𝜋[𝛿] = 𝛿 × 𝛿 & ∀𝑗 < 𝛿[sup{𝛾 ∈ 𝐶𝛿 | succ2(𝐶𝛿 ∖ 𝛾) ⊆ 𝐴𝑗} = 𝛿]}.

Note, however, that by throwing one more set into the collection {𝐴𝑗 | 𝑗 < 𝜅}, we can arrange
that 𝐴0 = acc(𝜅). Consequently, for every nonzero 𝛿 ∈ 𝑆, we have nacc(𝐶𝛿) ∩ acc(𝜅) ̸= ∅, so that

nacc(𝐶𝛿) does not consist only of successor ordinals. So, by ⊑𝜒-coherence of �⃗�, we infer that 𝑆 ⊆ Γ,

which ensures that 𝐶𝜉
𝛿 = Φ𝜉(𝐶𝛿) for all 𝛿 ∈ 𝑆, exactly as in Clause (1).

Next, looking at the three cases from the proof of Clause (1), we see that the argument for the
case “𝐵 = ∅ and 𝑆′ is stationary” is the only one to utilize the fact that 𝑆 ⊆ 𝐸𝜅

≥𝜒. Let us show
that “𝑆 ⊆ Γ” is a satisfying replacement.

By 𝐵 = ∅, let us fix some 𝜀 < 𝜅 such that 𝑆𝜀 := {𝛽 ∈ 𝑆′ | sup((𝐷 ∩ 𝛽) ∖ 𝐶𝛽) = 𝜀} is stationary.
For every pair of ordinals 𝛼 < 𝛽, both in acc(𝐷 ∖ 𝜀) ∩ 𝑆𝜀, we have 𝛼 ∈ acc(𝐶𝛽) and 𝛽 ∈ Γ, and
hence 𝐶𝛼 ⊑ 𝐶𝛽. So {𝐶𝛿 | 𝛿 ∈ acc(𝐷 ∖ 𝛾) ∩ 𝑆𝜀} is a ⊑-chain, converging to the club 𝐶 :=

⋃︀
{𝐶𝛿 |

𝛿 ∈ acc(𝐷 ∖ 𝛾) ∩ 𝑆𝜀}. Put 𝐴 := acc(𝐶). As �⃗� witnesses P−(𝜅, 2,⊑𝜒, 𝜅, {𝜅}, 2, 2), we may pick
some 𝛽 ∈ acc(𝐶) such that sup(nacc(𝐶𝛽) ∩ 𝐴) = 𝛽, so that 𝐶𝛽 ̸= 𝐶 ∩ 𝛽. On the other hand, by
definition of 𝐶, we have 𝛽 ∈ acc(𝐶𝛿) for some 𝛿 ∈ acc(𝐷 ∖ 𝜀) ∩ 𝑆𝜀, and then, by 𝛿 ∈ Γ, we have
𝐶 ∩ 𝛽 = (𝐶 ∩ 𝛿) ∩ 𝛽 = 𝐶𝛿 ∩ 𝛽 = 𝐶𝛽. This is a contradiction.

(3) By [BR18], ♢(𝜅) + P−(𝜅, 2, 𝜒⊑, 𝜃, {𝐸𝜅
≥𝜒}, 2, 1) is equivalent to P(𝜅, 2, 𝜒⊑, 𝜃, {𝐸𝜅

≥𝜒}, 2, 𝑛) for

every positive integer 𝑛, so let �⃗� = ⟨𝐶𝛿 | 𝛿 < 𝜅⟩ be a witness to P−(𝜅, 2, 𝜒⊑, 𝜃, {𝐸𝜅
≥𝜒}, 2, 2). By

♢(𝜅), fix a matrix ⟨𝑆𝜌
𝛾 | 𝜌 < 𝜅, 𝛾 < 𝜅⟩ such that for every sequence ⟨𝑆𝜉 | 𝜉 < 𝜅⟩ of subsets of

𝜅, the set {𝛾 < 𝜅 | ∀𝜌 < 𝛾(𝑆𝜌
𝛾 = 𝑆𝜌 ∩ 𝛾)} is stationary. For every 𝜉 < 𝜅, define Z𝜉 = ⟨𝑍𝜉

𝑥,𝛽 |
𝑥 ∈ 𝒦(𝜅), 𝛽 ∈ nacc(𝑥)⟩ by stipulating 𝑍𝜉

𝑥,𝛽 := 𝑆𝜉
𝛽, and let ΦZ𝜉 be the corresponding postprocessing

function given by Example 3.6. Let Φ𝜉 be the postprocessing function from Example 3.5. Finally,

denote 𝐶𝜉
𝛿 := ΦZ𝜉(Φ𝜉(𝐶𝛿)). We claim that there exists some 𝜉 < 𝜅 such that ⟨𝐶𝜉

𝛼 | 𝛼 < 𝜅⟩ is as
sought.

Suppose not. Then, for each 𝜉 < 𝜅, let us fix a sequence ⟨𝐴𝜉
𝑖 | 𝑖 < 𝜃⟩ of cofinal subsets of 𝜅 such

that, for club many 𝛿 < 𝜅, at least one of the following fails:

∙ min(𝐶𝜉
𝛿 ) ≥ min(𝐴𝜉

0);

∙ for all 𝑖 < 𝜃, there exists 𝜄 ∈ otp(𝐶𝜉
𝛿 ) such that 𝐶𝜉

𝛿 (𝜄), 𝐶𝜉
𝛿 (𝜄 + 1) ∈ 𝐴𝜉

𝑖 .

Evidently, for each 𝑖 < 𝜃, the following set is stationary in 𝜅:

𝑇𝑖 := {𝛾 ∈ acc(𝜅) | ∀𝜉 < 𝛾[𝑆𝜉
𝛾 = 𝐴𝜉

𝑖 ∩ 𝛾 & sup(𝑆𝜉
𝛾) = 𝛾]}.
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As �⃗� witnesses P−(𝜅, 2, 𝜒⊑, 𝜃, {𝐸𝜅
≥𝜒}, 2, 2), the following set is also stationary:

𝑆 := {𝛿 ∈ 𝐸𝜅
≥𝜒 | ∀𝑖 < 𝜃[sup{𝛾 ∈ 𝐶𝛿 | succ2(𝐶𝛿 ∖ 𝛾) ⊆ 𝑇𝑖} = 𝛿]}.

Let 𝜉 < 𝜅 and 𝛿 ∈ 𝑆∖(𝜉+1) be arbitrary. As Φ𝜉(𝐶𝛿) is a final segment of 𝐶𝛿, for each 𝑖 < 𝜃, let us
pick 𝛾𝑖 ∈ Φ𝜉(𝐶𝛿) such that succ2(𝐶𝛿 ∖𝛾𝑖) ⊆ 𝑇𝑖. Set 𝛼𝑖 := max(succ2(𝐶𝛿 ∖𝛾𝑖)) and 𝜏𝑖 := sup(𝐶𝛿∩𝛼𝑖).

Then 𝑍𝜉
Φ𝜉(𝐶𝛿),𝛼𝑖

= 𝑆𝜉
𝛼𝑖 = 𝐴𝜉

𝑖 ∩ 𝛼𝑖 and sup(𝑆𝜉
𝛼𝑖) = 𝛼𝑖. Likewise, 𝑍𝜉

Φ𝜉(𝐶𝛿),𝜏𝑖
= 𝑆𝜉

𝜏𝑖 = 𝐴𝜉
𝑖 ∩ 𝜏𝑖 and

sup(𝑆𝜉
𝜏𝑖) = 𝜏𝑖. Then 𝑔Φ𝜉(𝐶𝛿),Z𝜉(𝜏𝑖) and 𝑔Φ𝜉(𝐶𝛿),Z𝜉(𝛼𝑖) are two successive elements of 𝐶𝜉

𝛿 that belong

to 𝐴𝜉
𝑖 .

Thus, we have established that, for every 𝜉 < 𝜅,

{𝛿 < 𝜅 | ∀𝑖 < 𝜃∃𝜄 ∈ otp(𝐶𝜉
𝛿 )[𝐶𝜉

𝛿 (𝜄), 𝐶𝜉
𝛿 (𝜄 + 1) ∈ 𝐴𝜉

𝑖 ]}
covers the stationary set 𝑆 ∖ (𝜉 + 1). So this must mean that for some club 𝐸𝜉 ⊆ 𝜅, we have

min(𝐶𝜉
𝛿 ) < min(𝐴𝜉

0) for every 𝛿 ∈ 𝑆 ∩ 𝐸𝜉. But, as seen in the proof of Clause (1), this yields a
contradiction.

(4) By the proof of Clause (3) with the same adjustment we gave in moving from Clause (1) to
Clause (2). �

Corollary 3.13. For all infinite regular cardinals 𝜒 < 𝜅 and every cardinal 𝜃 < 𝜅:

(1) P(𝜅, 2,⊑𝜒, 𝜃, {𝜅}, 2, 1) entails the existence of a (𝜒,> 𝜃)-chromatic graph of size 𝜅;
(2) P−(𝜅, 2,⊑𝜒, 𝜅, {𝜅}, 2, 2) entails the existence of a (𝜒, 𝜅)-chromatic graph of size 𝜅;
(3) P−(𝜅, 2, 𝜒⊑, 𝜅, {𝐸𝜅

≥𝜒}, 2, 2) entails the existence of a (𝜒, 𝜅)-chromatic graph of size 𝜅;

(4) P(𝜅, 2, 𝜒⊑, 𝜃, {𝐸𝜅
≥𝜒}, 2, 1) entails the existence of a (𝜒,> 𝜃)-chromatic graph of size 𝜅.

Proof. The results follow from Lemmas 2.11 and 2.13, using the appropriate �⃗�, as follows.
(1) follows from Theorem 3.12(4), (2) from Theorem 3.12(2), (2) from Theorem 3.12(1), and (4)

from Theorem 3.12(3). �

The proof of Theorem B(1) goes through the following.

Lemma 3.14. Suppose that 𝜒, 𝜃 < 𝜅 are infinite, regular cardinals and ℛ ∈ {𝜒⊑,⊑𝜒}.
If P(𝜅, 2,ℛ, 1, {𝐸𝜅

𝜃 }, 2, 1) holds, then so does P(𝜅, 2,ℛ, 𝜃, {𝐸𝜅
𝜃 }, 2, 1).

Proof. Let �⃗� = ⟨𝐶𝛼 | 𝛼 < 𝜅⟩ be a witness to P−(𝜅, 2,ℛ, 1, {𝐸𝜅
𝜃 }, 2, 1). Without loss of generality,

we may assume that 𝐶𝛼+1 = {𝛼} for all 𝛼 < 𝜅. Let Φ be given by Lemma 3.9. For all 𝛼 < 𝜅, put:

𝐶∙
𝛼 :=

{︃
𝐶𝛼 if ℛ =⊑𝜒 & ∃�̄� ∈ acc(𝐶𝛼)[𝐶�̄� ̸= 𝐶𝛼 ∩ �̄�];

Φ(𝐶𝛼) otherwise.

It is not hard to see that ⟨𝐶∙
𝛼 | 𝛼 < 𝜅⟩ witnesses P−(𝜅, 2,ℛ, 𝜃, {𝐸𝜅

𝜃 }, 2, 𝑛) for 𝑛 = 0. We claim that
this is also the case for 𝑛 = 1.

To see this, let �⃗� = ⟨𝐴𝑖 | 𝑖 < 𝜃⟩ be a sequence of cofinal subsets of 𝜅. Let 𝐺 be the stationary set

given by Lemma 3.9 for �⃗�. Then 𝑆 := {𝛼 ∈ 𝐸𝜅
𝜃 | sup(nacc(𝐶𝛼) ∩ (acc(𝜅) ∩𝐺)) = 𝛼} is stationary.

Let 𝛼 ∈ 𝑆 be arbitrary. Then, letting 𝑥 := 𝐶𝛼, by sup(nacc(𝑥) ∩𝐺) = sup(𝑥) and cf(sup(𝑥)) = 𝜃,
the choice of Φ entails sup(nacc(Φ(𝑥)) ∩𝐴𝑖) = sup(𝑥) for all 𝑖 < 𝜃.
I If ℛ is 𝜒⊑, then, by definition of 𝐶∙

𝛼, we have 𝐶∙
𝛼 = Φ(𝐶𝛼), so that sup(nacc(𝐶∙

𝛼) ∩ 𝐴𝑖) = 𝛼
for all 𝑖 < 𝜃, as sought.
I If ℛ is ⊑𝜒, then, by 𝛼 ∈ 𝑆, we know that nacc(𝐶𝛼) ∩ acc(𝜅) ̸= ∅, and hence, for every

�̄� ∈ acc(𝐶𝛼), by 𝐶�̄� ⊑𝜒 𝐶𝛼, we infer that 𝐶�̄� ⊑ 𝐶𝛼, so that 𝐶∙
𝛼 = Φ(𝐶𝛼). �

We are now ready to prove Theorems B and C:
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Corollary 3.15. Suppose ℵ0 ≤ cf(𝜒) = 𝜒 < 𝜆 are cardinals, and GCH and �(𝜆+,⊑𝜒) both hold.

(1) If 𝜆 is regular, then there exists a (𝜒,≥ 𝜆)-chromatic graph of size 𝜆+;
(2) If 𝜆 is singular, then there exists a (𝜒, 𝜆+)-chromatic graph of size 𝜆+;

(3) If Refl(𝑆) holds for some stationary 𝑆 ⊆ 𝐸𝜆+

≥𝜒, then there exists a (𝜒, 𝜆+)-chromatic graph

of size 𝜆+.

Proof. (1) By the special case “𝜇 = 2” of [BR19, Theorem 2.19], GCH + �(𝜆+,⊑𝜒) entails

P(𝜆+, 2,⊑𝜒, 1, {𝐸𝜆+

𝜃 | 𝜃 ∈ Reg(𝜆)}, 2, 1). For each 𝜃 ∈ Reg(𝜆), by Lemma 3.14, we infer that

P(𝜆+, 2,⊑𝜒, 𝜃, {𝐸𝜆+

𝜃 }, 2, 1) holds, and so by Corollary 3.13(1), we may fix a (𝜒,> 𝜃)-chromatic
graph 𝒢𝜃 of size 𝜆+. Let 𝒢 be the disjoint sum of the graphs {𝒢𝜃 | 𝜃 ∈ Reg(𝜆)}. Then 𝒢 is
(𝜒,≥ 𝜆)-chromatic of size 𝜆+.

(2) By [BR19, Corollary 4.22], for every singular strong limit cardinal 𝜆 such that 2𝜆 = 𝜆+,
�(𝜆+,⊑𝜒) entails P(𝜆+, 2,⊑𝜒, 𝜆

+, {𝜆+}, 2, 2). It now follows from Corollary 3.13(2) that there
exists a (𝜒, 𝜆+)-chromatic graph of size 𝜆+.

(3) Recalling Clause (2), we may assume that 𝜆 is regular. By Refl(𝑆), we know that 𝑆 ∩𝐸𝜆+

<𝜆 is

stationary. As 𝜆 is regular and 𝑆 ∩𝐸𝜆+

≥𝜒 ∩𝐸𝜆+

<𝜆 is stationary, we get from [Rin17b, Proposition 2.2]

and [BR19, Lemmas 2.5 and 2.13] that GCH + �(𝜆+,⊑𝜒) entails P(𝜆+, 2,⊑𝜒, 1, {𝑆}, 2, 1). Then
by the proof of Theorem 3.11(2), we obtain P(𝜆+, 2,⊑𝜒, 𝜆

+, {𝜆+}, 2, 2). So, by Corollary 3.13(2),
there exists a (𝜒, 𝜆+)-chromatic graph of size 𝜆+. �

3.3. Forcing constructions. In this subsection, we show that, for all infinite regular cardinals
𝜒 < 𝜅, there exists a forcing poset P for introducing P−(𝜅, 2,⊑𝜒, 𝜅, (NS+

𝜅 )𝑉 , 2, 𝜎) such that P is
𝜒-directed closed and 𝜅-strategically closed and therefore preserves all cardinalities and cofinalities
≤ 𝜅. If, additionally, 𝜅<𝜅 = 𝜅, then P has the 𝜅+-c.c. and thus preserves all cardinalities and
cofinalities.

Definition 3.16. Let 𝜒 < 𝜅 be infinite, regular cardinals. P(𝜅, 𝜒) is the forcing poset consisting
of all conditions of the form 𝑝 = ∅ or 𝑝 = ⟨𝐶𝑝

𝛼 | 𝛼 ≤ 𝛾𝑝⟩, where 𝛾𝑝 < 𝜅 is a limit ordinal and ⟨𝐶𝑝
𝛼 |

𝛼 ≤ 𝛾𝑝⟩ is a ⊑𝜒-coherent 𝐶-sequence over 𝛾𝑝 + 1, satisfying 𝐶𝑝
𝛼+1 = {𝛼} for all 𝛼 < 𝛾𝑝.

For 𝑝, 𝑞 ∈ P(𝜅, 𝜒), we let 𝑞 ≤ 𝑝 iff 𝑞 ⊇ 𝑝.

For the rest of this subsection, fix infinite, regular cardinals 𝜒 < 𝜅 and let P := P(𝜅, 𝜒).

Lemma 3.17. P is 𝜒-directed closed.

Proof. Note that P is tree-like, i.e., if 𝑝, 𝑞, 𝑟 ∈ P and 𝑟 ≤ 𝑝, 𝑞, then 𝑝 and 𝑞 are comparable in P.
Therefore, it suffices to show that P is 𝜒-closed. To this end, fix a limit ordinal 𝜂 < 𝜒, and let ⟨𝑝𝜉 |
𝜉 < 𝜂⟩ be a strictly decreasing sequence of conditions in P. Define a condition 𝑞 extending ⟨𝑝𝜉 |
𝜉 < 𝜂⟩ by letting 𝛾 := sup{𝛾𝑝𝜉 | 𝜉 < 𝜂}, fixing a club 𝐷 in 𝛾 of order type cf(𝜂), and letting 𝑞 be
the unique extension of

⋃︀
𝜉<𝜂 𝑝𝜉 such that 𝛾𝑞 = 𝛾 and 𝐶𝑞

𝛾 = 𝐷. 𝑞 is easily verifed to be a lower

bound for ⟨𝑝𝜉 | 𝜉 < 𝜂⟩. �

Definition 3.18. A forcing poset P is said to be 𝛼-strategically closed if II has a winning strategy
for a𝛼(P), which is the following two-player game of perfect information:

The two players, named I and II, respectively, take turns to play conditions from P for 𝛼 many
moves, with I playing at odd stages and II at even stages (including all limit stages). II must
play 1P at move zero. Let 𝑝𝛽 be the condition played at move 𝛽; the player who plays 𝑝𝛽 loses
immediately unless 𝑝𝛽 ≤ 𝑝𝛾 for all 𝛾 < 𝛽. If neither player loses at any stage 𝛽 < 𝛼, then II wins.

Lemma 3.19. P is 𝜅-strategically closed.
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Proof. The proof is identical to that of [LH14, Proposition 33]. �

Lemma 3.20. Suppose 𝑝 ∈ P, �̇� is a P-name for a cofinal subset of 𝜅, and 𝜎 < 𝜅. Then there is
𝑞 ≤ 𝑝 such that:

(1) 𝐶𝑝
𝛾𝑝 ⊑ 𝐶𝑞

𝛾𝑞 ;

(2) 𝑞 P “ succ𝜎(𝐶𝑞
𝛾𝑞 ∖ 𝛾𝑝) ⊆ �̇�.”

Proof. By increasing 𝜎 if necessary, we may assume that 𝜎 is a limit ordinal. We will recursively
construct a strictly decreasing sequence ⟨𝑝𝜉 | 𝜉 ≤ 𝜎⟩ of conditions in P and a strictly increasing
sequence of ordinals ⟨𝛿𝜉 | 𝜉 < 𝜎⟩ such that the following will hold, where, for 𝜉 < 𝜎, we denote 𝛾𝑝𝜉

by 𝛾𝜉:

∙ 𝑝0 = 𝑝;
∙ for all 𝜉 < 𝜎, 𝛾𝜉 < 𝛿𝜉 < 𝛾𝜉+1 and 𝑝𝜉+1  “𝛿𝜉 ∈ �̇�; ”

∙ if 𝜂 ≤ 𝜉 ≤ 𝜎 are limit ordinals, then 𝐶𝑝
𝛾0 ⊑ 𝐶

𝑝𝜂
𝛾𝜂 ⊑ 𝐶

𝑝𝜉
𝛾𝜉 and succ𝜉(𝐶

𝑝𝜉
𝛾𝜉 ∖ 𝛾0) = {𝛿𝜂 | 𝜂 < 𝜉}.

There are three cases to deal with in the recursion.
I If 𝜉 = 𝜂 + 1 < 𝜎 and 𝑝𝜂, ⟨𝛿𝜖 | 𝜖 < 𝜂⟩ have been defined, find 𝑝* ≤ 𝑝𝜂 and 𝛿 such that:

∙ 𝛾𝜂 < 𝛿 < 𝛾𝑝
*
;

∙ 𝑝* P “𝛿 ∈ �̇�.”

Let 𝑝𝜉 := 𝑝* and 𝛿𝜂 := 𝛿.
I If 𝜉 = 𝜂 + 𝜔 ≤ 𝜎 and ⟨(𝑝𝜖, 𝛿𝜖) | 𝜖 < 𝜉⟩ has been defined, then let 𝑝𝜉 be the unique condition

extending ⟨𝑝𝜖 | 𝜖 < 𝜉⟩ such that:

∙ 𝛾𝑝𝜉 = 𝛾𝜉 = sup{𝛾𝜖 | 𝜖 < 𝜉};

∙ 𝐶
𝑝𝜉
𝛾𝜉 = 𝐶

𝑝𝜂
𝛾𝜂 ∪ {𝛾𝜂} ∪ {𝛿𝜂+𝑛 | 𝑛 < 𝜔}.

It is easily verified that 𝑝𝜉 satisfies all of our requirements.
I Finally, if 𝜉 ≤ 𝜎 is a limit of limit ordinals and ⟨(𝑝𝜖, 𝛿𝜖) | 𝜖 < 𝜉⟩ has been defined, then let 𝑝𝜉

be the unique condition extending ⟨𝑝𝜖 | 𝜖 < 𝜉⟩ such that:

∙ 𝛾𝑝𝜉 = 𝛾𝜉 = sup{𝛾𝜖 | 𝜖 < 𝜉};

∙ 𝐶
𝑝𝜉
𝛾𝜉 =

⋃︀
𝜂∈acc(𝜉)𝐶

𝑝𝜂
𝛾𝜂 .

It is easily verified, using our inductive hypotheses, that 𝑝𝜉 is in P and satisfies our requirements.
At the end of the construction, let 𝑞 := 𝑝𝜎. By the requirements satisfied by the construction, 𝑞

is as desired in the statement of the Lemma. �

It is straightforward to show that, for all 𝛼 < 𝜅, the set of 𝑝 ∈ P such that 𝛼 ≤ 𝛾𝑝 is a dense, open

subset of P. Consequently, if 𝑔 is (𝑉,P)-generic, then �⃗� :=
⋃︀
𝑔 = ⟨𝐶𝛼 | 𝛼 < 𝜅⟩ is a ⊑𝜒-coherent

𝐶-sequence over 𝜅.

Theorem 3.21. In 𝑉 [𝑔], �⃗� witnesses P−(𝜅, 2,⊑𝜒, 𝜅, (NS+
𝜅 )𝑉 , 2, 𝜎) simultaneously for every 𝜎 < 𝜅.

Proof. Work in 𝑉 , and fix P-names ⟨�̇�𝑖 | 𝑖 < 𝜅⟩ for cofinal subsets of 𝜅, a P-name �̇� for a club in
𝜅, a stationary set 𝑆 ⊆ 𝜅, an ordinal 𝜎 < 𝜅, and a condition 𝑝 ∈ P. We will find 𝑞 ≤ 𝑝 and 𝛽 ∈ 𝑆
such that 𝑞 P “𝛽 ∈ �̇� and, for all 𝑖 < 𝛽, sup{𝛼 ∈ 𝐶𝑞

𝛽 | succ𝜎(𝐶𝑞
𝛽 ∖ 𝛼) ⊆ �̇�𝑖} = 𝛽.”

Fix a partition ⟨𝐵𝑖 | 𝑖 < 𝜅⟩ of 𝜅 into pairwise disjoint, cofinal subsets. For 𝛼 < 𝜅, let 𝑖𝛼 denote
the unique 𝑖 < 𝜅 such that 𝛼 ∈ 𝐵𝑖. Using Lemma 3.20, it is straightforward to build a strictly
decreasing sequence ⟨𝑝𝛼 | 𝛼 < 𝜅⟩ of conditions and a strictly increasing sequence ⟨𝜖𝛼 | 𝛼 < 𝜅⟩ such
that the following hold, where, for 𝛼 < 𝜅, we denote 𝛾𝑝𝛼 by 𝛾𝛼:

∙ 𝑝0 = 𝑝;
∙ for all 𝛼 < 𝛽 < 𝜅, 𝐶𝑝𝛼

𝛾𝛼 ⊑ 𝐶
𝑝𝛽
𝛾𝛽 ;
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∙ ⟨𝛾𝛼 | 𝛼 < 𝜅⟩ is increasing and continuous;

∙ for all 𝛼 < 𝜅, 𝑝𝛼+1 P “ succ𝜎(𝐶
𝑝𝛼+1
𝛾𝛼+1 ∖ 𝛾𝛼) ⊆ �̇�𝑖𝛼”;

∙ for all 𝛼 < 𝜅, 𝛾𝛼 < 𝜖𝛼 < 𝛾𝛼+1 and 𝑝𝛼+1 P “𝜖𝛼 ∈ �̇�.”

Let 𝐸 be the set of 𝛼 in acc(𝜅) such that:

∙ 𝛼 ∈
⋂︀

𝑖<𝛼 acc+(𝐵𝑖);
∙ 𝛼 = 𝛾𝛼 = sup{𝜖𝜂 | 𝜂 < 𝛼}.

𝐸 is club in 𝜅, so we can fix 𝛽 ∈ 𝐸 ∩ 𝑆. We claim that 𝑞𝛽 and 𝛽 are as desired. Indeed,

𝑞𝛽 P “{𝜖𝛼 | 𝛼 < 𝛽} ⊆ �̇�” and 𝛽 = sup{𝜖𝛼 | 𝛼 < 𝛽}, so, as �̇� is forced to be club, we

have 𝑞𝛽 P “𝛽 ∈ �̇�.” Also, if 𝑖 < 𝛽 and 𝜂 < 𝛽, fix 𝛼 ∈ 𝐵𝑖 such that 𝜂 < 𝛼 ≤ 𝛾𝛼 < 𝛽. By

construction, 𝑞𝛽  “ succ𝜎(𝐶
𝑞𝛽
𝛽 ∖ 𝛾𝛼) ⊆ �̇�𝑖.” Therefore, 𝑞𝛽 P “for all 𝑖 < 𝛽, sup{𝛼 ∈ 𝐶

𝑞𝛽
𝛽 |

succ𝜎(𝐶
𝑞𝛽
𝛽 ∖ 𝛼) ⊆ �̇�𝑖} = 𝛽.” �

We will sometimes want to do further forcing over 𝑉 [𝑔] to eliminate certain instances of incom-
pactness. We describe this forcing here. First, in 𝑉 [𝑔], let T be the forcing to add a thread through

�⃗�. More precisely, conditions in T are the clubs 𝐶𝛼 for 𝛼 < 𝜅, and T is ordered by end-extension,
i.e., for 𝛼 < 𝛽 < 𝜅, 𝐶𝛽 ≤T 𝐶𝛼 iff 𝐶𝛼 ⊑ 𝐶𝛽.

Also in 𝑉 [𝑔], we define a forcing iteration ⟨Q𝜂, Ṙ𝜉 | 𝜂 ≤ 𝜅+, 𝜉 < 𝜅+⟩, taken with supports of size

< 𝜅, so that, for each 𝜉 < 𝜅+, there is a Q𝜉-name �̇�𝜉 for a subset of 𝜅 such that:

∙ Q𝜉×T “�̇�𝜉 is non-stationary; ”

∙ Q𝜉
“Ṙ𝜉 is the forcing to shoot a club through 𝜅, disjoint from �̇�𝜉, by closed initial

segments.”

Let Q = Q𝜅+ . A straightforward ∆-system argument, together with the assumption that 2𝜅 = 𝜅+,
yields the fact that Q has the 𝜅+-c.c. Therefore, by employing an appropriate bookkeeping device,
we can choose the names ⟨�̇�𝜉 | 𝜉 < 𝜅+⟩ in such a way so that, in 𝑉 [𝑔]Q, if 𝑆 ⊆ 𝜅 is stationary, then
̸T “𝑆 is non-stationary.”

The following Lemma is proven in Section 3 of [HLH16].

Lemma 3.22. In 𝑉 , P * (Q̇× Ṫ) has a dense 𝜅-directed closed subset. �

Let U be the dense 𝜅-directed closed subset identified by Lemma 3.22. A salient feature of U is
that, for all (𝑝, 𝑞, 𝑡) ∈ U, 𝑝 P “𝑡 = 𝐶𝑝

𝛾𝑝 .” Let ℎ be Q-generic over 𝑉 [𝑔].

Theorem 3.23. In 𝑉 [𝑔*ℎ], �⃗� witnesses P−(𝜅, 2,⊑𝜒, 𝜅,NS+
𝜅 , 2, 𝑛) simultaneously for every positive

𝑛 < 𝜔.

Proof. Suppose not. Then we can find a sequence ⟨𝐴𝑖 | 𝑖 < 𝜅⟩ of cofinal subsets of 𝜅, a stationary
set 𝑆 ⊆ 𝜅, and a positive 𝑛 < 𝜔 such that, for all 𝛽 ∈ 𝑆, there is 𝑖𝛽 < 𝛽 such that sup{𝛼 ∈ 𝐶𝛽 |
succ𝑛(𝐶𝛽 ∖𝛼) ⊆ 𝐴𝑖} < 𝛽. By two applications of Fodor’s Lemma, we may in fact assume that there
are fixed 𝑖*, 𝛼* < 𝜅 such that, for all 𝛽 ∈ 𝑆, 𝑖𝛽 = 𝑖* and sup{𝛼 ∈ 𝐶𝛽 | succ𝑛(𝐶𝛽 ∖ 𝛼) ⊆ 𝐴𝑖} = 𝛼*.

Fix (𝑝0, 𝑞0) ∈ 𝑔 * ℎ and P * Q̇-names �̇� and �̇�𝑖* such that that (𝑝0, 𝑞0) forces the following:

∙ �̇� ⊆ 𝜅 is stationary;
∙ �̇�𝑖* ⊆ 𝜅 is cofinal;
∙ for all 𝛽 ∈ �̇�, sup{𝛼 ∈ �̇�𝛽 | succ𝑛(�̇�𝛽 ∖ 𝛼) ⊆ �̇�𝑖*} = 𝛼*.

Work now in 𝑉 . By our definition of Q, we can find (𝑝1, 𝑞1, 𝑡1) ∈ P * (Q̇ × Ṫ) such that (𝑝1, 𝑞1) ≤
(𝑝0, 𝑞0) and (𝑝1, 𝑞1, 𝑡1) P*(Q̇×Ṫ) “�̇� is stationary.” Without loss of generality, 𝑝1 P “𝑡1 = 𝐶𝑝1

𝛾𝑝1”

and 𝛾𝑝1 > 𝛼*.
Find (𝑝2, 𝑞2) ≤ (𝑝1, 𝑞1) and ordinals {𝜉𝑚 | 𝑚 < 𝑛} such that:
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∙ 𝛾𝑝1 < 𝜉0 < 𝜉1 < . . . < 𝜉𝑛−1 < 𝛾𝑝2 ;
∙ (𝑝2, 𝑞2)  “{𝜉𝑚 | 𝑚 < 𝑛} ⊆ �̇�𝑖* .”

Let 𝑝3 be the unique extension of 𝑝2 such that 𝛾𝑝3 = 𝛾𝑝2 + 𝜔 and

𝐶𝑝3
𝛾𝑝3 := 𝐶𝑝1

𝛾𝑝1 ∪ {𝛾𝑝1} ∪ {𝜉𝑚 | 𝑚 < 𝑛} ∪ {𝛾𝑝2 + ℓ | ℓ < 𝜔}.

Let 𝑞3 = 𝑞2, and let 𝑡3 be a P-name forced by 𝑝3 to be equal to 𝐶𝑝3
𝛾𝑝3 .

Let �̇� be the canonical name for the club in 𝜅 introduced by Ṫ. Then (𝑝3, 𝑞3, 𝑡3) P*(Q̇×Ṫ)
“for all 𝛽 ∈ �̇� ∖𝛾𝑝3 , sup{𝛼 ∈ �̇�𝛽 | succ𝑛(�̇�𝛽 ∖𝛼) ⊆ �̇�𝑖*} ≥ 𝛾𝑝1 > 𝛼*.” Moreover, (𝑝3, 𝑞3, 𝑡3) P*(Q̇×Ṫ)
“�̇� is stationary, ” so (𝑝3, 𝑞3, 𝑡3) P*(Q̇×Ṫ) “�̇�∩(�̇� ∖𝛾𝑝3) ̸= ∅.” This contradicts the fact that (𝑝3, 𝑞3) ≤
(𝑝0, 𝑞0) and (𝑝0, 𝑞0) P*Q̇ “for all 𝛽 ∈ �̇�, sup{𝛼 ∈ �̇�𝛽 | succ𝑛(�̇�𝛽 ∖ 𝛼) ⊆ �̇�𝑖*} = 𝛼*.” �

4. Consistency results

In this section, we produce a number of models illustrating that incompactness for the chromatic
number of graphs is compatible with a wide array of set-theoretic compactness principles. We first
deal with stationary reflection.

The following Theorem assumes the consistency of the indestructible-reflection principle Refl*.
We remark that, from suitable large cardinal hypotheses, one can force various instances of Refl*(𝑆).

For example, in [HLH16], it is shown how to arrange Refl*(𝐸ℵ2
ℵ0

), Refl*(ℵ𝜔+1), and Refl*(𝜅) in a
model in which 𝜅 is the least inaccessible cardinal. Similar techniques will work at other cardinals.
We now show how instances of Refl*(𝑆) can be used to obtain instances of incompactness for
chromatic numbers together with stationary reflection.

Theorem 4.1. Suppose 𝜅 ≥ ℵ2 is a regular cardinal, 𝑆 ⊆ 𝜅 is stationary, and Refl*(𝑆) holds. Then
there is a forcing extension preserving all cardinalities and cofinalities ≤ 𝜅 in which 𝑆 remains
stationary and Refl(𝑆) and P−(𝜅, 2,⊑, 𝜅,NS+

𝜅 , 2, 2) both hold.

Proof. Let P be P(𝜅,ℵ0) of Definition 3.16, i.e. the standard forcing to add a �(𝜅)-sequence by

initial segments. Let 𝑔 be P-generic over 𝑉 . In 𝑉 [𝑔], let �⃗� :=
⋃︀
𝑔 = ⟨𝐶𝛼 | 𝛼 < 𝜅⟩, and let T and

Q be as in Subsection 3.3, i.e. T is the forcing to thread �⃗�, and Q is an iteration to destroy the
stationarity of subsets of 𝜅 that are forced to be non-stationary by T.

Let ℎ be Q-generic over 𝑉 [𝑔]. We claim that 𝑉 [𝑔 * ℎ] is the desired model. By Lemma 3.22,

P*(Q̇×Ṫ) has a 𝜅-directed closed subset in 𝑉 . Therefore, in a further extension of 𝑉 [𝑔*ℎ] we easily
have that all 𝑉 -cardinalities and cofinalities ≤ 𝜅 are preserved and 𝑆 is stationary in 𝜅. Since these

are clearly downward absolute, they hold in 𝑉 [𝑔 * ℎ] as well. Also, by Theorem 3.23, �⃗� witnesses
P−(𝜅, 2,⊑, 𝜅,NS+

𝜅 , 2, 2) in 𝑉 [𝑔 * ℎ]. It thus remains to show that Refl(𝑆) holds in 𝑉 [𝑔 * ℎ].
To this end, fix a stationary 𝑇 ⊆ 𝑆 in 𝑉 [𝑔 * ℎ]. By construction of Q, there is 𝑡 ∈ T such that

𝑡 T “𝑇 is stationary.” Let 𝑘 be T-generic over 𝑉 [𝑔 * ℎ] with 𝑡 ∈ 𝑘. Since Refl*(𝑆) holds in 𝑉 and

P* (Q̇× Ṫ) has a dense 𝜅-directed closed subset, Refl(𝑆) holds in 𝑉 [𝑔 *ℎ*𝑘]. Moreover, since 𝑡 ∈ 𝑘,
𝑇 is stationary in 𝑉 [𝑔 *ℎ *𝑘]. Therefore, 𝑇 reflects in 𝑉 [𝑔 *ℎ *𝑘]. Since this is downward absolute,
it holds in 𝑉 [𝑔 * ℎ] as well. �

We now turn to ∆-reflection, both at successors of singular cardinals and at inaccessible cardinals.
The following Corollary follows easily from our work thus far and a result of Fontanella and Hayut.

Corollary 4.2. If ZFC is consistent with the existence of infinitely many supercompact cardinals,
then ZFC is consistent with ∆ℵ𝜔2 ,ℵ𝜔2+1

together with P(ℵ𝜔2+1, 2,⊑,ℵ𝜔2+1, {ℵ𝜔2+1}, 2, 2).
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Proof. In [FH16], starting in a model with infinitely many supercompact cardinals, Fontanella and
Hayut produce a model in which ∆ℵ𝜔2 ,ℵ𝜔2+1

and �(ℵ𝜔2+1) both hold. In their model, CHℵ𝜔2

holds and ℵ𝜔2+1 > i𝜔. Moreover, ∆ℵ𝜔2 ,ℵ𝜔2+1
implies Refl(ℵ𝜔2+1), and so, by Theorem 3.11(5),

P(ℵ𝜔2+1, 2,⊑,ℵ𝜔2+1, {ℵ𝜔2+1}, 2, 2) holds. �

The following Lemma is standard. We provide a proof for completeness.

Lemma 4.3. Suppose 𝜅 is a supercompact cardinal. Then ∆𝜅 holds.

Proof. Let 𝜈 ≥ 𝜅 be an arbitrary regular cardinal. We prove ∆𝜅,𝜈 . To this end, fix a stationary
𝑆 ⊆ 𝐸𝜈

<𝜅 and an algebra 𝐴 on 𝜈 with fewer than 𝜅 operations. Fix an elementary embedding
𝑗 : 𝑉 → 𝑀 witnessing that 𝜅 is 𝜈-supercompact. Then, in 𝑀 , the following statements hold:

∙ 𝑗“𝜈 is a subalgebra of 𝑗(𝐴);
∙ otp(𝑗“𝜈) = 𝜈, and 𝜈 < 𝑗(𝜅) is a regular cardinal;
∙ 𝑗(𝑆) ∩ 𝑗“𝜈 = 𝑗“𝑆 is stationary in sup(𝑗“𝜈).

Therefore, by elementarity, in 𝑉 , there is a subalgebra 𝐴′ of 𝐴 such that 𝜂 := otp(𝐴′) is a regular
cardinal < 𝜅 and 𝑆 ∩𝐴′ is stationary in sup(𝐴′), as required by ∆𝜅,𝜈 . �

Theorem 4.4. Suppose that 𝜅 is a supercompact cardinal. Then there is a forcing extension in
which 𝜅 remains an inaccessible cardinal and ∆𝜅 and P−(𝜅, 2,⊑, 𝜅,NS+

𝜅 , 2, 2) both hold.

Proof. By standard arguments [Lav78], we may assume that the supercompactness of 𝜅 is inde-
structible under 𝜅-directed closed forcing and CH𝜅 holds. Let P be P(𝜅,ℵ0) of Definition 3.16, let

𝑔 be P-generic over 𝑉 , and let �⃗� :=
⋃︀

𝑔. Let T and Q be as in Subsection 3.3.
Let ℎ be Q-generic over 𝑉 [𝑔]. We claim that 𝑉 [𝑔 * ℎ] is the desired model. Clearly, 𝜅 remains

inaccessible in 𝑉 [𝑔*ℎ]. Moreover, by Theorem 3.23, �⃗� witnesses P−(𝜅, 2,⊑𝜒, 𝜅,NS+
𝜅 , 2, 2) in 𝑉 [𝑔*ℎ].

It thus remains to show that ∆𝜅 holds in 𝑉 [𝑔 * ℎ]. To this end, fix a regular cardinal 𝜈 ≥ 𝜅, a
stationary 𝑆 ⊆ 𝐸𝜈

<𝜅, and an algebra 𝐴 on 𝜈 with fewer than 𝜅 operations.
If 𝜈 = 𝜅, then, by our construction of Q, we can find 𝑡 ∈ T such that 𝑡 T “𝑆 is stationary in 𝜈.”

If 𝜈 > 𝜅, then, as |T| = 𝜅, we have T “𝑆 is stationary in 𝜈.” In either case, we can find a T-generic

filter 𝑘 over 𝑉 [𝑔 *ℎ] such that 𝑆 remains stationary in 𝜈 in 𝑉 [𝑔 *ℎ*𝑘]. By Lemma 3.22, P* (Q̇× Ṫ)
has a dense 𝜅-directed closed subset in 𝑉 , so, as 𝜅 is indestructibly supercompact in 𝑉 , we have
that 𝜅 is again supercompact in 𝑉 [𝑔 *ℎ * 𝑘]. Therefore, by Lemma 4.3, ∆𝜅 holds in 𝑉 [𝑔 *ℎ * 𝑘], so,
applying it to 𝑆 and 𝐴, we find a subalgebra 𝐴′ of 𝐴 such that 𝜂 := otp(𝐴′) is a regular cardinal
< 𝜅 and 𝑆∩𝐴′ is stationary in sup(𝐴′). However, by Lemma 3.22, T is 𝜅-distributive in 𝑉 [𝑔 *ℎ], so
we in fact have 𝐴′ ∈ 𝑉 [𝑔 *ℎ]. All of its relevant properties are easily seen to be downward absolute
from 𝑉 [𝑔 * ℎ * 𝑘] to 𝑉 [𝑔 * ℎ], so we have verified that ∆𝜅 holds in 𝑉 [𝑔 * ℎ]. �

Corollary 4.5. Suppose ZFC is consistent with the existence of a Mahlo cardinal. Then ZFC is
consistent with FRP(ℵ2) together with P(ℵ2, 2,⊑,ℵ2, {ℵ2}, 2, 2).

Proof. Let 𝜅 be the least Mahlo cardinal in 𝐿. Force over 𝐿 with Miyamoto’s forcing from [Miy10]
to obtain a forcing extension 𝑉 [𝑔] in which 𝜅 = ℵ2 and GCH and FRP(ℵ2) both hold. Since 𝜅

is not weakly compact in 𝐿, �(ℵ2) holds in 𝑉 [𝑔]. By FRP(ℵ2), every stationary subset of 𝐸ℵ2
ℵ0

reflects, and then, by Theorem 3.11(6), P(ℵ2, 2,⊑,ℵ2, {ℵ2}, 2, 2) holds. �

Corollary 4.2, Theorem 4.4, and Corollary 4.5, together with Proposition 2.23 and Fact 2.25,
show that, for many values of 𝜅, a maximal degree of incompactness for the chromatic number of
graphs of size 𝜅 is compatible with a maximal degree of compactness for the coloring number of
graphs of size 𝜅.

We now turn our attention to other prominent set-theoretic compactness principles.
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Corollary 4.6. Suppose 𝜅0, 𝜅1, 𝜆0, 𝜆1 are infinite cardinals, 𝜅1 is regular, and the Chang’s Conjec-
ture variant (𝜅1, 𝜆1)� (𝜅0, 𝜆0) holds. Then there is a forcing extension preserving all cardinalities

and cofinalities ≤ 𝜅1 in which (𝜅1, 𝜆1)� (𝜅0, 𝜆0) remains valid and there is a sequence �⃗� witnessing
P−(𝜅1, 2,⊑, 𝜅1, (NS+

𝜅1
)𝑉 , 2, 𝜎) simultaneously for all 𝜎 < 𝜅1.

Proof. Let P be P(𝜅1,ℵ0) of Definition 3.16, let 𝑔 be P-generic over 𝑉 , and let �⃗� :=
⋃︀
𝑔. As P

is 𝜅1-strategically closed and (𝜅1, 𝜆1)� (𝜅0, 𝜆0) is preserved by 𝜅1-strategically closed forcing, we
immediately have that, in 𝑉 [𝑔], all cardinalities and cofinalities ≤ 𝜅1 are preserved and (𝜅1, 𝜆1)�
(𝜅0, 𝜆0) holds. In addition, in 𝑉 [𝑔], by Theorem 3.21, �⃗� witnesses P−(𝜅1, 2,⊑, 𝜅1, (NS+

𝜅1
)𝑉 , 2, 𝜎)

for all 𝜎 < 𝜅1. �

Corollary 4.7. Suppose 𝜆 < 𝜅 are regular cardinals, with 𝜆 indestructibly supercompact. Then
there is a forcing extension preserving all cardinalities and cofinalities ≤ 𝜅 in which 𝜆 remains

supercompact and there is a sequence �⃗� witnessing P−(𝜅, 2,⊑𝜆, 𝜅, (NS+
𝜅 )𝑉 , 2, 𝜎) simultaneously for

all 𝜎 < 𝜅.

Proof. Let P be P(𝜅, 𝜆) of Definition 3.16, let 𝑔 by P-generic over 𝑉 , and let �⃗� :=
⋃︀
𝑔. As P is 𝜆-

directed closed, 𝜆 remains supercompact in 𝑉 [𝑔]. Moreover, in 𝑉 [𝑔], by Theorem 3.21, �⃗� witnesses
P−(𝜅, 2,⊑𝜆, 𝜅, (NS+

𝜅 )𝑉 , 2, 𝜎) for all 𝜎 < 𝜅. �

We remark that, by arguments of Cummings and Magidor from [CM11, S3], we can in fact
perform a class-length iteration that preserves the supercompactness of 𝜆 while forcing the state-

ment that, for all regular 𝜅 > 𝜆, there is a sequence �⃗� witnessing P−(𝜅, 2,⊑𝜆, 𝜅, (NS+
𝜅 )𝑉 , 2, 𝜎)

simultaneously for all 𝜎 < 𝜅.

Corollary 4.8. Suppose that ZFC is consistent with the existence of a supercompact cardinal. Then
ZFC is consistent with each of the following:

(1) Martin’s Maximum together with the statement that, for all regular 𝜅 > ℵ2, there is a

sequence �⃗� witnessing P−(𝜅, 2,⊑ℵ2 , 𝜅, (NS+
𝜅 )𝑉 , 2, 𝜎) simultaneously for all 𝜎 < 𝜅.

(2) Rado’s Conjecture together with the statement that, for all regular 𝜅 > ℵ2, there is a se-

quence �⃗� witnessing P−(𝜅, 2,⊑ℵ2 , 𝜅, (NS+
𝜅 )𝑉 , 2, 𝜎) simultaneously for all 𝜎 < 𝜅.

Proof. Starting in a model with a supercompact cardinal, one can force Martin’s Maximum as
in [FMS88]. Martin’s Maximum is preserved by ℵ2-directed closed set forcing, so, by arguments
from the proof of Corollary 4.7 and the following remarks, we can force over the model of Martin’s
Maximum with a class-length iteration that preserves Martin’s Maximum and forces that, for all

regular 𝜅 > ℵ2, there is a sequence �⃗� witnessing P−(𝜅, 2,⊑ℵ2 , 𝜅, (NS+
𝜅 )𝑉 , 2, 𝜎) simultaneously for

all 𝜎 < 𝜅.
The argument for Rado’s Conjectures is similar, exploiting the theorem from [Tod83] stating

that, if 𝜆 is supercompact, then Rado’s Conjecture holds after forcing with Coll(ℵ1, < 𝜆). Moreover,
by standard arguments, in the resulting forcing extension, Rado’s Conjecture is preserved by ℵ2-
directed closed set forcing. Now proceed as in the previous paragraph. �

The following results of Todorcevic show that Corollary 4.8 is sharp.

Theorem 4.9 (Todorcevic, [Tod84, Theorem 1], [Tod93, Theorem 10]). Assume the Proper Forcing
Axiom or Rado’s Conjecture, let 𝜅 ≥ ℵ2 be regular, and let 𝐸𝜅

ℵ1
⊆ Γ ⊆ acc(𝜅). Suppose ⟨𝐶𝛼 | 𝛼 ∈ Γ⟩

is such that:

(1) for all 𝛼 ∈ Γ, 𝐶𝛼 is club in 𝛼;
(2) for all 𝛽 ∈ Γ and all 𝛼 ∈ acc(𝐶𝛽), we have 𝛼 ∈ Γ and 𝐶𝛼 ⊑ 𝐶𝛽.

Then there is a club 𝐷 ⊆ 𝜅 such that, for all 𝛼 ∈ acc(𝐷), we have 𝛼 ∈ Γ and 𝐶𝛼 ⊑ 𝐷.
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5. Realizing all closed intervals

Recall the following definition.

Definition 5.1 (The chromatic spectrum of a graph, [Rin17c]). For a class 𝒫 of forcing notions
and a graph 𝒢, let

Chr𝒫(𝒢) := {𝜅 | ∃P ∈ 𝒫(P “ Chr(𝒢) = 𝜅”)}.

In [Rin17c], the second author proves that, if 𝑉 = 𝐿 and 𝒫 is the class of cofinality-preserving
and GCH-preserving forcing posets, then any closed interval of infinite cardinals whose maximum
is below the first cardinal fixed point can be realized as Chr𝒫(𝒢) for some graph 𝒢. The proof

uses the 𝐶-sequence graph 𝐺𝜆(𝐶𝜆) as a building block, where �⃗�𝜆 is a �𝜆-sequence and 𝐺𝜆 is some

stationary subset of 𝐸𝜆+

cf(𝜆), chosen in such a way that the 𝐺𝜆’s (for different values of 𝜆) satisfy some

sort of mutual stationarity condition, made possible by the fact that, for every infinite cardinal 𝜃
below the first cardinal fixed point, [ℵ0, 𝜃) may be partitioned into finitely many progressive sets.8

The forcing notions from [Rin17c] witnessing the chromatic spectra are full-support products of
posets that build upon Clause (1) of Lemma 2.11. Note that Clause (2) of Lemma 2.11 is irrelevant
for �𝜆-sequences, as any forcing to introduce such a threading club 𝐷 will necessarily collapse the
cardinal 𝜆+.

In this section, we produce a forcing extension satisfying the same statement about the chromatic
spectrum of a graph, but without the restriction that the interval be below the first cardinal fixed
point. More precisely, we will produce a class forcing extension satisfying GCH in which every
closed interval of infinite cardinals is realizable as Chr𝒫(𝐺) for some graph 𝒢, where 𝒫 is again
the class of cofinality-preserving, GCH-preserving forcing posets. Of course, we shall use the 𝐶-

sequence graph as a building block, but this time, �⃗� will be a generic �(𝜅)-sequence, 𝐺 will simply
be acc(𝜅), and the witnessing notion of forcing will be an Easton-support product of posets building
upon Clause (2) of Lemma 2.11.

It remains open whether such an unrestricted result follows from 𝑉 = 𝐿.

Recall the following basic definition.

Definition 5.2. Suppose P and Q are forcing posets. A map 𝜋 : Q → P is a projection if:

∙ 𝜋 is order-preserving, i.e. for all 𝑞0, 𝑞1 ∈ Q, if 𝑞1 ≤Q 𝑞0, then 𝜋(𝑞1) ≤P 𝜋(𝑞0);
∙ 𝜋(1Q) = 1P;
∙ for all 𝑞 ∈ Q and all 𝑝 ≤P 𝜋(𝑞), there is 𝑞′ ≤Q 𝑞 such that 𝜋(𝑞′) ≤P 𝑝.

If 𝜋 : Q → P is a projection and 𝐻 is P-generic over 𝑉 , then let Q/𝐻 denote the poset whose set
of conditions is {𝑞 ∈ Q | 𝜋(𝑞) ∈ 𝐻} and whose order is inherited from Q. Note that, if 𝜋 : Q → P is

a projection and �̇� is the canonical P-name for the generic filter, then Q is isomorphic to a dense
subset of P *Q/�̇� via the map 𝑞 ↦→ (𝜋(𝑞), 𝑞).

If 𝜅 is a regular, uncountable cardinal, let S(𝜅) denote the forcing poset P(𝜅,ℵ0) of Definition 3.16,
i.e. S(𝜅) is the standard forcing to add a �(𝜅)-sequence by initial segments. Let S*(𝜅) denote the
forcing poset with the same set of conditions as S(𝜅) but with an ordering given by 𝑡 ≤S*(𝜅) 𝑠 iff

𝑡 ⊇ 𝑠 and 𝐶𝑠
𝛾𝑠 ⊑ 𝐶𝑡

𝛾𝑡 .

Proposition 5.3. The identity map id : S*(𝜅) → S(𝜅) is a projection.

8That is, Card[ℵ0, 𝜃) = a0 ⊎ . . . ⊎ a𝑚, with min(a𝑖) > |a𝑖| for all 𝑖 ≤ 𝑚.
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Proof. Clearly, id is order-preserving, and id(1S*(𝜅)) = 1S(𝜅) = ∅. Fix 𝑠0, 𝑠1 ∈ S(𝜅) with 𝑠1 ≤S(𝜅) 𝑠0.
We must produce 𝑠2 such that 𝑠2 ≤S*(𝜅) 𝑠0 and 𝑠2 ≤S(𝜅) 𝑠1.

For 𝑖 < 2, let 𝛾𝑖 = 𝛾𝑠𝑖 , and let 𝛾2 := 𝛾1 + 𝜔. Let 𝐶 := 𝐶𝑠0
𝛾0 ∪ {𝛾0} ∪ {𝛾1 + 𝑛 | 𝑛 < 𝜔}, and define

𝑠2 ∈ S*(𝜅) with 𝛾𝑠2 := 𝛾2 by letting 𝐶𝑠2
𝛾2 := 𝐶 and 𝐶𝑠2

𝛿 := 𝐶𝑠1
𝛿 for all limit 𝛿 < 𝛾2. It is easily

verified that 𝑠2 is as desired, so id is indeed a projection. �

Unlike S(𝜅), which is merely 𝜔1-directed closed, we have:

Proposition 5.4. S*(𝜅) is 𝜅-directed closed.

Proof. Write S* := S*(𝜅). First note that S* is tree-like, so it suffices to show that it is 𝜅-closed.
To this end, fix a limit ordinal 𝛿 < 𝜅, and let ⟨𝑠𝜂 | 𝜂 < 𝛿⟩ be a strictly decreasing sequence of
conditions from S*. Let 𝛾 := sup{𝛾𝑠𝜂 | 𝜂 < 𝛿}. As 𝜅 is regular, we have 𝛾 < 𝜅. We will define a
lower bound 𝑠 ∈ S* with 𝛾𝑠 := 𝛾. To specify 𝑠, it is enough to set 𝐶𝑠

𝛾 :=
⋃︀

𝜂<𝛿 𝐶
𝑠𝜂
𝛾𝑠𝜂 . Note that, by

the definition of S*, we have that, for all 𝜂 < 𝜉 < 𝛿, 𝐶
𝑠𝜂
𝛾𝑠𝜂 ⊑ 𝐶

𝑠𝜉
𝛾
𝑠𝜉 . This implies that 𝐶𝑠

𝛾 is in fact a

club in 𝛾 and, for all 𝛼 ∈ acc(𝐶𝑠
𝛾), 𝐶𝑠

𝛼 ⊑ 𝐶𝑠
𝛾 . Therefore, 𝑠 is a condition in S* and is a lower bound

for ⟨𝑠𝜂 | 𝜂 < 𝛿⟩. �

Remarks. (1) If 𝜅<𝜅 = 𝜅, then S*(𝜅) is a 𝜅-directed closed forcing poset of size 𝜅 and therefore
forcing equivalent to the forcing to add a Cohen subset of 𝜅.

(2) Suppose that 𝑆 is S(𝜅)-generic over 𝑉 , and let �⃗� :=
⋃︀
𝑆 = ⟨𝐶𝛼 | 𝛼 < 𝜅⟩ be the �(𝜅)-

sequence added by 𝑆. In 𝑉 [𝑆], S*(𝜅)/𝑆 adds a thread through �⃗�: if 𝑇 is S*(𝜅)/𝑆-generic
over 𝑉 [𝑆], then 𝐷 :=

⋃︀
𝑡∈𝑇 𝐶𝛾𝑡 is a club in 𝜅 and, for all 𝛼 ∈ acc(𝐷), 𝐶𝛼 ⊑ 𝐷.

Recall that a set 𝑋 of ordinals is an Easton set if, for every infinite, regular cardinal 𝜅, |𝑋∩𝜅| < 𝜅.
Let P be the class-length Easton support product forcing where, for all ordinals 𝑖, the 𝑖th factor is
S(𝑖) if 𝑖 is a regular, uncountable cardinal and trivial forcing otherwise. Throughout our discussion,
we will disregard coordinates on which trivial forcing is being done. Conditions of P are therefore
all functions 𝑝 such that:

∙ dom(𝑝) is an Easton set of regular, uncountable cardinals;
∙ for all 𝑖 ∈ dom(𝑝), we have 𝑝(𝑖) ∈ S(𝑖).

For 𝑝, 𝑞 ∈ P, we let 𝑞 ≤ 𝑝 iff dom(𝑞) ⊇ dom(𝑝) and, for all 𝑖 ∈ dom(𝑝), 𝑞(𝑖) ≤S(𝑖) 𝑝(𝑖). For ordinals
𝑖 < 𝑗, let P𝑖,𝑗 denote the poset whose conditions are all 𝑝 ∈ P such that dom(𝑝) ⊆ [𝑖, 𝑗) and whose
order is inherited from P. For an ordinal 𝑖 > 0, let P𝑖 denote P0,𝑖, and let P𝑖 denote the class of
𝑝 ∈ P such that dom(𝑝) ∩ 𝑖 = ∅. We therefore have, for all 𝑖 < 𝑗, P ∼= P𝑖 × P𝑖,𝑗 × P𝑗 .

Assume GCH for the remainder of the section. The next proposition plays the role of Lemma 3.7
of [Rin17c].

Proposition 5.5. Suppose 𝑖 is a regular, uncountable cardinal and 𝑗 > 𝑖+. Then:

(1) P𝑖+ has the 𝑖+-c.c.;
(2) P𝑖+,𝑗 is 𝑖+-strategically closed;

(3) P𝑖+
“P𝑖+,𝑗 is 𝑖+-distributive.”

Proof. (1) Note that, as 𝑖<𝑖 = 𝑖, the number of Easton subsets of 𝑖+ ∩ Reg is 𝑖. For each such
Easton subset 𝑑 ⊆ 𝑖+ ∩ Reg and each 𝑘 ∈ 𝑑, we have |S(𝑘)| = 𝑘 ≤ 𝑖, so |

∏︀
𝑘∈𝑑 S(𝑘)| = 𝑖. It follows

that |P𝑖+ | = 𝑖. In particular, P𝑖+ has the 𝑖+-c.c.
(2) By Lemma 3.19, we know that, for every regular, uncountable 𝑘 ∈ [𝑖+, 𝑗), S(𝑘) is 𝑖+-

strategically closed. Fix a winning strategy 𝜎𝑘 for II in the game a𝑖+(S(𝑘)).9 We describe a

9Recall Definition 3.18.
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winning strategy 𝜎 for II in the game a𝑖+(P𝑖+,𝑗). We will inductively arrange that, if ⟨𝑝𝜉 | 𝜉 < 𝑖+⟩
is a run of the game in which II plays according to 𝜎 and 𝑘 ∈

⋃︀
𝜉<𝑖+ dom(𝑝𝜉), then, letting 𝜉𝑘 < 𝑖+

be least such that 𝑘 ∈ dom(𝑝𝜉𝑘), we have that 𝜉𝑘 is an odd ordinal and ⟨∅⟩⌢⟨𝑝𝜉(𝑘) | 𝜉𝑘 ≤ 𝜉 < 𝑖+⟩
is a run of a𝑖+(S(𝑘)) in which II plays according to 𝜎𝑘.

Suppose that 𝜂 < 𝑖+ is an even ordinal and ⟨𝑝𝜉 | 𝜉 < 𝜂⟩ is a partial run of the game in which II
has played according to 𝜎. Let 𝑋 :=

⋃︀
𝜉<𝜂 dom(𝑝𝜉). Since dom(𝑝𝜉) is an Easton subset of [𝑖+, 𝑗)

for all 𝜉 < 𝜂 and, for all regular 𝑘 ∈ [𝑖+, 𝑗), we have 𝜂 < 𝑖+ ≤ 𝑘, it follows that 𝑋 is an Easton
subset of [𝑖+, 𝑗). For all 𝑘 ∈ 𝑋, let 𝜉𝑘 < 𝜂 be least such that 𝑘 ∈ dom(𝑝𝜉𝑘). Define a condition 𝑝
by letting dom(𝑝) := 𝑋 and, for every regular, uncountable 𝑘 ∈ 𝑋, letting 𝑝(𝑘) := 𝜎𝑘(⟨∅⟩⌢⟨𝑝𝜉(𝑘) |
𝜉𝑘 ≤ 𝜉 < 𝜂⟩). By our inductive assumptions about 𝜎, this is well-defined. Let 𝜎(⟨𝑝𝜉 | 𝜉 < 𝜂⟩) := 𝑝.
It is easily verified that this maintains our inductive assumptions and defines a winning strategy
for II in a𝑖+(P𝑖,𝑗).

(3) By Clauses (1),(2), and the strategic closure version of Easton’s Lemma (cf. [Cum10, Re-
mark 5.17]). �

By Clause (3) of Proposition 5.5, 𝑉 P is a model of ZFC. We next argue that 𝑉 P has the same
cofinalities (and hence cardinalities) as 𝑉 . It suffices to show that cf(𝜅) > 𝜇 in 𝑉 P for all 𝑉 -regular
cardinals 𝜇 < 𝜅. Fix such 𝜇 and 𝜅. By Proposition 5.5(1), P𝜇+ has the 𝜇+-c.c., so, as 𝜇+ ≤ 𝜅, 𝜅

remains regular in 𝑉 P𝜇+ . By Proposition 5.5(3), for all 𝜆 > 𝜇+, P𝜇+,𝜆 is 𝜇+-distributive in 𝑉 P𝜇+

and thus cannot add any new functions from 𝜇 to 𝜅. Therefore, cf(𝜅) > 𝜇 in 𝑉 P𝜆 for all 𝜆, and
hence in 𝑉 P as well.

We next argue that GCH holds in 𝑉 P. To do this, we must show that, for every infinite cardinal
𝜅, 𝜅cf 𝜅 = 𝜅+ in 𝑉 P. Fix such a 𝜅. By the arguments of the previous paragraph, cf(𝜅)𝜅 ∩ 𝑉 P =
cf(𝜅)𝜅 ∩ 𝑉

Pcf(𝜅)+ . A nice Pcf(𝜅)+-name for an element of cf(𝜅)𝜅 consists of a function from cf(𝜅) × 𝜅

to the set of antichains of Pcf(𝜅)+ . Since Pcf(𝜅)+ has the cf(𝜅)+-c.c. and |Pcf(𝜅)+ | = cf(𝜅), there are

only cf(𝜅)+ possible antichains of Pcf(𝜅)+ and hence only (cf(𝜅)+)𝜅 = 𝜅+ nice Pcf(𝜅)+-names for

elements of cf(𝜅)𝜅. Therefore, 𝜅cf(𝜅) = 𝜅+ in 𝑉
Pcf(𝜅)+ and hence in 𝑉 P.

For ordinals 𝑖 < 𝑗, let P*
𝑖,𝑗 be the poset with the same conditions as P𝑖,𝑗 but ordered on regular,

uncountable coordinates 𝑘 ∈ [𝑖, 𝑗) by ≤S*(𝑘) rather than by ≤S(𝑘). The following is immediate from
Lemmas 5.3 and 5.4

Lemma 5.6. Suppose 𝑖 < 𝑗.

(1) The identity map id : P*
𝑖,𝑗 → P𝑖,𝑗 is a projection;

(2) If ℓ is the least regular cardinal in the interval [𝑖, 𝑗), then P*
𝑖,𝑗 is ℓ-directed closed. �

Let 𝑆 be P-generic over 𝑉 . For ordinals 𝑖 < 𝑗, let 𝑆𝑖, 𝑆𝑖,𝑗 , and 𝑆𝑖 denote the generic filters for
P𝑖, P𝑖,𝑗 , and P𝑖, respectively, induced by 𝑆. In 𝑉 [𝑆], let 𝒫 be the class of all cofinality-preserving,
GCH-preserving forcing posets.

Theorem 5.7. In 𝑉 [𝑆], for every pair of infinite cardinals 𝜇 ≤ 𝜅, there exists a graph 𝐺𝜇,𝜅 such
that Chr𝒫(𝐺𝜇,𝜅) is the set of cardinals 𝜆 such that 𝜇 ≤ 𝜆 ≤ 𝜅.

Proof. If 𝜇 = 𝜅, then we can simply take 𝐺𝜇,𝜅 := 𝐾𝜇, where 𝐾𝜇 denotes the complete graph on 𝜇
vertices. Thus, assume that 𝜇 < 𝜅.

Work in 𝑉 [𝑆]. Let 𝑘 be an arbitrary regular, uncountable cardinal. Let �⃗�𝑘 :=
⋃︀

𝑝∈𝑆 𝑝(𝑘) =

⟨𝐶𝑘
𝛼 | 𝛼 < 𝑘⟩ be the generic �(𝑘)-sequence added by the 𝑘th coordinate of P, and consider the

corresponding graph 𝒢𝑘 := 𝐺(�⃗�𝑘) of Definition 2.4, using 𝐺 := acc(𝑘).
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Claim 5.7.1. In 𝑉 [𝑆𝑘+ ], for every nonzero 𝜃 < 𝑘 and every sequence �⃗� = ⟨𝐴𝜂 | 𝜂 < 𝜃⟩ of cofinal

subsets of 𝑘, there is a limit ordinal 𝛿 < 𝑘 such that 𝛿 captures �⃗� with respect to �⃗�𝑘.10

Proof. Fix such a 𝜃 and �⃗�, and suppose the claim fails for �⃗�. For each 𝜂 < 𝜃, let

Ω𝜂 := acc(𝑘) ∖ {𝛿 ∈ acc(𝑘) | min(𝐶𝑘
𝛿 ) ≥ min(𝐴0) & ∃𝜄 < otp(𝐶𝑘

𝛿 )[𝐶𝑘
𝛿 (𝜄), 𝐶𝑘

𝛿 (𝜄 + 1) ∈ 𝐴𝜂]}.
By our assumption,

⋃︀
𝜂<𝜃 Ω𝜂 = acc(𝑘).

In 𝑉 , P*
𝑘+ is isomorphic to a dense subset of P𝑘+ *P*

𝑘+/�̇�P𝑘+
, where �̇�P𝑘+

is the canonical name for
the P𝑘+-generic filter. By the arguments used to prove the analogous fact about P𝑘+ , forcing with
P*
𝑘+ over 𝑉 preserves cofinalities and GCH. Therefore, forcing with Q := P*

𝑘+/𝑆𝑘+ over 𝑉 [𝑆𝑘+ ]

preserves cofinalities and GCH. In particular, in 𝑉 [𝑆𝑘+ ]Q, 𝑘 remains a regular cardinal, and it
follows that there is 𝜂 < 𝜃 such that Ω𝜂 is stationary in 𝑉 [𝑆𝑘+ ]Q.

Let 𝜁 := sup{min(𝐴𝜂) | 𝜂 < 𝜃}. Since 𝑘 is regular, we have 𝜁 < 𝑘. By genericity, there is

𝛽0 ∈ acc(𝑘) such that min(𝐶𝑘
𝛽0

) > 𝜁. Let 𝑞0 ∈ Q be such that dom(𝑞0) = {𝑘} and 𝑞0(𝑘) = ⟨𝐶𝑘
𝛼 |

𝛼 ≤ 𝛽0⟩.
Find 𝑞 ≤ 𝑞0 and 𝜂 < 𝜃 such that 𝑞 Q “Ω𝜂 is stationary in 𝑘.” Let 𝛽 < 𝑘 be such that 𝑞(𝑘) = ⟨𝐶𝑘

𝛼 |
𝛼 ≤ 𝛽⟩. Let 𝜉0 := min(𝐴𝜂 ∖ (𝛽 + 1)) and 𝜉1 := min(𝐴𝜂 ∖ (𝜉0 + 1)). By genericity, there is 𝛾 < 𝑘

such that (𝐶𝑘
𝛽) ∪ {𝛽, 𝜉0, 𝜉1} ⊑ 𝐶𝑘

𝛾 . Define 𝑞* ≤Q 𝑞 by letting dom(𝑞*) := dom(𝑞), 𝑞*(𝑖) := 𝑞(𝑖) for

all 𝑖 ∈ dom(𝑞) ∖ {𝑘}, and 𝑞*(𝑘) := ⟨𝐶𝑘
𝛼 | 𝛼 ≤ 𝛾⟩. Let 𝑅 be Q-generic over 𝑉 [𝑆𝑘] with 𝑞* ∈ 𝑅.

Let 𝐷 :=
⋃︀

𝑟∈𝑅 𝐶𝑘
𝛾𝑟(𝑘) . Then 𝐷 is a thread through �⃗�𝑘 and 𝛾 ∈ acc(𝐷). Therefore, if 𝜄 =

otp(𝐶𝑘
𝛾 ∩ 𝜉0), then, for every 𝛿 ∈ acc(𝐷) ∖ 𝛾, we have min(𝐶𝑘

𝛿 ) = min(𝐶𝑘
𝛽0

) > min(𝐴𝜂), 𝐶𝑘
𝛿 (𝜄) = 𝜉0,

and 𝐶𝑘
𝛿 (𝜄+ 1) = 𝜉1. In particular, 𝛿 /∈ Ω𝜂. Hence, Ω𝜂 is non-stationary in 𝑉 [𝑆𝑘+ *𝑅], contradicting

the fact that 𝑞* ∈ 𝑅 and 𝑞* ≤ 𝑞 Q “Ω𝜂 is stationary.” �

It then follows from Lemma 2.13 that 𝑉 [𝑆𝑘+ ] |= Chr(𝒢𝑘) = 𝑘. By 𝑉 [𝑆] = 𝑉 [𝑆𝑘+ ][𝑆𝑘+ ] and
Proposition 5.5(3), moreover, 𝑉 [𝑆] |= Chr(𝒢𝑘) = 𝑘.

Let 𝒢𝜇,𝜅 be the disjoint graph union of 𝐾𝜇 and 𝒢𝑘 for all regular, uncountable 𝑘 ∈ [𝜇, 𝜅]. Then,
in 𝑉 [𝑆], Chr(𝒢𝜇,𝜅) = 𝜅, and, as 𝐾𝜇 is a subgraph of 𝐺𝜇,𝜅, we know that, in any outer model of 𝑉 [𝑆]
with the same cardinals, Chr(𝒢𝜇,𝜅) ≥ 𝜇. We thus must show that, for every cardinal 𝜆 ∈ [𝜇, 𝜅),

there is a cofinality-preserving, GCH-preserving poset Q(𝜆) such that, 𝑉 [𝑆]Q(𝜆) |= Chr(𝒢𝜇,𝜅) = 𝜆.

To this end, fix such a 𝜆, and let Q(𝜆) := P*
𝜆+,𝜅+/𝑆𝜆+,𝜅+ . In 𝑉 , let Q̇(𝜆) be the canonical P𝜆+,𝜅+-

name for Q(𝜆). Then P*
𝜆+,𝜅+ is isomorphic to a dense subset of P𝜆+,𝜅+ * Q̇(𝜆), so P * Q̇(𝜆) ∼= P𝜆+ ×

(P𝜆+,𝜅+ *Q̇(𝜆))×P𝜅+
is forcing equivalent to P𝜆+×P*

𝜆+,𝜅+×P𝜅+
. This is itself a class-length Easton

product, and standard arguments just like those for P show that forcing with P𝜆+ × P*
𝜆+,𝜅+ × P𝜅+

over 𝑉 preserves cofinalities and GCH. Therefore, Q(𝜆) preserves cofinalities and GCH over 𝑉 [𝑆].
We now show that, in 𝑉 [𝑆], Q(𝜆) “ Chr(𝒢𝜇,𝜅) = 𝜆.” First note that, for all regular, uncountable

𝑘 ∈ [𝜆+, 𝜅], forcing with Q(𝜆) adds a thread through �⃗�𝑘, so that, by Lemma 2.11(2), Q(𝜆)

“ Chr(𝒢𝑘) ≤ ℵ0.” Consequently, Q(𝜆) “ Chr(𝒢𝜇,𝜅) ≤ 𝜆.”
To show the reverse inequality, we consider three cases:
I Suppose 𝜆 = 𝜇. As 𝐾𝜇 is a subgraph of 𝒢𝜇,𝜅, we immediately obtain Q(𝜆) “ Chr(𝒢𝜇,𝜅) ≥ 𝜆.”
I Suppose 𝜆 > 𝜇 and 𝜆 is a regular cardinal. It suffices to show that Q(𝜆) “ Chr(𝒢𝜆) = 𝜆.”

To see this, it is enough to verify that Q(𝜆) does not add any new functions from 𝜆 to 𝜆. By the
strategic closure version of Easton’s Lemma, we have that, for all 𝑗 > 𝜅+, in 𝑉 [𝑆𝜆+ ], P*

𝜆+,𝜅+ ×P𝜅+,𝑗

is 𝜆+-distributive and hence does not add any new functions from 𝜆 to 𝜆. Since P * Q̇(𝜆) is forcing

10Recall Definition 2.12.
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equivalent to P𝜆+ × P*
𝜆+,𝜅+ × P𝜅+

, this implies that 𝜆𝜆 ∩ 𝑉 P*Q̇(𝜆) ⊆ 𝑉 P𝜆+ . In particular, forcing

with Q(𝜆) over 𝑉 [𝑆] does not add any new functions from 𝜆 to 𝜆.
I Suppose 𝜆 > 𝜇 and 𝜆 is singular. As in the previous case, it suffices to show that, for all

regular, uncountable 𝑘 ∈ [𝜇, 𝜆), Q(𝜆) does not add any new functions from 𝑘 to 𝑘 and, therefore,
Q(𝜆) “ Chr(𝒢𝑘) = 𝑘.” Fix such a 𝑘. In 𝑉 [𝑆𝑘+ ], again by the strategic closure version of Easton’s

Lemma, we have that, for all 𝑗 > 𝜅+, P𝑘+,𝜆+ × P*
𝜆+,𝜅+ × P𝜅+,𝑗 is 𝑘+-distributive and hence does

not add any new functions from 𝑘 to 𝑘. Therefore, 𝑘𝑘 ∩ 𝑉 P*Q̇(𝜆) ⊆ 𝑉 P𝑘+ ⊆ 𝑉 P𝜆+ , thus completing
the proof. �
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[Tod93] Stevo Todorčević. Conjectures of Rado and Chang and cardinal arithmetic. In Finite and infinite com-

binatorics in sets and logic (Banff, AB, 1991), volume 411 of NATO Adv. Sci. Inst. Ser. C Math. Phys.
Sci., pages 385–398. Kluwer Acad. Publ., Dordrecht, 1993.

[Ung15] Spencer Unger. Compactness for the chromatic number at ℵ𝜔1+1. 2015. Unpublished note.

Department of Mathematics, Bar-Ilan University, Ramat-Gan 5290002, Israel.
URL: http://u.math.biu.ac.il/~lambiec/

Department of Mathematics, Bar-Ilan University, Ramat-Gan 5290002, Israel.
URL: http://www.assafrinot.com


	1. Introduction
	Organization of this paper
	Notation

	2. Compactness for chromatic and coloring numbers
	2.1. Chromatic numbers
	2.2. Coloring numbers

	3. Obtaining coherent and capturing C-sequences
	3.1. Postprocessing functions
	3.2. Combinatorial constructions
	3.3. Forcing constructions

	4. Consistency results
	5. Realizing all closed intervals
	Acknowledgments
	References

