ITERATIONS OF ω_1 -COHEN FORCING

CHRIS LAMBIE-HANSON

The purpose of this note is to prove that, over a model of CH, iterations of ω_1 -Cohen forcing with ω_1 -support are ω_1 -proper. In particular, these iterations preserve ω_2 . We first recall the relevant definitions.

Definition Let θ be a sufficiently large, regular cardinal, and let $\mathbb{P} \in H(\theta)$ be a poset. We say $N \prec H(\theta)$ is *relevant* for \mathbb{P} if:

- $|N| = \aleph_1$.
- ${}^{\omega}N \subseteq N.$
- $N = \bigcup_{\alpha < \omega_1} N_{\alpha}$, where $\langle N_{\alpha} \mid \alpha < \omega_1 \rangle$ is an internally approachable chain of countable elementary substructures of $H(\theta)$.

Definition Let \mathbb{P} be a poset, and let N be relevant for \mathbb{P} . $q \in \mathbb{P}$ is (N, \mathbb{P}) -generic if, for all dense, open sets D of \mathbb{P} such that $D \in N$, $q \Vdash ``G_{\mathbb{P}} \cap D \cap N \neq \emptyset$ ''.

Definition \mathbb{P} is ω_1 -proper if, for all sufficiently large, regular θ , for all $N \prec H(\theta)$ relevant for \mathbb{P} , and for all $p \in \mathbb{P} \cap N$, there is $q \leq p$ such that q is (N, \mathbb{P}) -generic.

For us, ω_1 -Cohen forcing refers to the poset whose conditions are functions $s : \alpha \to 2$, where $\alpha < \omega_1$. A condition in an iteration of ω_1 -Cohen forcing of length γ with ω_1 -support is a function whose domain is a subset of γ of size $\leq \omega_1$. We will need the following Lemma.

Lemma 0.1. Let γ be an ordinal, and let \mathbb{P}_{γ} be an iteration of ω_1 -Cohen forcing of length γ with ω_1 -support. Let $p \in \mathbb{P}_{\gamma}$, and let F be a countable subset of dom(p). There is $q \leq p$ such that, for every $\beta \in F$, there is $\alpha_{\beta} < \omega_1$ and $s_{\beta} : \alpha_{\beta} \to 2$ such that $q \upharpoonright \beta \Vdash ``q(\beta) = s_{\beta}``$.

Proof. The proof is by induction on γ . The lemma is trivially true for $\gamma = 1$. Suppose $\gamma = \eta + 1$. We may assume $\eta \in F$. First, extend $p \upharpoonright \eta$ to $r \in \mathbb{P}_{\eta}$ such that, for some $\alpha_{\eta} < \omega_1$ and $s_{\eta} : \alpha_{\eta} \to 2$, $r \Vdash "p(\eta) = s_{\eta}$ ". Then, using the inductive hypothesis, extend r to t such that, for all $\beta \in F \cap \eta$, there is $\alpha_{\beta} < \omega_1$ and $s_{\beta} : \alpha_{\beta} \to 2$ such that $t \upharpoonright \beta \Vdash "t(\beta) = s_{\beta}$ ". Then $t \frown p(\eta)$ is as desired.

Now suppose γ is a limit ordinal of countable cofinality. Let $\langle \gamma_n \mid n < \omega \rangle$ be an increasing sequence of ordinals cofinal in γ with $\gamma_0 = 0$. We build a sequence $\langle p_n \mid n < \omega \rangle$ such that $p_n \in \mathbb{P}_{\gamma_n}$ and $\langle p_n \cap p \upharpoonright [\gamma_n, \gamma) \mid n < \omega \rangle$ is decreasing in \mathbb{P}_{γ} . We ensure that, for every $n < \omega$ and every $\beta \in F \cap \gamma_n$, there is $\alpha_{\beta,n} < \omega_1$ and $s_{\beta,n} : \alpha_{\beta,n} \to 2$ such that $p_n \upharpoonright \beta \Vdash "p_n(\beta) = s_{\beta,n}"$. This is easily achieved by the inductive hypothesis. Now let q be the greatest lower bound of the sequence $\langle p_n \cap p \upharpoonright [\gamma_n, \gamma) \mid n < \omega \rangle$. Letting $\alpha_\beta = \sup(\{\alpha_{\beta,n} \mid n < \omega\})$ and $s_\beta = \bigcup_{n < \omega} s_{\beta,n}$ for all $\beta \in F$, it is easily seen that q is as desired.

Finally, suppose γ is a limit ordinal of uncountable cofinality. Then there is $\eta < \gamma$ such that $F \subseteq \eta$. We can then finish by applying the inductive hypothesis to $p \upharpoonright \eta$.

Theorem 0.2. Assume CH. Let γ be an ordinal, and let $\mathbb{P} = \mathbb{P}_{\gamma}$ be an iteration of ω_1 -Cohen forcing of length γ with ω_1 -support. Then \mathbb{P}_{γ} is ω_1 -proper.

Proof. The proof is an adaptation of an argument of Kanamori in [1]. Assume \diamond holds in V. (Since \diamond is added by ω_1 -Cohen forcing, this is not really an additional assumption). Let $\bar{A} = \langle A_{\alpha} \mid \alpha < \omega_1 \rangle$ be a \diamond -sequence guessing subsets of $\omega_1 \times \omega_1$, i.e., for each $\alpha < \omega_1, A_\alpha \subseteq (\alpha \times \alpha)$, and for all $X \subseteq (\omega_1 \times \omega_1)$, there are stationarily many $\alpha < \omega_1$ such that $X \cap (\alpha \times \alpha) = A_\alpha$.

Definition If $p \in \mathbb{P}$ and F is a countable subset of dom(p), we say $q \leq_F p$ if $q \leq p$ and, for all $\beta \in F$, $q(\beta) = p(\beta)$.

Let θ be a sufficiently large, regular cardinal, and let $N \prec H(\theta)$ be relevant for \mathbb{P} . Let $p \in \mathbb{P} \cap N$. We will find $q \leq p$ such that q is (N, \mathbb{P}) -generic.

Let $\langle D_{\alpha} \mid \alpha < \omega_1 \rangle$ enumerate all dense open subsets of \mathbb{P} that lie in N. We will build a decreasing sequence $\langle p_{\alpha} \mid \alpha < \omega_1 \rangle$ of conditions in $\mathbb{P} \cap N$. We will also beforehand fix a bookkeeping device that will give us a sequence of countable sets $\langle F_{\alpha} \mid \alpha < \omega_1 \rangle$, functions $\langle g_{\alpha} \mid \alpha < \omega_1 \rangle$, and ordinals $\langle \eta_{\alpha} \mid \alpha < \omega_1 \rangle$ such that:

- $F_{\alpha} \subseteq \operatorname{dom}(p_{\alpha}).$
- $g_{\alpha}: F_{\alpha} \to \eta_{\alpha}$ is a bijection and $\eta_{\alpha} \ge \alpha$.
- If $\alpha < \beta$, then $F_{\alpha} \subseteq F_{\beta}$ and $g_{\alpha} \subseteq g_{\beta}$.
- If β is a limit ordinal, then $F_{\beta} = \bigcup_{\alpha < \beta} F_{\alpha}$.
- $\bigcup_{\alpha < \omega_1} F_\alpha = \bigcup_{\alpha < \omega_1} \operatorname{dom}(p_\alpha).$

In our construction, we will ensure that, if $\alpha < \beta < \omega_1$, then $p_\beta \leq_{F_\alpha} p_\alpha$. This will allow us to find a lower bound for the sequence $\langle p_{\alpha} \mid \alpha < \omega_1 \rangle$.

Let $p_0 = p$. If $\beta < \omega_1$ is a limit ordinal, let p_β be the greatest lower bound of $\langle p_{\alpha} \mid \alpha < \beta \rangle$. Now suppose p_{α} has been defined. Assume that $\eta_{\alpha} = \alpha$. (This happens for a club of α . If it is not the case, then let $p_{\alpha+1} = p_{\alpha}$.) Now define a function $\sigma_{\alpha}: F_{\alpha} \to {}^{\alpha}2$ as follows: if $\beta \in F_{\alpha}$ and $\delta < \alpha$, then let

$$(\sigma_{\alpha}(\beta))(\delta) = \begin{cases} 1 & \text{if } (g_{\alpha}(\beta), \delta) \in A_{\alpha} \\ 0 & \text{otherwise} \end{cases}$$

Now ask whether there is $r \leq p_{\alpha}$ such that:

- r ∈ ∩_{β<α} D_β.
 For all β ∈ F_α, r ↾ β ⊨ "r(β) = σ_α(β)".

Let r_{α} be such an r if it exists (if not, just let $p_{\alpha+1} = p_{\alpha}$). Note that, by elementarity, exploiting the fact that N is closed under countable sequences, we may assume that $r_{\alpha} \in N$. We now define $p_{\alpha+1}$ to resemble r_{α} as closely as possible while requiring that $p_{\alpha+1} \leq_{F_{\alpha}} p_{\alpha}$. Namely, we let dom $(p_{\alpha+1}) = \text{dom}(r_{\alpha})$. For $\beta \in F_{\alpha}, p_{\alpha+1}(\beta) = p_{\alpha}(\beta)$. If $\beta \in \operatorname{dom}(p_{\alpha}) \setminus F_{\alpha}$, then $p_{\alpha+1}(\beta)$ is a name such that $r_{\alpha} \upharpoonright \beta \Vdash "p_{\alpha+1}(\beta) = r_{\alpha}(\beta)"$ and, if $c \leq p_{\alpha} \upharpoonright \beta$ is incompatible with $r_{\alpha} \upharpoonright \beta$, $c \Vdash "p_{\alpha+1}(\beta) = p_{\alpha}(\beta)"$. If $\beta \in \operatorname{dom}(r_{\alpha}) \setminus \operatorname{dom}(p_{\alpha})$, then $p_{\alpha+1}(\beta)$ is a name such that $r_{\alpha} \upharpoonright \beta \Vdash "p_{\alpha+1}(\beta) = r_{\alpha}(\beta)"$ and, if $c \leq p_{\alpha} \upharpoonright \beta$ is incompatible with $r_{\alpha} \upharpoonright \beta$, $c \Vdash p_{\alpha+1}(\beta) = \emptyset$ ". It is clear that $p_{\alpha+1} \leq_{F_{\alpha}} p_{\alpha}$ and, since everything needed to define $p_{\alpha+1}$ is in N, we may assume $p_{\alpha+1} \in N$.

Let $g = \bigcup_{\alpha < \omega_1} g_{\alpha}$. Then g is a bijection from $\bigcup_{\alpha < \omega_1} F_{\alpha}$ to ω_1 . Let q be a lower bound for $\langle p_{\alpha} \mid \alpha < \omega_1 \rangle$. We claim that q is (N, \mathbb{P}) -generic. To prove this, fix $t \leq q$ and $\xi < \omega_1$. We show that t is compatible with an element of $N \cap D_{\xi}$. To do this,

we will construct sequences $\langle t_{\alpha} \mid \alpha < \omega_1 \rangle$, $\langle \rho_{\alpha} \mid \alpha < \omega_1 \rangle$ and $\langle \tau_{\alpha} \mid \alpha < \omega_1 \rangle$ such that:

- $\langle t_{\alpha} \mid \alpha < \omega_1 \rangle$ is a decreasing sequence of conditions from \mathbb{P}_{γ} and t_{α} is a greatest lower bound of $\langle t_{\beta} \mid \beta < \alpha \rangle$ if α is a limit ordinal.
- $\langle \rho_{\alpha} \mid \alpha < \omega_1 \rangle$ is an increasing, continuous sequence of countable ordinals, with $\rho_{\alpha} \ge \alpha$.
- For $\alpha < \alpha' < \omega_1, \tau_\alpha : F_\alpha \to {}^{\rho_\alpha}2$ and, for $\beta \in F_\alpha, \tau_\alpha(\beta) \subseteq \tau_{\alpha'}(\beta)$.
- For $\alpha < \omega_1$ and $\beta \in F_{\alpha}$, $t_{\alpha} \upharpoonright \beta \Vdash "t_{\alpha}(\beta) = \tau_{\alpha}(\beta)"$.
- For $\alpha < \omega_1, t_\alpha \in \bigcap_{\beta < \alpha} D_\beta$.

Let $t_0 = t$. If α is a limit ordinal, it is clear how to proceed. Suppose $\alpha = \zeta + 1$ and t_{ζ}, ρ_{ζ} , and τ_{ζ} have been defined. Let $t_{\alpha}^* \leq t$ be such that $t^* \in D_{\alpha}$. Apply Lemma 0.1 to t_{α}^* and F_{α} to get $t_{\alpha}' \leq t_{\alpha}^*$, $\{\rho_{\alpha,\beta} \mid \beta \in F_{\alpha}\}$ and $\{s_{\beta} \mid \beta \in F_{\alpha}\}$ such that, for all $\beta \in F_{\alpha}, s_{\beta} : \rho_{\alpha,\beta} \to 2$ and $t_{\alpha}' \upharpoonright \beta \Vdash "t_{\alpha}'(\beta) = s_{\beta}"$. We can then find $\rho_{\alpha} \geq \alpha$ greater than all of the $\rho_{\alpha,\beta}$'s. and arbitrarily extend all of the s_{β} 's to be functions $\tau_{\alpha}(\beta)$ in $\rho_{\alpha}2$. We can then define $t_{\alpha+1} \leq t_{\alpha}'$ as desired.

At the end of this construction, let $X = \{(g(\beta), \delta) \mid \beta \in \bigcup_{\alpha < \omega_1} F_\alpha, \delta < \omega_1,$ and, for all α such that $\beta \in F_\alpha$ and $\delta < \rho_\alpha$, $(\tau_\alpha(\beta))(\delta) = 1\}$. $X \subseteq \omega_1 \times \omega_1$. Note that the set of limit ordinals $\alpha < \omega_1$ such that $\eta_\alpha = \rho_\alpha = \alpha$ is club. Let $\alpha > \xi$ in this club be such that $X \cap (\alpha \times \alpha) = A_\alpha$. Note that, working through the definitions, this implies that $\tau_\alpha = \sigma_\alpha$. Thus, $t_\alpha \leq q \leq p_\alpha$, $t_\alpha \in \bigcap_{\beta < \alpha} D_\beta$ and, for all $\beta \in F_\alpha$, $t_\alpha \upharpoonright \beta \Vdash "t_\alpha(\beta) = \sigma_\alpha(\beta)"$, so, in our construction of $p_{\alpha+1}$, we answered our question positively and thus were in the non-trivial case. Now, noting that $t_\alpha \leq p_{\alpha+1}$, it is easily verified that, in fact, $t_\alpha \leq r_\alpha$ (simply check by induction on $\beta \in \operatorname{dom}(r_\alpha) = \operatorname{dom}(p_{\alpha+1})$ that $t_\alpha \upharpoonright \beta \Vdash "t_\alpha(\beta) \leq r_\alpha(\beta)"$. But $r_\alpha \in N \cap \bigcap_{\beta < \alpha} D_\beta$, so $r_\alpha \in N \cap D_\xi$, so we have demonstrated that t is compatible with an element of $N \cap D_\xi$, thus completing the proof.

References

 Akihiro Kanamori. Perfect-set forcing for uncountable cardinals. Annals of Mathematical Logic, 19(1):97–114, 1980.