ITERATIONS OF ω_{1}-COHEN FORCING

CHRIS LAMBIE-HANSON

The purpose of this note is to prove that, over a model of CH , iterations of ω_{1}-Cohen forcing with ω_{1}-support are ω_{1}-proper. In particular, these iterations preserve ω_{2}. We first recall the relevant definitions.
Definition Let θ be a sufficiently large, regular cardinal, and let $\mathbb{P} \in H(\theta)$ be a poset. We say $N \prec H(\theta)$ is relevant for \mathbb{P} if:

- $|N|=\aleph_{1}$.
- ${ }^{\omega} N \subseteq N$.
- $N=\bigcup_{\alpha<\omega_{1}} N_{\alpha}$, where $\left\langle N_{\alpha} \mid \alpha<\omega_{1}\right\rangle$ is an internally approachable chain of countable elementary substructures of $H(\theta)$.
Definition Let \mathbb{P} be a poset, and let N be relevant for $\mathbb{P} . q \in \mathbb{P}$ is (N, \mathbb{P})-generic if, for all dense, open sets D of \mathbb{P} such that $D \in N, q \Vdash$ " $\dot{G}_{\mathbb{P}} \cap D \cap N \neq \emptyset$ ".
Definition \mathbb{P} is ω_{1}-proper if, for all sufficiently large, regular θ, for all $N \prec H(\theta)$ relevant for \mathbb{P}, and for all $p \in \mathbb{P} \cap N$, there is $q \leq p$ such that q is (N, \mathbb{P})-generic.

For us, ω_{1}-Cohen forcing refers to the poset whose conditions are functions s : $\alpha \rightarrow 2$, where $\alpha<\omega_{1}$. A condition in an iteration of ω_{1}-Cohen forcing of length γ with ω_{1}-support is a function whose domain is a subset of γ of size $\leq \omega_{1}$. We will need the following Lemma.

Lemma 0.1. Let γ be an ordinal, and let \mathbb{P}_{γ} be an iteration of ω_{1}-Cohen forcing of length γ with ω_{1}-support. Let $p \in \mathbb{P}_{\gamma}$, and let F be a countable subset of $\operatorname{dom}(p)$. There is $q \leq p$ such that, for every $\beta \in F$, there is $\alpha_{\beta}<\omega_{1}$ and $s_{\beta}: \alpha_{\beta} \rightarrow 2$ such that $q \upharpoonright \beta \Vdash " q(\beta)=s_{\beta}$ ".

Proof. The proof is by induction on γ. The lemma is trivially true for $\gamma=1$. Suppose $\gamma=\eta+1$. We may assume $\eta \in F$. First, extend $p \upharpoonright \eta$ to $r \in \mathbb{P}_{\eta}$ such that, for some $\alpha_{\eta}<\omega_{1}$ and $s_{\eta}: \alpha_{\eta} \rightarrow 2, r \Vdash " p(\eta)=s_{\eta}$ ". Then, using the inductive hypothesis, extend r to t such that, for all $\beta \in F \cap \eta$, there is $\alpha_{\beta}<\omega_{1}$ and $s_{\beta}: \alpha_{\beta} \rightarrow 2$ such that $t \upharpoonright \beta \Vdash$ " $t(\beta)=s_{\beta}$ ". Then $t^{\frown} p(\eta)$ is as desired.

Now suppose γ is a limit ordinal of countable cofinality. Let $\left\langle\gamma_{n} \mid n<\omega\right\rangle$ be an increasing sequence of ordinals cofinal in γ with $\gamma_{0}=0$. We build a sequence $\left\langle p_{n} \mid n<\omega\right\rangle$ such that $p_{n} \in \mathbb{P}_{\gamma_{n}}$ and $\left\langle p_{n} \frown p \upharpoonright\left[\gamma_{n}, \gamma\right) \mid n<\omega\right\rangle$ is decreasing in \mathbb{P}_{γ}. We ensure that, for every $n<\omega$ and every $\beta \in F \cap \gamma_{n}$, there is $\alpha_{\beta, n}<\omega_{1}$ and $s_{\beta, n}: \alpha_{\beta, n} \rightarrow 2$ such that $p_{n} \upharpoonright \beta \Vdash " p_{n}(\beta)=s_{\beta, n}$ ". This is easily achieved by the inductive hypothesis. Now let q be the greatest lower bound of the sequence $\left\langle p_{n} \frown p \upharpoonright\left[\gamma_{n}, \gamma\right) \mid n<\omega\right\rangle$. Letting $\alpha_{\beta}=\sup \left(\left\{\alpha_{\beta, n} \mid n<\omega\right\}\right)$ and $s_{\beta}=\bigcup_{n<\omega} s_{\beta, n}$ for all $\beta \in F$, it is easily seen that q is as desired.

Finally, suppose γ is a limit ordinal of uncountable cofinality. Then there is $\eta<\gamma$ such that $F \subseteq \eta$. We can then finish by applying the inductive hypothesis to $p \upharpoonright \eta$.

Theorem 0.2. Assume CH. Let γ be an ordinal, and let $\mathbb{P}=\mathbb{P}_{\gamma}$ be an iteration of ω_{1}-Cohen forcing of length γ with ω_{1}-support. Then \mathbb{P}_{γ} is ω_{1}-proper.

Proof. The proof is an adaptation of an argument of Kanamori in [1]. Assume \diamond holds in V. (Since \diamond is added by ω_{1}-Cohen forcing, this is not really an additional assumption). Let $\bar{A}=\left\langle A_{\alpha} \mid \alpha<\omega_{1}\right\rangle$ be a \diamond-sequence guessing subsets of $\omega_{1} \times \omega_{1}$, i.e., for each $\alpha<\omega_{1}, A_{\alpha} \subseteq(\alpha \times \alpha)$, and for all $X \subseteq\left(\omega_{1} \times \omega_{1}\right)$, there are stationarily many $\alpha<\omega_{1}$ such that $X \cap(\alpha \times \alpha)=A_{\alpha}$.

Definition If $p \in \mathbb{P}$ and F is a countable subset of $\operatorname{dom}(p)$, we say $q \leq_{F} p$ if $q \leq p$ and, for all $\beta \in F, q(\beta)=p(\beta)$.

Let θ be a sufficiently large, regular cardinal, and let $N \prec H(\theta)$ be relevant for \mathbb{P}. Let $p \in \mathbb{P} \cap N$. We will find $q \leq p$ such that q is (N, \mathbb{P})-generic.

Let $\left\langle D_{\alpha} \mid \alpha<\omega_{1}\right\rangle$ enumerate all dense open subsets of \mathbb{P} that lie in N. We will build a decreasing sequence $\left\langle p_{\alpha} \mid \alpha<\omega_{1}\right\rangle$ of conditions in $\mathbb{P} \cap N$. We will also beforehand fix a bookkeeping device that will give us a sequence of countable sets $\left\langle F_{\alpha} \mid \alpha<\omega_{1}\right\rangle$, functions $\left\langle g_{\alpha} \mid \alpha<\omega_{1}\right\rangle$, and ordinals $\left\langle\eta_{\alpha} \mid \alpha<\omega_{1}\right\rangle$ such that:

- $F_{\alpha} \subseteq \operatorname{dom}\left(p_{\alpha}\right)$.
- $g_{\alpha}: F_{\alpha} \rightarrow \eta_{\alpha}$ is a bijection and $\eta_{\alpha} \geq \alpha$.
- If $\alpha<\beta$, then $F_{\alpha} \subseteq F_{\beta}$ and $g_{\alpha} \subseteq g_{\beta}$.
- If β is a limit ordinal, then $F_{\beta}=\bigcup_{\alpha<\beta} F_{\alpha}$.
- $\bigcup_{\alpha<\omega_{1}} F_{\alpha}=\bigcup_{\alpha<\omega_{1}} \operatorname{dom}\left(p_{\alpha}\right)$.

In our construction, we will ensure that, if $\alpha<\beta<\omega_{1}$, then $p_{\beta} \leq_{F_{\alpha}} p_{\alpha}$. This will allow us to find a lower bound for the sequence $\left\langle p_{\alpha} \mid \alpha<\omega_{1}\right\rangle$.

Let $p_{0}=p$. If $\beta<\omega_{1}$ is a limit ordinal, let p_{β} be the greatest lower bound of $\left\langle p_{\alpha} \mid \alpha<\beta\right\rangle$. Now suppose p_{α} has been defined. Assume that $\eta_{\alpha}=\alpha$. (This happens for a club of α. If it is not the case, then let $p_{\alpha+1}=p_{\alpha}$.) Now define a function $\sigma_{\alpha}: F_{\alpha} \rightarrow{ }^{\alpha} 2$ as follows: if $\beta \in F_{\alpha}$ and $\delta<\alpha$, then let

$$
\left(\sigma_{\alpha}(\beta)\right)(\delta)= \begin{cases}1 & \text { if }\left(g_{\alpha}(\beta), \delta\right) \in A_{\alpha} \\ 0 & \text { otherwise }\end{cases}
$$

Now ask whether there is $r \leq p_{\alpha}$ such that:

- $r \in \bigcap_{\beta<\alpha} D_{\beta}$.
- For all $\beta \in F_{\alpha}, r \upharpoonright \beta \Vdash$ " $r(\beta)=\sigma_{\alpha}(\beta)$ ".

Let r_{α} be such an r if it exists (if not, just let $p_{\alpha+1}=p_{\alpha}$). Note that, by elementarity, exploiting the fact that N is closed under countable sequences, we may assume that $r_{\alpha} \in N$. We now define $p_{\alpha+1}$ to resemble r_{α} as closely as possible while requiring that $p_{\alpha+1} \leq_{F_{\alpha}} p_{\alpha}$. Namely, we let $\operatorname{dom}\left(p_{\alpha+1}\right)=\operatorname{dom}\left(r_{\alpha}\right)$. For $\beta \in F_{\alpha}, p_{\alpha+1}(\beta)=p_{\alpha}(\beta)$. If $\beta \in \operatorname{dom}\left(p_{\alpha}\right) \backslash F_{\alpha}$, then $p_{\alpha+1}(\beta)$ is a name such that $r_{\alpha} \upharpoonright \beta \Vdash$ " $p_{\alpha+1}(\beta)=r_{\alpha}(\beta)$ " and, if $c \leq p_{\alpha} \upharpoonright \beta$ is incompatible with $r_{\alpha} \upharpoonright \beta$, $c \Vdash$ " $p_{\alpha+1}(\beta)=p_{\alpha}(\beta)$ ". If $\beta \in \operatorname{dom}\left(r_{\alpha}\right) \backslash \operatorname{dom}\left(p_{\alpha}\right)$, then $p_{\alpha+1}(\beta)$ is a name such that $r_{\alpha} \upharpoonright \beta \Vdash$ " $p_{\alpha+1}(\beta)=r_{\alpha}(\beta)$ " and, if $c \leq p_{\alpha} \upharpoonright \beta$ is incompatible with $r_{\alpha} \upharpoonright \beta$, $c \Vdash$ " $p_{\alpha+1}(\beta)=\emptyset "$. It is clear that $p_{\alpha+1} \leq_{F_{\alpha}} p_{\alpha}$ and, since everything needed to define $p_{\alpha+1}$ is in N, we may assume $p_{\alpha+1} \in N$.

Let $g=\bigcup_{\alpha<\omega_{1}} g_{\alpha}$. Then g is a bijection from $\bigcup_{\alpha<\omega_{1}} F_{\alpha}$ to ω_{1}. Let q be a lower bound for $\left\langle p_{\alpha} \mid \alpha<\omega_{1}\right\rangle$. We claim that q is (N, \mathbb{P})-generic. To prove this, fix $t \leq q$ and $\xi<\omega_{1}$. We show that t is compatible with an element of $N \cap D_{\xi}$. To do this,
we will construct sequences $\left\langle t_{\alpha} \mid \alpha<\omega_{1}\right\rangle,\left\langle\rho_{\alpha} \mid \alpha<\omega_{1}\right\rangle$ and $\left\langle\tau_{\alpha} \mid \alpha<\omega_{1}\right\rangle$ such that:

- $\left\langle t_{\alpha} \mid \alpha<\omega_{1}\right\rangle$ is a decreasing sequence of conditions from \mathbb{P}_{γ} and t_{α} is a greatest lower bound of $\left\langle t_{\beta} \mid \beta<\alpha\right\rangle$ if α is a limit ordinal.
- $\left\langle\rho_{\alpha} \mid \alpha<\omega_{1}\right\rangle$ is an increasing, continuous sequence of countable ordinals, with $\rho_{\alpha} \geq \alpha$.
- For $\alpha<\alpha^{\prime}<\omega_{1}, \tau_{\alpha}: F_{\alpha} \rightarrow{ }^{\rho_{\alpha}} 2$ and, for $\beta \in F_{\alpha}, \tau_{\alpha}(\beta) \subseteq \tau_{\alpha^{\prime}}(\beta)$.
- For $\alpha<\omega_{1}$ and $\beta \in F_{\alpha}, t_{\alpha} \upharpoonright \beta \Vdash$ " $t_{\alpha}(\beta)=\tau_{\alpha}(\beta)$ ".
- For $\alpha<\omega_{1}, t_{\alpha} \in \bigcap_{\beta<\alpha} D_{\beta}$.

Let $t_{0}=t$. If α is a limit ordinal, it is clear how to proceed. Suppose $\alpha=\zeta+1$ and t_{ζ}, ρ_{ζ}, and τ_{ζ} have been defined. Let $t_{\alpha}^{*} \leq t$ be such that $t^{*} \in D_{\alpha}$. Apply Lemma 0.1 to t_{α}^{*} and F_{α} to get $t_{\alpha}^{\prime} \leq t_{\alpha}^{*},\left\{\rho_{\alpha, \beta} \mid \beta \in F_{\alpha}\right\}$ and $\left\{s_{\beta} \mid \beta \in F_{\alpha}\right\}$ such that, for all $\beta \in F_{\alpha}, s_{\beta}: \rho_{\alpha, \beta} \rightarrow 2$ and $t_{\alpha}^{\prime} \upharpoonright \beta \Vdash$ " $t_{\alpha}^{\prime}(\beta)=s_{\beta}$ ". We can then find $\rho_{\alpha} \geq \alpha$ greater than all of the $\rho_{\alpha, \beta}$'s. and arbitrarily extend all of the s_{β} 's to be functions $\tau_{\alpha}(\beta)$ in ${ }^{\rho_{\alpha}} 2$. We can then define $t_{\alpha+1} \leq t_{\alpha}^{\prime}$ as desired.

At the end of this construction, let $X=\left\{(g(\beta), \delta) \mid \beta \in \bigcup_{\alpha<\omega_{1}} F_{\alpha}, \delta<\omega_{1}\right.$, and, for all α such that $\beta \in F_{\alpha}$ and $\left.\delta<\rho_{\alpha},\left(\tau_{\alpha}(\beta)\right)(\delta)=1\right\}$. $X \subseteq \omega_{1} \times \omega_{1}$. Note that the set of limit ordinals $\alpha<\omega_{1}$ such that $\eta_{\alpha}=\rho_{\alpha}=\alpha$ is club. Let $\alpha>\xi$ in this club be such that $X \cap(\alpha \times \alpha)=A_{\alpha}$. Note that, working through the definitions, this implies that $\tau_{\alpha}=\sigma_{\alpha}$. Thus, $t_{\alpha} \leq q \leq p_{\alpha}, t_{\alpha} \in \bigcap_{\beta<\alpha} D_{\beta}$ and, for all $\beta \in F_{\alpha}, t_{\alpha} \upharpoonright \beta \Vdash$ " $t_{\alpha}(\beta)=\sigma_{\alpha}(\beta)$ ", so, in our construction of $p_{\alpha+1}$, we answered our question positively and thus were in the non-trivial case. Now, noting that $t_{\alpha} \leq p_{\alpha+1}$, it is easily verified that, in fact, $t_{\alpha} \leq r_{\alpha}$ (simply check by induction on $\beta \in \operatorname{dom}\left(r_{\alpha}\right)=\operatorname{dom}\left(p_{\alpha+1}\right)$ that $t_{\alpha} \upharpoonright \beta \Vdash$ " $t_{\alpha}(\beta) \leq r_{\alpha}(\beta)$ "). But $r_{\alpha} \in N \cap \bigcap_{\beta<\alpha} D_{\beta}$, so $r_{\alpha} \in N \cap D_{\xi}$, so we have demonstrated that t is compatible with an element of $N \cap D_{\xi}$, thus completing the proof.

References

[1] Akihiro Kanamori. Perfect-set forcing for uncountable cardinals. Annals of Mathematical Logic, 19(1):97-114, 1980.

