ITERATIONS OF w;-COHEN FORCING

CHRIS LAMBIE-HANSON

The purpose of this note is to prove that, over a model of CH, iterations of
w1-Cohen forcing with wi-support are wi-proper. In particular, these iterations
preserve wo. We first recall the relevant definitions.

Definition Let 6 be a sufficiently large, regular cardinal, and let P € H(6) be a
poset. We say N < H(0) is relevant for P if:

o |N|=1Ny.
e “N CN.
¢ N = ,cu, Na, where (N, | @ < wy) is an internally approachable chain

of countable elementary substructures of H(#).

Definition Let P be a poset, and let N be relevant for P. ¢ € P is (N, P)-generic
if, for all dense, open sets D of P such that D € N, qI- “GpND NN # ()".

Definition P is wy-proper if, for all sufficiently large, regular 6, for all N < H(0)
relevant for P, and for all p € PN N, there is ¢ < p such that ¢ is (N, P)-generic.

For us, wy-Cohen forcing refers to the poset whose conditions are functions s :
o — 2, where o« < wy. A condition in an iteration of w;-Cohen forcing of length ~
with wi-support is a function whose domain is a subset of v of size < w;. We will
need the following Lemma.

Lemma 0.1. Let v be an ordinal, and let P, be an iteration of wi-Cohen forcing
of length v with wi-support. Let p € P, and let F' be a countable subset of dom(p).
There is ¢ < p such that, for every € F, there is ag < wy and sg : ag — 2 such

that g | BIF “q(B) = sg”.

Proof. The proof is by induction on . The lemma is trivially true for v = 1.
Suppose v = 7 + 1. We may assume 1 € F. First, extend p [ 5 to r € P, such
that, for some a, < w; and s, : a; — 2, r I “p(n) = s,”. Then, using the
inductive hypothesis, extend r to ¢ such that, for all 3 € F'Nn, there is ag < w;
and sg : ag — 2 such that ¢ [ S IF “t(8) = sg”. Then t"p(n) is as desired.

Now suppose v is a limit ordinal of countable cofinality. Let (v, | n < w) be
an increasing sequence of ordinals cofinal in v with vy = 0. We build a sequence
(pn | n < w) such that p, € P, and (p,"p | [7n,7) | n < w) is decreasing in
P,. We ensure that, for every n < w and every 8 € F Ny, there is ag, < w;
and sgn, : ag, — 2 such that p, [ B IF “p,(B) = sg,,”. This is easily achieved by
the inductive hypothesis. Now let ¢ be the greatest lower bound of the sequence
(Pn P I [1m,7) | n < w). Letting ag = sup({agn | n < w}) and sg = U, ., 58,0
for all 8 € F, it is easily seen that ¢ is as desired.

Finally, suppose 7 is a limit ordinal of uncountable cofinality. Then there is
n < 7 such that F' C 1. We can then finish by applying the inductive hypothesis
top[n. (I
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Theorem 0.2. Assume CH. Let v be an ordinal, and let P = P., be an iteration of
w1-Cohen forcing of length v with wy-support. Then P, is wy-proper.

Proof. The proof is an adaptation of an argument of Kanamori in [1]. Assume <
holds in V. (Since ¢ is added by w;-Cohen forcing, this is not really an additional
assumption). Let A = (A, | a < w;) be a {-sequence guessing subsets of w; x wy,
i.e., for each @ < wy, Ay C (ax ), and for all X C (wy X wy), there are stationarily
many o < wy such that X N (a x a) = A,.

Definition If p € P and F is a countable subset of dom(p), we say ¢ <p pif ¢ <p
and, for all 8 € F, q(B8) = p(B).

Let 6 be a sufficiently large, regular cardinal, and let N < H () be relevant for
P. Let pe PN N. We will find ¢ < p such that ¢ is (N, P)-generic.

Let (D, | @ < wp) enumerate all dense open subsets of P that lie in N. We will
build a decreasing sequence (p, | @ < wy) of conditions in PN N. We will also
beforehand fix a bookkeeping device that will give us a sequence of countable sets
(Fy | @ < wy), functions (g, | @ < w1), and ordinals (1, | @ < wy) such that:

F, C dom(py,).

Ja : Foo = 1o is a bijection and n, > «.
If a < B, then F,, C Fj3 and g, C g3.

If 8 is a limit ordinal, then Fjg = Ua<5 F,.
Ua<w1 FOé = Ua<w1 dom(pa)'

In our construction, we will ensure that, if o < 8 < wy, then pg <, po. This
will allow us to find a lower bound for the sequence (p, | @ < wy).

Let po = p. If B < w; is a limit ordinal, let pg be the greatest lower bound
of (po | @ < B). Now suppose p, has been defined. Assume that 1, = . (This
happens for a club of . If it is not the case, then let po11 = po.) Now define a
function o, : F, — *2 as follows: if § € F, and § < «, then let

1 if (ga(B),0) € Aq
0 otherwise

(0a(8))(0) = {

Now ask whether there is r < p, such that:

® 1 €s.0 Ds-
e Forall Be F,,r [ BIF“r(B) =0a(8)".

Let 7, be such an r if it exists (if not, just let po+1 = po). Note that, by
elementarity, exploiting the fact that N is closed under countable sequences, we
may assume that r, € N. We now define p,41 to resemble 7, as closely as possible
while requiring that po+1 <p, po. Namely, we let dom(ps+1) = dom(ry,). For
B € Fa, pat1(B) = pa(B). If B € dom(py) \ Fa, then p,i1(B) is a name such
that 7o | B 1F “pas1(B) = ro(B)” and, if ¢ < p, | B is incompatible with r, [ 3,
clk “poc—i-l(ﬁ) = pa(ﬁ)”' It ﬂ € dom(ra) \dom(pa)v then pa—i—l(ﬂ) is a name such
that 7o [ B IF “pat1(B) = ro(B)” and, if ¢ < p, | B is incompatible with r, [ 3,
clk “pay1(B) =07, Tt is clear that pot+1 <fF, po and, since everything needed to
define po41 is in NV, we may assume poq1 € N.

Let g = Uy<w, 9a- Then g is a bijection from (., Fa to wi. Let g be a lower
bound for (p, | @ < wy). We claim that ¢ is (N, P)-generic. To prove this, fix t < ¢
and £ < wi. We show that ¢ is compatible with an element of N N D¢. To do this,
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we will construct sequences (to | @ < w1), {(po | @ < w1) and (7, | @ < wy) such
that:

o (to | & < wy) is a decreasing sequence of conditions from P, and ¢, is a
greatest lower bound of (tg | 5 < ) if « is a limit ordinal.
(pa | @ < wy) is an increasing, continuous sequence of countable ordinals,
with p, > .
For a < o/ <wi, 7o : Fy — P22 and, for 8 € Fy, 7o(8) C 7o/ (B).
For a <wy and 8 € Fy, to | BIF “ta(B8) = 1a(B)”.

e For a <wy, ty € ﬂﬂ<o¢Dﬁ'

Let tg = t. If « is a limit ordinal, it is clear how to proceed. Suppose a = ( + 1
and t¢, p¢c, and 7¢ have been defined. Let ¢}, < t be such that t* € D,. Apply
Lemma 0.1 to ¢, and F,, to get t,, < t%, {pap | B € Fo} and {sg | f € F,} such
that, for all B € F,, sg: pap — 2 and ¢, | B IF “t,(8) = sg”. We can then find
Pa > o greater than all of the p, g’s. and arbitrarily extend all of the sg’s to be
functions 74(8) in 2. We can then define t,1 <t/ as desired.

At the end of this construction, let X = {(g9(8),6) | B € U,cy, Fa, § < w1,
and, for all a such that 8 € F, and § < po, (7a(8))(d) = 1}. X C wy X wy.
Note that the set of limit ordinals o < wy such that 1, = po, = « is club. Let
a > £ in this club be such that X N (o x a) = A,. Note that, working through
the definitions, this implies that 7, = o,. Thus, to < ¢ < Pa, ta € ﬂﬁ<a Dy
and, for all g € F,, to | B IF “ta(B) = 04(B)”, so, in our construction of py41,
we answered our question positively and thus were in the non-trivial case. Now,
noting that t, < pa+1, it is easily verified that, in fact, t, < 7, (simply check by
induction on 8 € dom(r,) = dom(pe+1) that to [ B IF “to(8) < rq(B8)”). But
T €E NN ﬂ/3<u Dg, so 7o € NN D¢, so we have demonstrated that ¢ is compatible
with an element of N N D¢, thus completing the proof. O
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