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Abstract. We show that PFA (Proper Forcing Axiom) implies that
adding any number of Cohen subsets of ω will not add an ω2-Aronszajn
tree or a weak ω1-Kurepa tree, and moreover no σ-centered forcing can
add a weak ω1-Kurepa tree (a tree of height and size ω1 with at least
ω2 co�nal branches). This partially answers an open problem whether
ccc forcings can add ω2-Aronszajn or ω1-Kurepa trees.

We actually prove more: We show that a consequence of PFA, namely
the guessing model principle, GMP, which is equivalent to the ine�able
slender tree property, ISP, is preserved by adding any number of Cohen
subsets of ω. And moreover, GMP implies that no σ-centered forcing
can add a weak ω1-Kurepa tree (see Section 2.1 for de�nitions).

For more generality, we study variations of the principle GMP at
higher cardinals and the indestructibility consequences they entail, and
as applications we answer a question of Mohammadpour about guessing
models at weakly but not strongly inaccessible cardinals and show that
there is a model in which there are no weak ℵω+1-Kurepa trees and no
ℵω+2-Aronszajn trees.
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1. Introduction

It has been a question of some interest whether �small� forcings (either in
terms of size or chain condition) can add �large� trees. Depending on the
meaning of �small� and �large�, there are both negative and positive results.
Here are some examples for the positive answer:

• By a result of Shelah, a single Cohen subset of ω adds an ω1-Suslin
tree.
• Rinot showed in [25] that a co�nality preserving forcing of size ω3 can
add a special Aronszajn tree at ℵω1+1 (this requires large cardinals).
• Jin and Shelah [16] showed that an ω1-distributive forcing of size ω1

can add an ω1-Kurepa tree.

However, if we take �small� to be countable or just ccc, and �large� to
mean an ω2-Aronszajn tree or a (weak) ω1-Kurepa tree, the question is open.
Even the simplest question whether a single Cohen subset of ω can add an
ω2-Aronszajn tree or an ω1-Kurepa tree over some model of ZFC remains
unanswered. Similar cases can be considered at larger cardinals as well (see
for instance [11] for ℵω+1).

For the negative answer, more results are known. The main reason is
that many principles inherited from large cardinals (�compactness princi-
ples�) tend to prohibit the existence of certain trees, and by starting with a
carefully chosen model where such principles hold, one can sometimes show
that no trees of the given type are added by small forcings. But as an answer
to the question above, this approach may appear unconvincing, inasmuch as
it depends on the particular model in question (see a brief summary of these
results in Section 1.1).

A more convincing approach is to �nd an assumption ϕ such that ZFC+ϕ
prohibits the existence of certain trees, and ϕ itself is always preserved by
small forcings, not just over some particular model under consideration.1 For
instance Chang's Conjecture, CC, plays this role for ω1-Kurepa trees: by a
well-known theorem, CC is preserved by all ccc forcings, and hence no ccc
forcing can add an ω1-Kurepa tree over any model of CC. If we subscribe to
ZFC+CC, then we conclude that no ccc forcing can add an ω1-Kurepa tree.

In this paper we show that the guessing model principle, GMP,2 which is
a consequence of PFA, plays a similar role for ω2-Aronszajn trees and weak
ω1-Kurepa trees (see Section 1.1 for de�nitions, and Lemma 2.5, Corollary
2.16 and Theorem 3.5 for proofs):

Theorem. ZFC + GMP proves that adding any number of Cohen subsets
of ω will not add an ω2-Aronszajn tree or a weak ω1-Kurepa tree. Moreover,
it proves that no σ-centered forcing can add a weak ω1-Kurepa tree.

GMP is a certain compactness principle introduced by Viale and Weiss in
[31]. It follows from PFA, but it is strictly weaker: for instance, it does not
put any bound on the value of 2ω, apart from contradicting CH. This princi-
ple can either be formulated in terms of guessing models, or equivalently in

1ϕ can be just the sentence that there are no trees of the given type, but in the known
examples, a stronger principle is usually required.

2We generalize this principle to larger cardinals, so we will have GMP = GMPω2 in
what follows.
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terms of slender lists (generalizations of trees), and is known to capture the
�combinatorial core� of supercompactness; see [32] and [31] for more details.
For our proof, we �nd it more convenient to work with guessing models.

The paper is structured as follows. In Section 1.1 we review the basic
de�nitions and provide a brief survey of results related to preservation of the
tree property (i.e. not adding Aronszajn trees) or the negation of the weak
Kurepa Hypothesis (i.e. not adding weak Kurepa trees).

In Section 2, generalizing the principle GMP from [31], we de�ne for regu-
lar cardinals µ < κ principles GMPµ+,κ (if κ = µ++, we simply write GMPκ,
and note that GMP = GMPω2) and show that, if µ = µ<µ, it is preserved by
adding any number of Cohen subsets to µ (Corollary 2.16). Since GMPµ++

implies that there are no µ++-Aronszajn trees and no weak µ+-Kurepa trees
(Lemma 2.5), we obtain the desired result. At the end of the section, we ap-
ply our results to answer a question of Mohammadpour from [24] by proving
the consistency of a particular guessing model property at a cardinal that is
weakly but not strongly inaccessible.

In Section 3, Theorem 3.5, we prove a slightly stronger result that over
models of GMPµ++ , no µ+-centered forcing (see De�nition 3.1) can add a

weak µ+-Kurepa tree.
In Section 4, we give an application of this result, showing that starting

with some large cardinals there is a model in which there are no weak ℵω+1-
Kurepa trees and no ℵω+2-Aronszajn trees.

In Section 5 we state some open questions.

1.1. Preliminaries

Suppose λ is a regular cardinal. We say that the tree property at λ, TP(λ),
holds if every λ-tree has a co�nal branch; equivalently, there are no λ-
Aronszajn trees. We say that the Kurepa Hypothesis at λ, KH(λ), holds
if there is a λ-tree with at least λ+-many co�nal branches (we call such a
tree a λ-Kurepa tree); we say that the weak Kurepa Hypothesis at λ, wKH(λ),
holds if there is a tree of height and size λ with at least λ+-many co�nal
branches; we call such a tree a weak λ-Kurepa tree.3 A λ-Aronszajn tree is
an incompact object because it has chains of every size < λ, but no chains
of size λ; similarly a (weak) λ-Kurepa tree is an incompact object because
every level of the tree has size < λ (or ≤ λ), yet there are λ+-many co�nal
branches.

It is known that together with inaccessibility, these properties are related
to large cardinals (see for instance Devlin [5]):

Fact 1.1. Suppose λ is an inaccessible cardinal.
(i) λ is weakly compact if and only if TP(λ).
(ii) If λ is ine�able, then ¬KH(λ).4 Moreover, if V = L, then the converse

is true as well.

3 Let us emphasize that the levels of a weak λ-Kurepa tree are allowed to have size λ.
4If λ is inaccessible, we say that T is a λ-tree if for every ω ≤ α < λ, |Tα| ≤ |α|

(sometimes such trees are called slim λ-trees). This prevents the full binary tree 2<λ from
being a witness for KH(λ). However wKH(λ) is always true for an inaccessible λ, with 2<λ

being a witness.
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Notice that the characterization of weak compactness by TP is provable
in ZFC, while the characterization of ine�ability by ¬KH requires V = L (to
our knowledge, it is open whether the assumption V = L can be removed).

Unlike the inaccessibility of λ, the principles TP(λ) and ¬KH(λ) are more
robust, and may be viewed as the �combinatorial core� of the respective
large cardinal notions. For instance adding λ many Cohen subsets of ω to
an ine�able cardinal λ will destroy the inaccessibility of λ, but will not add
any λ-Aronszajn trees or λ-Kurepa trees.

Silver in [26] was the �rst one to show that the non-existence of Kurepa
trees can also hold on a successor cardinal: using the Levy collapse of an
inaccessible, he showed that ¬KH(ω1) is consistent (with CH). Soon after-
wards, Mitchell, in [23], devised a di�erent collapse which simultaneously
adds subsets of ω, and showed that TP(ω2) and ¬wKH(ω1) are consistent;
see Abraham's [1] for the now-standard presentation of the forcing. We shall
denote the forcing devised by Mitchell by M(µ, κ), where it is understood
that µ is a regular cardinal satisfying µ<µ = µ and κ is (at least) an inacces-
sible cardinal. M(µ, κ) collapses cardinals in the open interval (µ+, κ) and
turns κ into µ++. By [23] or [1] if κ is weakly compact, then TP(µ++) is
true in V [M(µ, κ)]. A similar argument shows that if κ is inaccessible, then
¬KH(µ+) and in fact ¬wKH(µ+) holds in V [M(µ, κ)].5

With the discovery that many compactness principles can hold at succes-
sor cardinals, it was natural to inquire which forcing notions can destroy
them and which will preserve them: the motivation being a general interest,
and also an interest in developing a technical tool for forcing constructions.
Todorcevic showed the compatibility of MAω1 with ¬wKH(ω1) in [28], and
essentially proved that over the Mitchell model V [M(ω, κ)], κ inaccessible, a
�nite support iteration of length ω2 of ccc forcings of size at most ω1 which
do not add co�nal branches to ω1-Suslin trees does not add weak ω1-Kurepa
trees; by Remark 1.7 in the same paper, it follows that the same iteration
does not add ω2-Aronszajn trees over V [M(ω, κ)], κ weakly compact. Unger
studied the indestructibility over the Mitchell model explicitly in his [29], and
further results appeared in [12] and [13]. Apart from Todorcevic's [28], the
preservation of ¬wKH(ω1) over the Mitchell model has not been studied ex-
plicitly,6 but it is likely that the analogues of the results for the tree property
obtained in [12] also apply to the negation of the weak Kurepa Hypothesis.
One can extend this line of inquiry to consider other variants of Mitchell
forcing, and also other methods for obtaining TP(ω2) and ¬wKH(ω1), for
instance the Sacks forcing (see [17]).

In all these examples, however, the question of preservation of the com-
pactness principles is asked over speci�c models, and the strategy of proofs
follows the same pattern: Since we know the �history� of the cardinal κ in

5Notice the apparent disparity between the parameters in these two principles after
the collapse: while the tree property is still considered at κ, the negation of the (weak)
Kurepa hypothesis has µ+ as the parameter (the large cardinal κ is used to control the
number of co�nal branches of trees of size µ+).

6There is a preservation result for ¬KH(ω1) over the Levy collapse, see [15]. This
however does not �t with our topic here because in that model CH is true, so necessarily
both TP(ω2) and ¬wKH(ω1) fail.
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our model, we can return back to the ground model where κ is a large car-
dinal, and we can �x an appropriate elementary embedding and do a lifting
argument. For instance, to argue that P preserves TP(ω2) over the model
V [M(ω, κ)], the typical argument is to lift an elementary embedding with

critical point κ to the forcing M(ω, κ) ∗ Ṗ. But what if we do not have an
elementary embedding, and all we know is that TP(ω2) or ¬wKH(ω1) are
true: can we say something about their preservation?

This leads to the question of considering preservation of compactness prin-
ciples over theories extending ZFC, not just models. Here are some known
results in this direction:

• Chang's Conjecture is preserved by all ccc forcings; hence, over mod-
els of Chang's Conjecture, so is its consequence ¬KH(ω1).
• Foreman showed in [6] that µ++-saturated ideals over µ+, µ regular,
are preserved by µ+-centered forcing notions (in the sense that they
generate saturated ideals in the extension).
• Gitik and Krueger showed in [10] that the negation of the approach-
ability property at µ++, µ regular, is preserved by all µ+-centered
forcings.7

• The �rst and the third author of the present paper showed in [13]
that stationary re�ection at µ+, µ regular, is preserved by all µ-cc
forcing notions. They further showed in [13] that if µ<µ = µ, then
club stationary re�ection at µ++ is preserved by Cohen forcing at µ
and Prikry forcing at µ.8

We extend this list in this paper by showing (see De�nition 2.1 and Corol-
lary 2.16):

• If µ<µ = µ, then GMPµ++ is preserved by adding any number of
Cohen subsets of µ, and hence, over models of GMPµ++ , so are its
consequences TP(µ++) and ¬wKH(µ+).

2. Preservation of the Guessing Model Principle by Cohen

forcing

2.1. Guessing models

In [32], building on work of Jech [14] and Magidor [21] providing combinato-
rial characterizations of strongly compact and supercompact cardinals, Weiss
introduced the notion of a slender Pκ(λ)-list and used this to formulate
a powerful compactness principle called the ine�able slender tree property,
ISPκ. For inaccessible κ, ISPκ characterizes supercompactness and can be
seen as capturing the combinatorial core of supercompactness, but ISPκ can
also consistently hold at an accessible κ. Viale and Weiss [31] proved that

7 P is µ+-centered if it can be written as the union of a family {Pα ⊆ P |α < µ}, where
for every α and p, q ∈ Pα there is r ∈ Pα with r ≤ p, q. See De�nition 3.1 for more details.
Note that sometimes �µ+-centered� is called �µ-centered� instead (for instance in [10]).
We prefer to say P is µ+-centered to agree with the notation for the chain condition (every
µ+-centered P is µ+-cc in our notation).

8This preservation result has been recently extended to all µ+-linked forcings in [9]
(being µ+-linked is slightly weaker than µ+-centered).
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PFA implies ISPω2 , and moreover provided an equivalent characterization of
ISPω2 in terms of guessing models.

In this paper, we work with this equivalent characterization in terms of
guessing models and its generalizations. We state the de�nition in the form
relevant for us, though more general versions are clearly possible. Recall the
notation Pκ(x) which denotes the set of all subsets of x of size < κ.

De�nition 2.1. Let µ < θ be regular cardinals, and let M ≺ H(θ).

(1) Given a set x ∈M , and a subset d ⊆ x, we say that
(a) d is (µ+,M)-approximated if, for every z ∈ M ∩Pµ+(M), we

have d ∩ z ∈M ;
(b) d is M -guessed if there is e ∈M such that d ∩M = e ∩M .

(2) For x ∈ M , M is a µ+-guessing model for x if every (µ+,M)-
approximated subset of x is M -guessed.

(3) M is a µ+-guessing model if, for every x ∈ M , it is a µ+-guessing
model for x.

Let κ be a regular cardinal such that µ < κ ≤ θ and κ is (<µ)-inaccessible,
i.e., ν<µ < κ for all ν < κ. We denote by GMPµ+,κ(θ) the assertion that the

set ofM ∈Pκ(H(θ)) such that <µM ⊆M andM is a µ+-guessing model is
stationary in Pκ(H(θ)). We write GMPµ+,κ if GMPµ+,κ(θ) holds for every
regular θ ≥ κ. If κ = µ++, then we will simply write GMPκ(θ) or GMPκ in
place of GMPµ+,κ(θ) or GMPµ+,κ, e.g., GMPω2 is the same as GMPω1,ω2 .

Note that in the principles de�ned above we speci�cally require that the
guessing models in question are closed under sequences of length <µ. In
other words, we require in GMPµ+,κ(θ) that the guessing models concentrate
on the stationary set of all x ∈ Pκ(H(θ)) such that <µx ⊆ x (this set is in
fact closed under increasing unions of co�nality at least µ). If µ = ω, this
is automatic because it just means that the models are closed under �nite
sequences; however for µ > ω we need to require this property to show that
the concept behaves as expected (see for instance Lemma 2.4).

Viale and Weiss essentially proved in [31] the following (see [31] for the
de�nition of ISPω2):

Fact 2.2. (i) GMPω2 is equivalent to ISPω2.
(ii) PFA implies GMPω2.

Models with GMPµ++ can be obtained starting with su�ciently large car-
dinals:

Fact 2.3. Suppose that µ = µ<µ is regular and κ > µ is supercompact. Then
in the Mitchell model V [M(µ, κ)], which turns κ into µ++, GMPµ++ holds.

Proof. The argument is essentially the same as in [32] and [31]. Let us only
mention why we can assume that the guessing models concentrate on sets
closed under <µ-sequences, as we require in our de�nition of GMPµ++ . This
follows from the fact that the characterization of θ-supercompactness of a
supercompact cardinal κ by means of θ-ine�ability (see [21, p. 281]) ensures
the stationarity of the required set by showing the stronger property, namely
that the set in question is an element of a normal ultra�lter on Pκ(θ). When
reformulated for Pκ(H(θ)), with θ = |H(θ)|, it follows that we can start with
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stationary sets which concentrate on the set of all submodels of H(θ) which
are closed under sequences of length < ν, for any �xed ν < κ. Since M(µ, κ)
does not add new sequences of length < µ (but adds many new subsets of
µ), the argument proceeds with ν = µ. �

The following lemma generalizes the analogous lemma in [3] which was
formulated for µ = ω.

Lemma 2.4. Suppose that µ < µ++ ≤ θ are in�nite regular cardinals, and
let M ≺ H(θ) be a µ+-guessing model with <µM ⊆ M . Let ν ∈ M be a
cardinal with co�nality ≥ µ+.
(i) Then cf(sup(M ∩ν)) ≥ µ+, and in particular µ+ ⊆M and so M ∩µ++

is an ordinal.
(ii) If θ ≥ µ+3, then moreover cf(M ∩ µ++) ≥ µ+.

Proof. (i). This is like Lemma 2.3 from [3] using the fact that <µM ⊆M .
(ii). If θ ≥ µ+3, then µ++ ∈M , and the claim follows by (i). �

Generalizing the results known for GMPω2 , let us review the argument
that GMPµ++ implies TP(µ++) and ¬wKH(µ+).

Lemma 2.5. GMPµ++ implies TP(µ++) and ¬wKH(µ+).

Proof. Assume GMPµ++ holds. Let us �rst show that TP(µ++) holds. Sup-

pose T is a µ++-tree; we wish to show that it contains a co�nal branch.
Choose a µ+-guessing modelM ≺ H(µ+3) of size µ+ with T ∈M (note that
automatically µ+ ∪{µ+} ⊆M by Lemma 2.4(i)). Let t be any node in T on
level δ = M ∩µ++. Denote by d = {s | s <T t} the set of predecessors of t in
T ; notice that d ⊆M , and d ⊆ T ∈M . The set d is (µ+,M)-approximated:
if z ∈M has size µ, then since δ has co�nality µ+ (Lemma 2.4(ii)), there is
t∗ ∈ d such that z ∩ d is de�nable in M as the set of all predecessors of t∗

which are in z, and so z ∩ d ∈M . Since M is a µ+-guessing model, and we
showed that d is (µ+,M)-approximated, there is e ∈M with e∩M = d∩M .
It follows M |= (e is a co�nal branch in T ), and by elementarity this is true
in H(µ+3), and hence in V .

In a similar way we can show that ¬wKH(µ+) holds. Suppose for contra-
diction that T is a tree of size and height µ+ which has more than µ+-many
branches. Choose a µ+-guessing modelM ≺ H(µ++) of size µ+ with T ∈M
(note that automatically µ+ ∪ {µ+} ⊆ M by Lemma 2.4(i)). Every co�nal
branch b ⊆ T is (µ+,M)-approximated, using the fact that T has height µ+.
It follows that every co�nal branch b must be in M , but this contradicts the
fact that M has size µ+. �

Note that we need just the principle GMPµ++(µ+3) for obtaining TP(µ++),

and GMPµ++(µ++) for obtaining ¬wKH(µ+).

2.2. A preservation theorem

In [2], Cox and Krueger prove that GMPω2 is compatible with any consistent
value of the continuum greater than ω1 by producing a speci�c model of
ZFC over which GMPω2 is indestructible under adding any number of Cohen
reals. In this section, we remove the dependence of their result on a particular
choice of ground model by proving that, over any model of ZFC, if µ<µ = µ,
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then GMPµ++ is preserved by adding any number of Cohen subsets of µ.
In fact, we will prove a more general result; see Theorem 2.8 below for the
precise statement.9

The following lemma is essentially due to Krueger [18], presented here in
a slightly more general form.

Lemma 2.6. Suppose that µ < θ are in�nite regular cardinals and M ≺
H(θ) is a µ+-guessing model such that <µM ⊆M . Then M is µ+-internally
unbounded, i.e., for every z ∈ M and every x ∈ [z ∩M ]µ, or equivalently
every x ∈ [z]µ with x ⊆M , there is y ∈ [z]µ ∩M such that x ⊆ y.

Proof. Assume for the sake of contradiction that there are z ∈ M and x ∈
[z ∩M ]µ such that there is no y ∈ [z]µ ∩M for which x ⊆ y. Injectively
enumerate x as 〈aα | α < µ〉 and, for each β < µ, let xβ := {aα | α < β}.
Since <µM ⊆ M , we have xβ ∈ M for all β < µ. Let x∗ := {xβ | β < µ}.
Then x∗ ⊆ [z]<µ ∈M .

Claim 2.7. x∗ is (µ+,M)-approximated.

Proof. Fix w ∈ M with |w| ≤ µ. Since x∗ ⊆ [z]<µ ∈ M , we can assume
that w ⊆ [z]<µ. If it were the case that |w ∩ x∗| = µ, then

⋃
w would be

an element of [z]µ ∩M covering x, contradicting our assumption. Therefore,
|w ∩ x∗| < µ, so, since <µM ⊆M , we have w ∩ x∗ ∈M . �

Since M is a µ+-guessing model, we can �nd e ∈ M such that e ∩M =
x∗ ∩ M = x∗. If it were the case that |e| > µ, then there would be an
injection f : µ+ → e with f ∈ M , and since, by Lemma 2.4, µ+ ⊆ M , we
would have |e∩M | > µ, contradicting the fact that e∩M = x∗ and |x∗| = µ.
Therefore, |e| = µ. Since µ ⊆ M , it follows that e ⊆ M , and therefore we
in fact have e = x∗. It then follows that

⋃
e = x is an element of M , again

contradicting our assumption and completing the proof. �

Theorem 2.8. Let ν ≤ µ < θ be in�nite regular cardinals such that µ<ν = µ,
let χ ≥ ν be a cardinal, and let P := Add(ν, χ). Suppose that M ≺ H(θ) is
a µ+-guessing model such that <µM ⊆M and P ∈M . Then, in V [P], M [P]
is a µ+-guessing model.

Proof. Conditions in P are partial functions p : χ → 2, with |p| < ν. The
fact that ν ≤ µ and <µM ⊆ M implies that the empty condition is (M,P)-
generic. Therefore, 1P  “M [P] ∩ On = M ∩ On”. It thus su�ces to show
thatM [P] is forced to be a µ+-guessing model for δ for every ordinal δ ∈M .

To this end, �x an ordinal δ ∈ M , a P-name ḋ for a subset of δ, and
a condition p ∈ P such that p  “ḋ is (µ+,M [P])-approximated”. Note
that, by Proposition 2.6, M is µ+-internally unbounded, so M ∩ [δ]µ is ⊆-
unbounded in [M ∩ δ]µ. Let f : [M ∩ δ]µ →M ∩ [δ]µ be a function such that
w ⊆ f(w) for all w ∈ [M ∩ δ]µ and f(w) = w for all w ∈M ∩ [δ]µ.

For each α < δ, let Aα be a maximal antichain of P below p consisting of
conditions deciding the statement α ∈ ḋ, and let uα =

⋃
{dom(p) | p ∈ Aα}.

Since µ<ν = µ, P has the µ+-cc, so we know that |uα| ≤ µ. Moreover, for

9We would like to thank to Menachem Magidor who shared with us his unpublished
proof that GMPω2 is preserved by adding a single Cohen subset of ω, which helped lead
us to our proof of Theorem 2.8.
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every q ≤ p, if q decides the statement α ∈ ḋ, then q � uα already decides
the statement in the same way.

For any P-name ẋ for a subset of δ, let ˆ̇x denote the function from P× δ
to 3 such that, for all (q, α) ∈ P× δ, we have

• ˆ̇x(q, α) = 0 if and only if q  α ∈ ẋ;
• ˆ̇x(q, α) = 1 if and only if q  α /∈ ẋ;
• ˆ̇x(q, α) = 2 if and only if q does not decide the statement α ∈ ẋ.

For each z ∈ M ∩ [δ]µ, using the fact that p forces ḋ to be (µ+,M [P])-

approximated, �nd pz ≤ p and a P-name ḋz ∈M such that pz  ḋ∩ zη = ḋη.
Let Ξ be a su�ciently large regular cardinal, and let N denote the set of

N ≺ H(Ξ) such that

• |N | = µ ⊆ N ;

• f, ḋ,M, 〈(ḋz, pz) | z ∈M ∩ [δ]µ〉, 〈uα | α < δ〉 ∈ N ;
• <νN ⊆ N .

Since µ<ν = µ, N is stationary in Pµ+(H(Ξ)). For each N ∈ N , let

zN = f(N ∩M ∩ δ), ḋN = ḋzN , and pN = pzN . Since each element of N is
closed under (< ν)-sequences, we have pN∩N ∈ N for all N ∈ N . Therefore,
by Fodor's Lemma, we can �nd a stationary N ′ ⊆ N and a condition p∅ ∈ P
such that pN ∩N = p∅ for all N ∈ N ′. Let r = dom(p∅) and, for all N ∈ N ′,
let sN = dom(pN ) \ r. We will prove that p∅ forces ḋ to be M [P]-guessed.
Since p∅ ≤ p and p was chosen arbitrarily, this su�ces to prove the theorem.

Claim 2.9. Suppose that N ∈ N ′, α ∈M ∩ δ, and q ∈ P ∩M are such that

α ∈ N , q ≤ p∅ ∩M , and q ‖ pN . Then ˆ̇
dN (q ∪ (pN ∩M), α) =

ˆ̇
d(q ∪ pN , α).

Proof. We will prove that
ˆ̇
dN (q∪(pN∩M), α) = 0 if and only if

ˆ̇
d(q∪pN , α) =

0. The proof of the rest of the claim is the same, mutatis mutandis. For the

forward direction, suppose that
ˆ̇
dN (q∪(pN∩M), α) = 0. Then q∪(pN∩M) 

α ∈ ḋN and pN  ḋ ∩ zN = ḋN , so it follows that q ∪ pN  α ∈ ḋ, and hence
ˆ̇
d(q ∪ pN , α) = 0.

For the backward direction, suppose that
ˆ̇
dN (q∪ (pN ∩M), α) 6= 0. Then,

by elementarity, we can �nd q′ ≤ q ∪ (pN ∩M) in M such that q′  α /∈ ḋN .
Since q′ ∈ M and q′ ≤ pN ∩M , it follows that q′ ‖ pN . Then q′ ∪ pN 
ḋ ∩ zN = ḋN , and hence, since α ∈ N , we have q′ ∪ pN  α /∈ ḋ. Since

q′ ∪ pN ≤ q ∪ pN , it follows that q ∪ pN 6 α ∈ ḋ, i.e., ˆ̇
d(q ∪ pN , α) 6= 0. �

Let D := {(q, α) ∈ (P × δ) ∩M | q ≤ p∅ ∩M}. For each (q, α) ∈ D, let
Bq,α be the set of all N ∈ N ′ such that q, α ∈ N .

Claim 2.10. For all (q, α) ∈ D and N ∈ Bq,α, we have sN∩(uα∪dom(q)) =
∅ and q ‖ pN .

Proof. Fix (q, α) ∈ D and N ∈ Bq,α. Since q, α ∈ N and µ ⊆ N , we have
uα ∪ dom(q) ⊆ N . By construction, r = dom(pN ) ∩ N , so sN ∩ N = ∅.
Therefore, sN ∩ (uα ∪ dom(q)) = ∅. Since, additionally, we have q ∈M and
q ≤ p∅ ∩M , it follows that q ‖ pN . �
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Claim 2.11. For all (q, α) ∈ D and N ∈ Bq,α, we have

ˆ̇
dN (q ∪ (pN ∩M), α) =

ˆ̇
d(q ∪ p∅, α).

Proof. Fix (q, α) ∈ D and N ∈ Bq,α. We will prove that
ˆ̇
dN (q ∪ (pN ∩

M), α) = 0 if and only if
ˆ̇
d(q ∪ p∅, α) = 0. The proof of the rest of the claim

is the same. For the forward direction, suppose that
ˆ̇
dN (q∪(pN∩M), α) = 0.

Then, by Claim 2.9,
ˆ̇
d(q ∪ pN , α) = 0, i.e., q ∪ pN  α ∈ ḋ. It follows that

(q ∪ pN ) � uα  α ∈ ḋ. But, by Claim 2.10, we have sN ∩ uα = ∅, so
q ∪ p∅ ≤ (q ∪ pN ) � uα, and hence

ˆ̇
d(q ∪ p∅, α) = 0.

For the backward direction, suppose that
ˆ̇
d(q∪p∅, α) = 0. Then, a fortiori,

ˆ̇
d(q ∪ pN , α) = 0, so, by Claim 2.9, we have

ˆ̇
dN (q ∪ (pN ∩M), α) = 0, as

desired. �

Now de�ne a function τ : D → 3 by letting τ(q, α) :=
ˆ̇
d(q ∪ p∅, α) for all

(q, α) ∈ D.

Claim 2.12. τ is (µ+,M)-approximated.

Proof. It su�ces to show that, for every y ∈ M with |y| = µ, we have
τ � y ∈ M . Fix such a y. We can assume that y ⊆ P × δ and, for all
(q, α) ∈ y, we have q ≤ p∅∩M . Since |y| = µ, we can �nd N ∈ N ′ such that
y ⊆ N , and hence N ∈

⋂
{Bq,α | (q, α) ∈ y}.

By Claim 2.11, it follows that, for all (q, α) ∈ y, we have τ(q, α) =
ˆ̇
dN (q∪

(pN ∩M), α). Since
ˆ̇
dN , pN ∩M , and y are in M , it follows that τ � y is

de�nable in M and is therefore an element of M . �

Note that τ is a subset of (P× δ)× 3, which is an element of M . Since M
is a µ+-guessing model, we can �nd σ ∈ M such that σ ∩M = τ ∩M = τ .
By elementarity, σ is a function from {q ∈ P | q ≤ p∅ ∩M} × δ to 3.

Let G ⊆ P be a V -generic �lter with p∅ ∈ G. Let E := {N ∈ N ′ | pN ∈
G}.

Claim 2.13. E is ⊆-co�nal in (Pµ+(H(Ξ)))V .

Proof. By a standard density argument, it su�ces to show that, for every
w ∈ (Pµ+(H(Ξ)))V and every q ≤ p∅, there is N ∈ N ′ such that w ⊆ N
and q ‖ pN . Fix such a w and q. Find N ∈ N ′ such that w ⊆ N and q ∈ N .
By Claim 2.10, we have q ‖ pN , as desired. �

Let d be the interpretation of ḋ in V [G], and, for all N ∈ N ′, let dN be

the interpretation of ḋN . Let

e = {α < δ | ∃q ∈ G [σ(q, α) = 0]}.
Everything needed to de�ne e is in M [G], so e ∈ M [G]. We will be done if
we show that e ∩M [G] = d ∩M [G]. We �rst prove two preliminary claims.

Claim 2.14. Let α ∈ δ ∩M .

(1) α ∈ d if and only if there is q ∈ G ∩M such that τ(q, α) = 0.
(2) α /∈ d if and only if there is q ∈ G ∩M such that τ(q, α) = 1.
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Proof. We prove (1). The proof of (2) follows by a symmetric argument. For
the forward direction, suppose that α ∈ d. Find N ∈ E such that α ∈ N ,
and hence sN ∩ uα = ∅. Then d ∩ zN = dN , so we can �nd q ∈ G ∩M
such that q  α ∈ ḋN . It follows that q ∪ pN  α ∈ ḋ, and therefore that
(q ∪ pN ) � uα  α ∈ ḋ. Since sN ∩ uα = ∅, we have q ∪ p∅ ≤ (q ∪ pN ) � uα.
Therefore, q ∪ p∅  α ∈ ḋ, and hence τ(q, α) = 0.

For the backward direction, suppose that q ∈ G ∩M and τ(q, α) = 0.

Find N ∈ E ∩ Bq,α. By Claim 2.11, we have
ˆ̇
dN (q ∪ (pN ∩ M), α) = 0.

Since q ∪ pN ∈ G, we therefore have α ∈ dN . Again since pN ∈ G, we have
d ∩ zN = dN , and hence α ∈ d. �

Claim 2.15. For all α ∈ δ and q0, q1 ∈ P with q0, q1 ≤ p∅∩M , if σ(q0, α) = 0
and σ(q1, α) = 1, then q0 and q1 are incompatible in P.

Proof. This is immediate from the elementarity of M and the fact that σ ∩
M = τ ∩M . �

We are now ready to show that e ∩M [G] = d ∩M [G]. Fix α ∈ δ ∩M ,
and suppose �rst that α ∈ d. By Claim 2.14, there is q ∈ G ∩M such that
τ(q, α) = 0. But then we also have σ(q, α) = 0, so α ∈ e. For the other
direction, suppose that α /∈ d. Again by Claim 2.14, there is q ∈ G ∩M
such that τ(q, α) = 1, and hence σ(q, α) = 1. By Claim 2.15, there cannot
be q′ ∈ G such that σ(q′, α) = 0, and therefore α /∈ e. �

We immediately obtain the following corollary.

Corollary 2.16. Suppose that µ < κ are regular cardinals such that µ<µ = µ
and GMPµ+,κ holds. Then GMPµ+,κ is preserved by adding any number of
Cohen subsets to µ.

Proof. Fix a cardinal χ ≥ µ, let P := Add(µ, χ), and let θ > χ be a su�-

ciently large regular cardinal. Let Ċ be a P-name for a club in (Pκ(H(θ)))V [P].

It su�ces to prove that P forces that there is a µ+-guessing model Ṅ ∈ Ċ
such that <µṄ ⊆ Ṅ . To this end, �nd a µ+-guessing model M ≺ H(θ) such

that P, Ċ ∈M , |M | < κ, and <µM ⊆M . By Theorem 2.8, M [P] is forced to

be a guessing model in V [P]. Moreover, Ċ ∩M [P] is forced to be a directed

subset of Ċ of size less than κ whose union is all of M [P]. Since Ċ is forced

to be a club in (Pκ(H(θ)))V [P], it follows that M [P] is forced to be in Ċ.
Finally, since <µM ⊆ M and P is µ-closed, it is forced to be the case that
<µM [P] ⊆M [P]. Therefore, GMPµ+,κ continues to hold in V [P]. �

Note that in the previous proof, we showed that in V [P], GMPµ+,κ(θ) holds
for all su�ciently large regular θ ≥ κ, whereas GMPµ+,κ asserts this for all
regular θ ≥ κ. These are obviously the same, though, since, if κ ≤ θ ≤ θ′

are regular cardinals and M ≺ H(θ′) is a µ+-guessing model with θ ∈ M ,
then M ∩H(θ) is also a µ+-guessing model.

Corollary 2.17. Assume PFA holds. Then both TP(ω2) and ¬wKH(ω1) are
preserved by adding any number of Cohen subsets of ω.

Proof. This follows from Fact 2.2, Lemma 2.5, and Corollary 2.16. �
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Remark 2.18. Note that even a single Cohen subset of ω destroys PFA
because it adds an ω1-Suslin tree. So it is essential to isolate a principle
weaker than PFA for our preservation result.

In [24, Problem 4.33], Mohammadpour asks whether it is consistent for
there to exist a weakly inaccessible but not strongly inaccessible cardinal κ
such that, for all regular θ ≥ κ, the set of κ-guessing models is stationary
in PκH(θ). As another application of our preservation theorem, we give a
positive answer to this, in fact proving something stronger.

Corollary 2.19. Suppose that κ is supercompact and P is the forcing to add
any number of Cohen reals. Then GMPω1,κ holds in V [P]. In particular,
there is a forcing extension in which κ is weakly inaccessible but not strongly
inaccessible and GMPω1,κ holds.

Proof. By a result of Magidor [21], the supercompactness of κ implies that
GMPω1,κ holds (in fact, it implies more; cf. [30, Theorem 3.3]). Then Corol-
lary 2.16 implies that GMPω1,κ continues to hold in V [P]. In particular,
if P = Add(ω, κ), then in V [P] κ is weakly inaccessible but not strongly
inaccessible and GMPω1,κ holds. �

3. Preservation of the negation of the weak Kurepa

Hypothesis by centered forcings

3.1. Centered forcings

De�nition 3.1. Let P be a forcing and suppose µ is a cardinal. We say that
P is µ+-centered if P can be written as the union of a family {Pα ⊆ P |α < µ}
such that for every α < µ:

(3.1) for every p, q ∈ Pα there exists r ∈ Pα with r ≤ p, q.

If µ = ω, we say that P is σ-centered.

It follows that P can be written as a union of µ-many �lters if we close
each Pα upwards. We require (3.1) to ensure nice properties of the system

S(Ṫ ) de�ned in Section 3.2 (in particular the transitivity of <i).
Let us add two remarks with regard to De�nition 3.1. Firstly, as we

already mentioned above, sometimes �µ+-centered� is called �µ-centered�
instead. We prefer to say P is µ+-centered to agree with the notation for the
chain condition (every µ+-centered P is µ+-cc in our notation).

Secondly, some de�nitions of µ+-centeredness require just the compatibil-
ity of the conditions, with a witness not necessarily in Pα. The condition
(3.1) in this case reads:

(3.2) for every n < ω and every sequence p0, p1, . . . , pn−1

of conditions in Pα there exists r ∈ P with r ≤ pi for every 0 ≤ i < n.

The conditions (3.1) and (3.2) are not in general equivalent (see Kunen
[19], before Exercise III.3.27), but the distinction is not so important for us
because common forcings such as Cohen forcing and Prikry forcings are all
centered in the stronger sense of (3.1). Also note that the conditions are
equivalent for Boolean algebras: the de�nition (3.2) means that each Pα is
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a system with the FIP (�nite intersection property), and as such can be
extended to a �lter.

3.2. Systems and derived systems

Suppose P is a forcing notion. In order to show that certain objects cannot
exist in a generic extension V [P] (such as a weak Kurepa tree), we will work
in the ground model and work with a system derived from a P-name for
the object in question. We give the general de�nition of a system here and
discuss systems derived from names in De�nition 3.4 below. We formulate
the de�nition of the system to �t our purpose, which gives a slightly less
general concept than the one introduced in [22].

De�nition 3.2. Let κ ≤ λ be cardinals and let D ⊆ λ be unbounded in λ.
For each α ∈ D, let Sα ⊆ {α} × κ and let S =

⋃
α∈D Sα.

10 Moreover, let
I be an index set of cardinality ≤ κ and R = {<i | i ∈ I} a collection of
binary relations on S. We say that 〈S,R〉 is a (κ, λ)-system if the following
hold:

(i) For each i ∈ I, α, β ∈ D and γ, δ < κ; if (α, γ) <i (β, δ) then α < β.
(ii) For each i ∈ I, <i is irre�exive and transitive.
(iii) For each i ∈ I, α < β < γ in D, x ∈ Sα, y ∈ Sβ and z ∈ Sγ , if x <i z

and y <i z, then x <i y.
(iv) For all α < β in D there are y ∈ Sβ and x ∈ Sα and i ∈ I such that

x <i y.

We call a (κ, λ)-system 〈S,R〉 a strong (κ, λ)-system if the following
strengthening of item (iv) holds:

(iv') For all α < β in D and for every y ∈ Sβ there are x ∈ Sα and i ∈ I
such that x <i y.

If 〈S,R〉 is a (κ, λ)-system, we say that the system has height λ and width
κ. We call Sα the α-th level of S.

For the purposes of this paper we introduce the following de�nition:

De�nition 3.3. Suppose κ ≤ λ are cardinals and let 〈S,R〉 be a (κ, λ)-
system. We call 〈S,R〉 well-behaved if |R| < κ, i.e. the number of relations
is strictly smaller than the width of the system.

A branch of the system is a subset B of S such that for some i ∈ I, and
for all a 6= b ∈ B, a <i b or b <i a. A branch B is co�nal if for each α < λ
there are β ≥ α and b ∈ B on level β.

Systems appear naturally when we wish to analyse in the ground model
a P-name Ṫ for a tree which is added by a forcing notion P. We give the
de�nition for the context in which we will use it (more general de�nitions
are possible).

De�nition 3.4. Assume µ is a regular cardinal. Assume P is a µ+-centered
forcing notion; let P =

⋃
α<µ Pα where each Pα is a �lter. Assume further

that P forces that Ṫ is a tree of height and size λ, where λ ≥ µ+ is regular.
We assume that the domain of T is λ×λ, where the β-th level of Ṫ consists

10The elements of S are therefore ordered pairs of ordinals; if the ordinals are not
important, we denote the pairs of ordinals by letters x, y, . . ., etc.
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of pairs in {β}×λ. We say that S(Ṫ ) = 〈λ×λ,R〉 is a derived system (with

respect to P and Ṫ ) if it is a system with domain λ × λ which is equipped
with binary relations R = {<α |α < µ}, where

x <α y ↔ (∃p ∈ Pα) p  x <Ṫ y.

Following the terminology of De�nitions 3.2 and 3.3, S(Ṫ ) is a strong
well-behaved (λ, λ)-system.

3.3. A preservation theorem

We can prove a slightly more general result for the negation of the weak
Kurepa hypothesis at µ+: we show that it is preserved over any model of
GMPµ++ by all µ+-centered forcings. Note that, if µ<µ = µ, then Add(µ, µ+)

is µ+-centered, and since a weak Kurepa tree at µ+ has size only µ+, Theo-
rem 3.5 implies that ¬wKH(µ+) is preserved by adding any number of Cohen
subsets of µ to a model of GMPµ++ in which µ<µ = µ (see Corollary 3.6).
Also recall that MAω1 implies that every ccc forcing of size ω1 is σ-centered,
so our result implies that over models of GMPω2 + MAω1 , and hence also of
PFA, ¬wKH(ω1) is preserved by all ccc forcings of size ω1 (see Corollary 3.7).

Theorem 3.5. GMPµ++ implies that ¬wKH(µ+) is preserved by any µ+-
centered forcing.

Proof. Suppose P =
⋃
i<µ Pi is a µ+-centered forcing. Assume for a contra-

diction that Ṫ is forced by the weakest condition in P to be a weak µ+-Kurepa
tree, and let S(Ṫ ) be the derived system with respect to Ṫ , as in De�nition

3.4. LetM be a µ+-guessing modelM ≺ H(µ++) of size µ+ with S(Ṫ ) ∈M .

Since S(Ṫ ) has domain µ+ × µ+, the system with the relations is a subset
of M .

Let us �x a sequence 〈ḃα |α < µ++〉 of P-names such that

(3.3) 1P  “〈ḃα |α < µ++〉 are pairwise distinct co�nal branches in Ṫ .�
Working in V , there must be some i < µ, such that for some I ⊆ µ++ of size
µ++, and all α ∈ I, there are co�nally many x for which there are px ∈ Pi
with

px  x ∈ ḃα.
Let us �x such an i < µ and I ⊆ µ++.

For each α ∈ I, let us de�ne
Bα = {x ∈ S(Ṫ ) | (∃p ∈ Pi) p  x ∈ ḃα}.

Note that Bα is a co�nal branch in S(Ṫ ). We �nish the proof by showing:

(i) For each α ∈ I, Bα is an element of M .
(ii) For all α 6= β ∈ I, Bα 6= Bβ .

Items (i) and (ii) imply that M has size at least µ++, which is a contra-
diction.

With regard to (i), we will show that each Bα is (µ+,M)-approximated,
and therefore is an element of M .11 Let us �x α ∈ I and a ∈ M of size µ.

11In general, if some set d is (µ+,M)-approximated, and M is µ+-guessing, there is
some e ∈M such that d∩M = e∩M , where d 6= e is possible. However, in the present case,
since S(Ṫ ) ⊆M , if Bα is (µ+,M)-approximated, and M is µ+-guessing, then Bα ∈M .
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We need to show that Bα ∩ a is in M . Since the sytem S(Ṫ ) has height µ+

and is a subset ofM , there is some y ∈ Bα∩M which is above every element
of Bα ∩ a in <i. It follows that

Bα ∩ a = {x ∈ a ∩ S(Ṫ ) | (∃p ∈ Pi) p  x ∈ ḃα} = {x ∈ a ∩ S(Ṫ ) |x <i y}.

For the identity between the second and third set, �x p′ ∈ Pi such that
p′  y ∈ ḃα, and note that if p ∈ Pi and p  x ∈ ḃα, then the existence of
a lower bound of p, p′ in Pi implies x <i y; and conversely, if p  x <Ṫ y
for some p ∈ Pi, then the existence of a lower bound in Pi implies that for
some r ∈ Pi, r  x ∈ ḃα. Since the third expression determines a set in M
(because all parameters are in M), Bα ∩ a is in M .

With regard to (ii): suppose for a contradiction Bα = Bβ for some α 6=
β ∈ I. Fix for every x ∈ Bα = Bβ some conditions pαx and pβx in Pi such that

pαx  x ∈ ḃα and pβx  x ∈ ḃβ.

Let px ∈ Pi be some lower bound of pαx , p
β
x.

Suppose �rst that {px |x ∈ Bα = Bβ} has size at most µ. Then there

exists some p such that p = px for µ+-many x. This p forces ḃα = ḃβ , which
contradicts (3.3).

Suppose now that {px |x ∈ Bα = Bβ} has size µ+. The µ+-cc of P
implies that there is a condition p which forces that Ġ has an intersection
with {px |x ∈ Bα = Bβ} of size µ+. In particular, p forces ḃα = ḃβ , which
contradicts (3.3). �

Theorem 3.5 gives an alternative proof that ¬wKH(µ+) is preserved by
adding any number of Cohen subsets of µ over models of GMPµ++ .

Corollary 3.6. Over models of GMPµ++ with µ<µ = µ, ¬wKH(µ+) is pre-
served by adding any number of Cohen subsets of µ.

Proof. It is known that if µ<µ = µ, then for every α ≤ 2µ, Cohen forcing
Add(µ, α) is µ+-centered. We only need that Add(µ, µ+) is µ+-centered for
our argument, but note that since GMPµ++ implies 2µ ≥ µ++, longer Cohen

forcings are µ+-centered.
Suppose for a contradiction that Add(µ, γ) adds a weak Kurepa tree T

at µ+ for some γ. Using the fact that T has size µ+, T is added already
by Add(µ, µ+). By Theorem 3.5, T has at most µ+ co�nal branches in
V [Add(µ, µ+)]. Since Cohen forcing at µ is µ+-Knaster, and in particular
its product with itself is µ+-cc, it follows that Cohen forcing at µ cannot add
new co�nal branches to T over V [Add(µ, µ+)]. This is a contradiction. �

If µ = ω and we additionally assume MAω1 , then ccc forcings are more
well-behaved (for instance they are all Knaster). Moreover, if they have size
at most ω1, they are even σ-centered (see [33, Theorem 4.5]), so we obtain
the following Corollary.

Corollary 3.7. ¬wKH(ω1) is preserved over models of GMPω2 + MAω1 by
any ccc forcing of size ω1. In particular over models of PFA, ¬wKH(ω1) is
preserved by all ccc forcings of size ω1.
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4. An application

In this section, we sketch an application of the indestructibility result
for the negation of the weak Kurepa Hypothesis to provide a proof of the
consistency of ¬wKH(ℵω+1). Familiarity with lifting arguments, as they
appear for instance in [1], [12] or [4], is assumed.

Suppose µ < κ are regular cardinals with µ<µ = µ and κ inaccessible. The
Mitchell forcing M(µ, κ) can be written as Add(µ, κ) ∗ Ṙ for some quotient

forcing Ṙ which is forced to be µ+-distributive (see [1] for more details). If
GM is M(µ, κ)-generic, we write GM = G0 ∗G1 to denote the corresponding

Add(µ, κ) ∗ Ṙ-generic (this will be relevant for Theorem 4.3).

Theorem 4.1. Suppose µ < κ are supercompact cardinals and µ is Laver-
indestructibly supercompact. Let G = GM × GA be M(µ, κ) × Add(µ, κ+)-
generic, where M(µ, κ) is the Mitchell forcing and Add(µ, κ+) is the Co-
hen forcing for adding κ+-many subsets of µ. In V [G], µ is supercompact,
2µ = µ+3, and GMPµ++ holds. Let Q be the Prikry forcing with interleaved
collapses which turns µ into ℵω. Suppose F is Q-generic over V [G]. Then
in V [G][F ], we have 2ℵω = ℵω+3 and ¬wKH(ℵω+1).

Proof. Note that the preparatory forcing Add(µ, κ+) is included to obtain a
�guiding generic� required for the de�nition of Q. More details can be found
in [27] and [4].12 By Fact 2.3, GMPµ++ holds in V [GM]. By the preservation
theorem we proved earlier, Corollary 2.16, GMPµ++ continues to hold in
V [GM ×GA] = V [G]. The compatibility of conditions in the Prikry forcing
with collapses Q (de�ned with respect to some guiding generic which exists
in V [G] due to the preparatory forcing Add(µ, κ+)) is determined only by
the stems, and so Q is µ+-centered. Then the present theorem follows by
Theorem 3.5 applied to Q. �

Remark 4.2. By an argument using a quotient analysis as in [27] and [4],
the tree property holds at ℵω+2 in the model V [G][F ] as well.

If µ is not turned into ℵω, but only singularised (to an arbitrary co�nality),
we can apply an indestructibility result also for the tree property, following
[12].

Theorem 4.3. Suppose µ < κ are supercompact cardinals and µ is Laver-
indestructibly supercompact. Let GM be M(µ, κ)-generic and let us write GM
as G0 ∗G1 (see our convention before Theorem 4.1). In V [GM] = V [G0][G1],
µ is supercompact, 2µ = µ++, and GMPµ++ holds. Let Q be the Prikry or
Magidor forcing which turns µ into a singular cardinal without collapsing any
cardinals; choose Q to be an element of V [G0].

13 Suppose F is Q-generic over
V [GM]. Then in V [GM][F ] we have 2µ = µ++ and ¬wKH(µ+) and TP(µ++)
both hold.

Proof. The part regarding the negation of the weak Kurepa Hypothesis is as
in Theorem 4.1 (but it is easier since the preparatory forcing is not necessary
because no guiding generic needs to be constructed this time), and the tree

12To avoid possible confusion, let us mention that this preparatory forcing has been
omitted from an analogous argument in [4], but it should have been included there as well.

13This is possible; see the construction in [13] for more details.
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property holds because the forcing Q lives in V [G0], so the indestructibility
result for µ+-cc forcings from [12] applies. �

Let us summarize the arguments in this section succinctly as follows:

Corollary 4.4. Assuming the consistency of the existence of two supercom-
pact cardinals, it is consistent that ¬wKH(ℵω+1) and TP(ℵω+2) both hold.

Remark 4.5. Let us make some comments on the preparatory forcing in
Theorem 4.1. It increases the value of 2κ to κ+3, resulting in 2ℵω = ℵω+3

in the �nal model, and its purpose is to ensure one can construct a guiding
generic for the de�nition of the Prikry forcing with collapses. A natural
question is whether Theorem 4.1 can hold with 2ℵω = ℵω+2. If we want to
have just ¬wKH(ℵω+1), then the answer is yes because it su�ces to collapse
ℵω+3 to ℵω+2 with a ℵω+2-closed forcing which cannot add new trees of
height and size ℵω+1, and thus preserves ¬wKH(ℵω+1). But this collapse
may introduce new ℵω+2-Aronszajn trees, thus violating TP(ℵω+2). It seems
unclear whether a modi�cation of the method in Theorem 4.1 can ensure
¬wKH(ℵω+1) and TP(ℵω+2) together with 2ℵω = ℵω+2.

Note in this respect that having just TP(ℵω+2) with 2ℵω = ℵω+2 is possible
by starting from a hypermeasurable cardinal κ (see [8]). It is an interesting
fact that the construction from a hypermeasurable cardinal also needs a
preparatory forcing, this time it is �roughly� equal to Add(µ+, κ), which in
this case is used not to construct a guiding generic but to lift an elementary
embedding (it forces an extra generic on which a �surgery� is then performed).
However, while Add(µ+, κ) is innocuous with respect to the tree property,
it appears to force wKH(ℵω+1) in the resulting model, by considering the
cardinal arithmetic consequences identi�ed in [20].

Finally note that there is another method for obtaining TP(ℵω+2) which
uses the iteration of the κ-Sacks forcing, and which does not require any
preparatory forcing of this type (but can only yield 2ℵω = ℵω+2); see [7]. It
might be interesting to see whether ¬wKH(ℵω+1) holds in this model.

5. Open questions

(1) Can we extend the preservation result for TP(µ++) to all µ+-centered
forcings? It seems that our method in Theorem 3.5 does not generalize to
the tree property. The syntactical di�erence between the two principles
may be important here: while wKH(ω1) is a Σ1 sentence, ¬TP(ω2) is a
Σ2 sentence. This is also relevant for question (3) mentioned below.

Or more ultimately, can the preservation result under GMPµ++ be ex-

tended to all µ+-cc forcings? To our knowledge there is no known coun-
terexample.

(2) Is the assumption of GMPµ++ necessary for the preservation results? To
our knowledge it is still open whether, for instance, there may be a model
which satis�es TP(ω2) and/or ¬wKH(ω1), and over which a single Cohen
forcing at ω adds an ω2-Aronszajn tree and/or a weak Kurepa tree at
ω1.
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(3) Zapletal observed that MAω2 implies that ¬wKH(ω1) is preserved by all

ccc forcings: if P is a ccc forcing notion and Ṫ is a P-name for a weak
ω1-Kurepa tree, then with MAω2 one can use Ṫ to de�ne a weak Kurepa
tree back in V . However, it is not known whether MAω2 is consistent
with ¬wKH(ω1).

It is known that MAω2 +¬KH(ω1) is consistent due to a result of Jensen
and Schlechta [15] who showed that starting with CH, in the Levy col-
lapse by countable conditions of a Mahlo cardinal κ to ω2, ¬KH(ω1) is
preserved by all ccc forcings. In particular, it is preserved by any ccc
�nite-support iteration which forces MAω2 over this model. (We do not
know an easier proof of the consistency of MAω2 + ¬KH(ω1).)

We can ask whether there is an analogous construction for ¬wKH(ω1):
can one collapse a large cardinal κ to become ω2 with 2ω ≥ ω2 and
obtain a model over which ¬wKH(ω1) is preserved by all ccc forcings?
Note that this line of argument cannot be used with PFA because MAω2

implies 2ω > ω2. More generally, if MAθ holds for a regular θ, then
we can only argue that if Ṫ is a P-name for a weak Kurepa tree at ω1

with at least θ co�nal branches, there is one in V with at least θ co�nal
branches.

(4) Is it possible to strengthen Theorem 3.5 along the lines of Corollary 2.16
and show that not only ¬wKH(µ+), but the principle GMPµ++ itself is

preserved by all µ+-centered forcings? Or perhaps by all µ+-cc forcings?
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