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Abstract. We investigate connections between set theoretic compactness prin-

ciples and cardinal arithmetic, introducing and studying generalized narrow

system properties as a way to approach two open questions about two-cardinal
tree properties. The first of these questions asks whether the strong tree prop-

erty at a regular cardinal κ ≥ ω2 implies the Singular Cardinals Hypothesis

(SCH) above κ. We show here that a certain narrow system property at κ that
is closely related to the strong tree property, and holds in all known models

thereof, suffices to imply SCH above κ. The second of these questions asks

whether the strong tree property can consistently hold simultaneously at all
regular cardinals κ ≥ ω2. We show here that the analogous question about

the generalized narrow system property has a positive answer. We also high-
light some connections between generalized narrow system properties and the

existence of certain strongly unbounded subadditive colorings.

1. Introduction

One of the oldest problems in set theory is the determination of the values of
the continuum function, which takes an infinite cardinal κ and outputs 2κ, i.e., the
cardinality of the power set of κ. This function is subject to two easily proven
constraints:

• (monotonicity) κ ≤ λ⇒ 2κ ≤ 2λ;
• (König’s theorem) the cofinality of 2κ is strictly greater than κ.

Shortly after Cohen introduced the technique of forcing in 1963 [1], Easton proved
in [4] that, at least when restricted to regular cardinals, i.e., cardinals equal to their
own cofinality, these are the only constraints placed on cardinal arithmetic by the
axioms of ZFC. More precisely, working in some model V of set theory, given any
proper class function F defined on the class of all regular cardinals that satisfies
monotonicity and the analogue of König’s theorem, there exists some larger model
V [G] of ZFC with the same cardinals and cofinalities such that, in V [G], we have
2κ = F (κ) for every infinite regular cardinal κ.

The study of the continuum function at singular, i.e., nonregular, cardinals, has
proven to be much more subtle and difficult. A series of remarkable results due
to Silver [23], Galvin and Hajnal [5], and, later, Shelah [22], shows that there
are highly nontrivial constraints on the behavior of the continuum function at
singular cardinals. These results have placed the Singular Cardinals Hypothesis
(SCH) and its variants at the center of much recent research. SCH has a few
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different formulations; in its simplest, which is the one we will adopt in this paper,
it asserts that, for every singular cardinal µ, if 2κ < µ for all κ < µ, then 2µ = µ+.
The consistency of the failure of SCH with the axioms of ZFC was first shown by
Magidor in [16]; notably, this requires the consistency of the existence of certain
large cardinals, which goes beyond the consistency of ZFC alone. The exact large
cardinal strength necessary to obtain the consistency of the failure of SCH was
established by Gitik in [6] to be a measurable cardinal κ with Mitchell order κ++.

Another significant line of research in modern set theory, which, as we will see,
has considerable overlap with the study of the continuum function and cardinal
arithmetic more broadly, concerns the study of compactness principles, i.e., state-
ments asserting that certain mathematical structures necessarily reflect the prop-
erties of their small substructures. Compactness principles typically hold at (and
sometimes characterize) large cardinals, and much research into them centers on
the extent to which these compactness principles can hold at smaller cardinals, and
the extent to which these principles can be said to capture the “essence” of the re-
spective large cardinal. To take a classical example, the tree property characterizes
weakly compact cardinals among strongly inaccessible cardinals, while Mitchell [20]
showed that the tree property at ℵ2 is equiconsistent with the existence of a weakly
compact cardinal. A number of questions remain open, though, about the extent to
which the tree property can hold at smaller cardinals. The most prominent, due to
Magidor, asks whether it is consistent that the tree property holds simultaneously
at all regular cardinals greater than or equal to ℵ2.

Generalizations of the tree property, known collectively as two-cardinal tree prop-
erties, were introduced in the 1970s by Jech [8] and Magidor [15] to provide com-
binatorial characterizations of strongly compact and supercompact cardinals. Let
us now recall some of the important definitions, in their modern formulation (see
the end of this section for some notational conventions).

Definition 1.1. Suppose that κ ≤ λ are uncountable cardinals, with κ regular. A
(κ, λ)-tree is a structure T = 〈Tx | x ∈Pκλ〉 such that

• for all x ∈Pκλ, Tx is a nonempty collection of subsets of x;
• for all x ⊆ y ∈Pκλ and all t ∈ Ty, we have t ∩ x ∈ Tx.

A (κ, λ)-tree T is thin if |Tx| < κ for all x ∈ Pκλ. A cofinal branch through T is
a set b ⊆ λ such that b ∩ x ∈ Tx for all x ∈Pκλ.

The (κ, λ)-tree property, denoted TP(κ, λ), is the assertion that every thin (κ, λ)-
tree has a cofinal branch. The ineffable (κ, λ)-tree property, denoted ITP(κ, λ), is
the assertion that, for every thin (κ, λ)-tree T = 〈Tx | x ∈ Pκλ〉 and every choice
function d ∈

∏
x∈Pκλ

Tx, there is a set b ⊆ λ such that the set

{x ∈Pκλ | b ∩ x = d(x)}
is stationary in Pκλ.

The strong tree property at κ, denoted TPκ, is the assertion that TP(κ, λ) holds
for all λ ≥ κ.1 The super tree property at κ, denoted ITPκ, is the assertion that
ITP(κ, λ) holds for all λ ≥ κ.

Fact 1.2. Suppose that κ is an inaccessible cardinal.

• (Jech [8]) κ is strongly compact if and only if TPκ holds.

1To head off potential confusion, we note that TPκ is stronger than the classical tree property
at κ, which is typically denoted TP(κ) and is equivalent to TP(κ, κ) in our notation.
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• (Magidor [15]) κ is supercompact if and only if ITPκ holds.

The modern study of two-cardinal tree properties at accessible cardinals began in
the 2000s, when the relevant definitions (including, e.g., the notion of a thin (κ, λ)-
tree introduced above) were isolated by Weiß [30]. Since then, they have been the
focus of a large amount of research, much of which has been directed toward the
study of their influence on cardinal arithmetic. Most notably, results of Viale [29]
and Krueger [10] together show that, for a regular cardinal κ ≥ ω2, ISPκ, which
is a strengthening of ITPκ also introduced by Weiß in [30], implies that SCH holds
above κ. In [13, Theorem A], Stejskalová and the author show that SCH above κ
(and in fact Shelah’s Strong Hypothesis (SSH), a strengthening of SCH, above κ)
already follows from a significant weakening of ISPκ that holds if, e.g., κ is strongly
compact or if κ = ω2 and we are in an extension by Mitchell forcing starting with
a strongly compact cardinal.

We note also the seminal result of Solovay [25] stating that, if κ is a strongly
compact cardinal, then SCH holds above κ. Recalling that, among inaccessible
cardinals, TPκ characterizes strongly compact cardinals whereas ITPκ characterizes
supercompact cardinals, this, together with the results mentioned in the previous
paragraph, naturally leads to the following question, already asked in, e.g., [7] and
[3]:

Question 1.3. Suppose that κ ≥ ω2 is a regular cardinal. Does ITPκ (or TPκ)
imply SCH above κ?

The analogue of Magidor’s question is also of interest for these two-cardinal tree
properties (see [3] for more discussion of this question):

Question 1.4. Is it consistent that ITPκ (or TPκ) holds for all regular cardinals
κ ≥ ω2?

Questions 1.3 and 1.4 have a tight connection with one another: by a theorem
of Specker [26], if µ is a cardinal and 2µ = µ+, then the tree property fails at µ++

and therefore, a fortiori, TPµ++ fails. Thus, if µ is a singular strong limit cardinal
and SCH holds at µ, then TPµ++ fails, so a positive answer to Question 1.3 would
entail a negative answer to Question 1.4.

Motivated by these question, we prove here some results that we feel hint at a
positive answer to Question 1.3 or at least indicate that genuinely new ideas would
be needed to establish a negative answer. This work will involve introducing and
analyzing generalizations of the classical notion of a narrow κ-system, introduced
by Magidor and Shelah [18] to facilitate study of the tree property, particularly at
successors of singular cardinals.

In this paper, we generalize the notion of narrow system from the setting of
cardinals κ to arbitrary directed partial orders Λ and show that these generalized
system can play the same role in the study of generalized tree properties that narrow
κ-systems play in the study of the classical tree property at κ. We introduce the
generalized narrow system properties NSP(Λ), asserting that every narrow Λ-system
has a cofinal branch, and study these properties, particularly in relation to their
connections to Questions 1.3 and 1.4.

In Section 2, before introducing narrow systems in their full generality, we define
a specific type of system, which we call a concrete Pκλ-system, that is particularly
relevant to the study of TP(κ, λ). The narrow system property cNSP(Pκλ) then
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asserts that every narrow concrete Pκλ-system has a cofinal branch, and cNSPκ
denotes the assertion that cNSP(Pκλ) holds for all λ ≥ κ. cNSPκ holds in all
known models of TPκ and is often used, at least implicitly, in verifications that
TPκ holds in a given model, especially if κ is the successor of a singular cardinal.
At the same time, we show that this narrow system property is strong enough to
imply instances of SSH:

Theorem A. Suppose that κ ≥ ω2 is a regular cardinal and cNSPκ holds. Then
SSH holds above κ.

Then, in Section 3, we introduce the notion of narrow Λ-systems and the narrow
Λ-system property (NSP(Λ)) for an arbitrary directed partial order Λ and, as an
illustration of their utility, use them to prove that generalized tree properties hold
at successors of singular limits of strongly compact cardinals (Theorem 3.12).

In Section 4, we connect narrow Λ-systems with strongly unbounded subadditive
colorings, proving both that instances of NSP(Λ) entail the nonexistence of such
functions on Λ[2] and, in turn, that the nonexistence of such functions on (Pκλ)[2]

can be used in place of cNSPκ in the hypothesis of Theorem A (cf. Corollaries 4.3
and 4.9, respectively).

The remainder of the paper is devoted to a global consistency result showing that
Question 1.4 has a positive answer if the two-cardinal tree properties are replaced
by generalized narrow system properties:

Theorem B. Suppose that there is a proper class of supercompact cardinals. Then
there is a (class) forcing extension in which NSP(Λ) holds for every directed partial
order Λ.

Section 5 contains the proof of a technical branch preservation lemma for gen-
eralized narrow systems, and then Section 6 applies this lemma to prove Theorem
B.

1.1. Notational conventions. Unless otherwise noted, we follow standard set
theoretic notational conventions and refer the reader to [9] for any undefined no-
tions. On denotes the class of all ordinals. Given an infinite cardinal κ and a set X,
P(X) denotes the power set of X, and PκX denotes {x ⊆ X | |x| < κ}. If x is a
set of ordinals, then the strong supremum of x is the ordinal ssup(x) := sup{α+ 1 |
α ∈ x}, i.e., ssup(x) is the least ordinal β such that α < β for all α ∈ x. Given
a partial order Λ, we let Λ[2] denote the set of ordered pairs (u, v) from Λ such
that u <Λ v. Sets of the form PκX will be interpreted as partial orders with the
order relation given by (. In particular, (PκX)[2] denotes the set of pairs (x, y) of
elements of PκX with x ( y. The cofinality of a partial order Λ, denoted cf(Λ), is
the minimal cardinality of a subset Λ0 ⊆ Λ such that, for all u ∈ Λ, there is v ∈ Λ0

with u ≤Λ v.

2. Concrete systems

Before we introduce the general notion of a (narrow) Λ-system for an arbitrary
directed order Λ, and in order to help motivate the more abstract general definition,
we first consider an important special case.

Definition 2.1. Suppose that κ ≤ λ are uncountable cardinals, with κ regular. A
concrete Pκλ-system is a structure S = 〈Sx | x ∈ A〉 such that
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(1) A is a ⊆-cofinal subset of Pκλ;
(2) for all x ∈ A, ∅ 6= Sx ⊆P(x);
(3) for all x ⊆ y, both in A, there is t ∈ Sy such that t ∩ x ∈ Sx.

The width of S is defined to be width(S) := sup{|Sx| | x ∈ A}. We say that S is
a narrow concrete Pκλ-system if width(S)+ < κ. A cofinal branch through S is a
set b ⊆ λ such that the set {x ∈ A | b ∩ x ∈ Sx} is ⊆-cofinal in Pκλ.

Classical narrow systems, with levels indexed by ordinals, were introduced by
Magidor and Shelah in [18] as a central tool in the study of the tree property,
particularly at successors of singular cardinals. Indeed, all known verifications of
the tree property at the successor of a singular cardinal µ at least implicitly go
through the following two steps:

(1) Show that every µ+-tree T has a narrow subsystem S of height µ+.
(2) Show that every narrow system of height µ+ has a cofinal branch; in par-

ticular, S has a cofinal branch, which gives rise to a cofinal branch through
T .

One of the motivating observations for this paper is that narrow concrete Pκλ-
systems play an analogous role for (κ, λ)-trees. For example, by an analogue of the
two-step argument outlined above, we can show that the two-cardinal tree property
TPκ holds if κ is the successor of a singular limit of strongly compact cardinals.
Since a more general version of this statement is true, we postpone its proof until
after we introduce the more general definition of “narrow system”; it follows as a
special case of Theorem 3.12 below.

We now turn to showing that the existence of cofinal branches through certain
narrow concrete systems implies instances of SCH (and SSH). To state the results
concisely, we introduce the following terminology.

Definition 2.2. Let κ be a regular uncountable cardinal. For a cardinal λ ≥ κ, we
say that the concrete narrow Pκλ-system property holds (denoted cNSP(Pκλ)) if
every narrow concrete Pκλ-system has a cofinal branch. We say that cNSPκ holds
if cNSP(Pκλ) holds for all λ ≥ κ.

Remark 2.3. It is worth taking the time to compare Definitions 2.1 and 2.2 with
Definition 1.1, as the definitions of narrow concrete Pκλ-systems and thin (κ, λ)-
trees are quite similar. The two salient differences are:

• The definition of narrow concrete Pκλ-system is more restrictive with re-
gards to the size of each level, requiring width(S)+ < κ, whereas a thin
(κ, λ)-tree T is only required to satisfy |Tx| < κ for all x ∈Pκλ.

• On the other hand, the definition of thin (κ, λ)-tree is more restrictive with
regards to the coherence properties of the structure, requiring that, for all
x ⊆ y and all t ∈ Ty, we have t∩x ∈ Tx, whereas the analogous requirement
in the definition of narrow concrete Pκλ-system only requires the existence
of one such t.

Therefore, it is not immediately evident whether either TPκ or cNSPκ implies the
other, though we shall see that, in general, cNSPκ is easier to arrange than, and
does not imply, TPκ (cf. Remark 6.3 below). The question of whether TPκ implies
cNSPκ remains open and very much of interest.
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Our verifications of SSH will go through the machinery of covering matrices
introduced by Viale in his proof that SCH follows from the Proper Forcing Axiom
[27].

Definition 2.4. Let θ < λ be regular cardinals. A θ-covering matrix for λ is a
matrix D = 〈D(i, β) | i < θ, β < λ〉 such that:

(1) for all β < λ, 〈D(i, β) | i < θ〉 is a ⊆-increasing sequence and
⋃
i<θD(i, β) =

β;
(2) for all β < γ < λ and i < θ, there is j < θ such that D(i, β) ⊆ D(j, γ).

We will especially be interested in covering matrices satisfying certain additional
properties.

Definition 2.5. Suppose that θ < λ are regular cardinals and D is a θ-covering
matrix for λ.

(1) D is transitive if, for all β < γ < λ and all i < θ, if β ∈ D(i, γ), then
D(i, β) ⊆ D(i, γ).

(2) D is uniform if, for every limit ordinal β < λ, there is i < θ such that
D(i, β) contains a club in β.

(3) CP(D) holds if there is an unbounded A ⊆ λ such that [A]θ is covered by
D, i.e., for all X ∈ [A]θ, there are β < λ and i < θ for which X ⊆ D(i, β).

The following fact can readily be deduced from the proof of [21, Lemma 2.4] (cf.
also [13, Lemma 4.4])

Fact 2.6. Suppose that µ is a singular cardinal, θ = cf(µ), and 〈µi | i < θ〉 is an
increasing sequence of regular cardinals that is cofinal in µ. Then there exists a
uniform, transitive, θ-covering matrix D = 〈D(i, β) | i < θ, β < µ+〉 for µ+ such
that |D(i, β)| < µi for all i < θ and β < µ+.

The following theorem is proven in [13] (it was previously known in the case in
which µ is strong limit (cf. [28, Lemma 6])).

Theorem 2.7 ([13, Lemma 4.7]). Suppose that µ is a singular cardinal, θ = cf(µ),
and D is a uniform, transitive θ-covering matrix for µ+. Then, for every x ∈
Pµµ

+, there is γx < µ+ such that, for all β ∈ [γx, µ
+), there is i < θ such that,

for all j ∈ [i, θ), we have x ∩D(j, β) = x ∩D(j, γx).

We will also need to recall some basic information about Shelah’s Strong Hy-
pothesis. SSH is the assertion that pp(µ) = µ+ for every singular cardinal µ, where
pp(µ) denotes the pseudopower of µ. For a cardinal κ, we say that SSH holds above
κ if pp(µ) = µ+ for every singular cardinal µ > κ. For our purposes, we will not
need to recall the definition of pp(µ); the following facts will suffice:

Fact 2.8. In what follows, if ~µ = 〈µi | i < θ〉 is a sequence of regular cardinals,
then

∏
~µ denotes the set of functions f such that dom(f) = θ and f(i) < µi for all

i < θ. Given f, g ∈
∏
~µ, we say that f <∗ g if there is i < θ such that f(j) < g(j)

for all j ∈ [i, θ). The second and third facts below are both implicit in [22]; the
cited references provide more explicit explanations.

(1) [22, §2, Claim 2.4] If µ is a singular cardinal of uncountable cofinality and
{ν < µ | pp(ν) = ν+} is stationary in µ, then pp(µ) = µ+.

(2) [19, Observation 4.4] Suppose that µ is a singular cardinal and pp(µ) > µ+.
Then there is an increasing sequence of regular cardinals ~µ = 〈µi | i < cf(µ)〉
converging to µ such that cf(

∏
~µ,<∗) > µ+.
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(3) [13, Proposition 4.18] Let κ be an infinite cardinal such that SSH holds
above κ. Then SCH holds above κ.

The connection between covering matrices and SSH comes via the following
result.

Theorem 2.9. [13, Theorem 4.19] Suppose that µ is a singular cardinal, θ = cf(µ),
and ~µ = 〈µi | i < θ〉 is an increasing sequence of regular cardinals converging to µ.
Suppose moreover that D = 〈D(i, β) | i < θ, β < µ+〉 is a θ-covering matrix for µ+

such that

(1) for all i < θ and β < µ+, we have |D(i, β)| < µi;
(2) CP(D) holds.

Then cf(
∏
~µ,<∗) = µ+.

We are now ready for the main result of this section, which will then yield
Theorem A.

Theorem 2.10. Suppose that µ is a singular cardinal, θ = cf(µ), and there is a
regular cardinal κ ∈ [θ++, µ) such that cNSP(Pκµ

+) holds. Then CP(D) holds for
every uniform, transitive θ-covering matrix D for µ+.

Proof. Fix a uniform, transitive θ-covering matrix D = 〈D(i, β) | i < θ, β < µ+〉
for µ+, and let A := {x ∈ Pκµ

+ | cf(ssup(x)) > θ}. Since κ > θ+ is a regular
cardinal, A is cofinal in Pκµ

+; note that, for x ∈ A, we have sup(x) = ssup(x).
For each x ∈ A, let γx < µ+ be the least ordinal satisfying the conclusion of
Theorem 2.7; namely, for all β ∈ [γx, µ

+) and all sufficiently large j < θ, we have
x ∩D(j, β) = x ∩D(j, γx). Note that we must have γx ≥ sup(x) and, if x ⊆ y are
both in A, then γx ≤ γy.

For each x ∈ A, let

Sx := {x ∩D(i, γx) | i < θ and sup(x ∩D(i, γx)) = sup(x)}.
Since cf(sup(x)) > θ and x =

⋃
i<θ(x ∩ D(i, γx)), it must be the case that x ∩

D(i, γx) ∈ Sx for all sufficiently large i < θ.
We claim that S = 〈Sx | x ∈ A〉 is a concrete Pκµ

+-system. We have already
verified clauses (1) and (2) of Definition 2.1. To verify clause (3), fix x ⊆ y, both
in A. By construction, for all sufficiently large i < θ, we have y∩D(i, γy) ∈ Sy and

(y ∩D(i, γy)) ∩ x = D(i, γy) ∩ x = D(i, γx) ∩ x ∈ Sx,
where the second equality holds by the choice of γx. Therefore, we have found
t ∈ Sy for which t ∩ x ∈ Sx, as desired.

Moreover, we have |Sx| ≤ θ for all x ∈ A, so S is a narrow concrete Pκµ
+-

system. We can therefore apply cNSP(Pκµ
+) to find a cofinal branch b through

S.

Claim 2.11. b is unbounded in µ+.

Proof. Fix α < µ+; we will show that b\α is nonempty. Find x ∈ A such that α ∈ x
and b∩x ∈ Sx. By the definition of Sx, it follows that sup(b∩x) = sup(x) > α. �

We will therefore be done if we show that [b]θ is covered by D, as then b will
witness CP(D). To this end, fix z ∈ [b]θ. Since b is a cofinal branch through S, we
can find x ∈ A such that z ⊆ x and b ∩ x ∈ Sx. Then z ⊆ b ∩ x, and there is i < θ
such that b ∩ x = x ∩D(i, γx); therefore, z ⊆ D(i, γx), as desired. �
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We are now ready to prove Theorem A, asserting that, for a regular cardinal
κ ≥ ω2, cNSPκ implies SSH above κ.

Proof of Theorem A. By Fact 2.8(1), to establish SSH above κ, it suffices to show
that pp(µ) = µ+ for every singular cardinal µ > κ of countable cofinality. Fix
such a µ. Next, by Fact 2.8(2), to establish pp(µ) = µ+, it suffices to prove that
cf(
∏
~µ,<∗) = µ+ for every increasing sequence of regular cardinals ~µ = 〈µi | i < ω〉

converging to µ. Fix such a sequence ~µ. By Fact 2.6, there is a uniform, transitive
ω-covering matrix D = 〈D(i, β) | i < ω, β < µ+〉 for µ+ such that |D(i, β)| < µi
for all i < ω and β < µ+. By Theorem 2.10 and the assumption that cNSPκ holds,
we know that CP(D) holds, and then, by Theorem 2.9, we have cf(

∏
~µ,<∗) = µ+,

as desired. �

3. General systems

We now move to the more general setting of systems indexed by arbitrary di-
rected partial orders. Given a partial order (Λ,≤Λ), we will sometimes abuse nota-
tion and use the symbol Λ to denote the partial order. If a partial order is denoted
by Λ, it should be understood that its order relation is denoted by ≤Λ. The strict
portion of ≤Λ will be denoted by <Λ. Given u ∈ Λ, let u↑ denote {v ∈ Λ | u <Λ v}.
Since all of the questions considered here become trivial when addressing systems
indexed by partial orders with maximal elements, we will always assume that we
are working with partial orders that do not have maximal elements, even when this
assumption is not explicitly stated.

Definition 3.1. Suppose that Λ is a partial order and κ is an infinite cardinal.
We say that Λ is κ-directed if every element of PκΛ has an upper bound, i.e., for
every x ∈ PκΛ, there is v ∈ Λ such that u ≤Λ v for all u ∈ x. We say that Λ is
directed if it is ℵ0-directed; equivalently, for all u, v ∈ Λ, there is w ∈ Λ such that
u, v ≤Λ w.

Definition 3.2. Suppose that Λ is a directed partial order. The directedness of Λ,
denoted dΛ, is the largest cardinal κ such that Λ is κ-directed. It is readily verified
that this is well-defined and that dΛ is a regular cardinal for every directed partial
order Λ.

Definition 3.3. Let R be a binary relation on a set X. For x, y ∈ X, we will
typically write x <R y to denote (x, y) ∈ R and x ≤R y to denote the statement

(x, y) ∈ R or x = y.

Two elements x and y of X are said to be R-comparable if either x ≤R y or y ≤R x.
Otherwise, x and y are R-incomparable.

Definition 3.4. Let Λ be a directed partial order. A Λ-system is a structure

S = 〈〈Su | u ∈ Λ〉,R〉
satisfying the following conditions.

(1) 〈Su | u ∈ Λ〉 is a sequence of pairwise disjoint nonempty sets. We will some-
times refer to

⋃
u∈Λ Su as the underlying set of S, and we will sometimes

simply denote it by S. For each x ∈ S, let `(x) denote the unique u ∈ Λ
such that x ∈ Su.

(2) R is a nonempty set of binary, transitive relations on S.
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(3) For all x, y ∈ S and R ∈ R, if x <R y, then `(x) <Λ `(y).
(4) For all x, y, z ∈ S and R ∈ R, if x, y <R z and `(x) ≤Λ `(y), then x ≤R y.
(5) For all (u, v) ∈ Λ[2], there are x ∈ Su, y ∈ Sv, and R ∈ R such that x <R y.

If S is a Λ-system, then we define width(S) to be max{sup{|Su| | u ∈ Λ}, |R|}. We
say that S is a narrow Λ-system if width(S)+ < dΛ.

Definition 3.5. If S = 〈〈Su | u ∈ Λ〉,R〉 is a Λ-system, x, y ∈ S, and R ∈ R, then
we say that x and y are R-compatible, denoted x ‖R y, if there is z ∈ S such that
x, y ≤R z. We say that x and y are R-incompatible, denoted x ⊥R y, if there is
no such z. Note that, if x ‖R y and `(x) ≤Λ `(y), then Clause 4 of Definition 3.4
implies that x ≤R y.

Given R ∈ R, a branch through R in S is a set b ⊆ S such that, for all x, y ∈ b,
we have x ‖R y (note that this implies that |b ∩ Su| ≤ 1 for all u ∈ Λ). We will
sometimes say that b is a branch in S to mean that there is R ∈ R such that b is a
branch through R in S. A branch b is said to be cofinal if {u ∈ Λ | b ∩ Su 6= ∅} is
cofinal in Λ.

Remark 3.6. The concrete Pκλ-systems of Section 2 are indeed special cases of
Definition 3.4: suppose that S = 〈Sx | x ∈ A〉 is a concrete Pκλ-system. Then there
is a natural way to view S as an (A,⊆)-system in the sense of Definition 3.4. Namely,
for each x ∈ A, let S′x := {x} × Sx, and define a binary relation R on

⋃
x∈A S

′
x by

letting (x, t) <R (y, s) iff x ( y and s ∩ x = t. Then S ′ := 〈〈S′x | x ∈ A〉, {R}〉 is
readily verified to be an (A,⊆)-system in the sense of Definition 3.4, and cofinal
branches through S in the sense of Definition 2.1 naturally correspond to cofinal
branches through S ′ in the sense of Definition 3.4.

Definition 3.7. Let Λ be a directed partial order. We say that the Λ-narrow
system property (denoted NSP(Λ)) holds if every narrow Λ-system has a cofinal
branch.

For notational simplicity, we often prefer to work with systems having only one
relation. The following proposition shows that, in the context of questions about
the existence of narrow Λ-systems without cofinal branches, this involves no loss of
generality.

Proposition 3.8. Suppose that Λ is a directed partial order and

S = 〈〈Su | u ∈ Λ〉,R〉
is a Λ-system. Then there is a Λ-system S ′ = 〈〈S′u | u ∈ Λ〉,R′〉 such that

• |R′| = 1;
• if width(S) is finite, then so is width(S ′);
• if width(S) is infinite, then width(S ′) = width(S);
• S ′ has a cofinal branch if and only if S has a cofinal branch.

Proof. For each u ∈ Λ, let S′u := Su×R, and letR′ consist of a single binary relation
<′ defined as follows: for all x0, x1 ∈ S and R0, R1 ∈ R, let (x0, R0) <′ (x1, R1) if
and only if R0 = R1 and x0 <R0

x1. It is readily verified that S ′ thus defined is a
Λ-system width(S ′) is as required. If R ∈ R and b ⊆ S is a cofinal branch through
R in S, then b′ := {(x,R) | x ∈ b} is a cofinal branch in S ′. Conversely, if d′ is a
cofinal branch in S ′, then there must be a single R ∈ R such that every element of
d′ is of the form (x,R) for some x ∈ S. Then d := {x ∈ S | (x,R) ∈ d′} is a cofinal
branch through R in S. �
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The following basic proposition is reminiscent of König’s Infinity Lemma, assert-
ing that every infinite finitely-branching tree has an infinite branch.

Proposition 3.9. Suppose that Λ is a directed partial order and S is a Λ-system
with finite width. Then S has a cofinal branch.

Proof. By Proposition 3.8, we can assume that S has a single relation, which we
will denote by R. Since width(S) is finite, we can fix an n < ω such that |Su| ≤ n
for all u ∈ Λ. Enumerate each Su as 〈xu,k | k < n〉, with repetitions if necessary
(i.e., if |Su| < n). Since Λ is directed, F := {u↑ | u ∈ Λ} is a filter over Λ. Let U
be an ultrafilter over Λ extending F .

Temporarily fix u ∈ Λ. Since S is a Λ-system, it follows that, for every v ∈ u↑, we
can find (not necessarily unique) j(u, v), k(u, v) < n such that xu,j(u,v) <R xv,k(u,v).
Since U is an ultrafilter extending F , we can then find fixed numbers j(u), k(u) < n
such that the set

Xu := {v ∈ u↑ | (j(u, v), k(u, v)) = (j(u), k(u))}
is in U .2 We can then find fixed numbers j∗, k∗ < n such that the set

Y := {u ∈ Λ | (j(u), k(u)) = (j∗, k∗)}
is in U . In particular, Y is cofinal in Λ. Let b := {xu,j∗ | u ∈ Y }. Since Y is
cofinal in Λ, in order to show that b is a cofinal branch in S it suffices to show
that, for all u0, u1 ∈ Y , we have xu0,j∗ ‖R xu1,j∗ . To this end, fix such u0, u1.
Since Xu0

, Xu1
∈ U , we can fix v ∈ Xu0

∩ Xu1
. Then xu0,j∗ , xu1,j∗ <R xv,k∗ , so

xu0,j∗ ‖R xu1,j∗ , as desired. �

An analogous result holds at strongly compact cardinals:

Proposition 3.10. Suppose that κ is a strongly compact cardinal, Λ is a directed
partial order with dΛ ≥ κ, and S is a Λ-system such that width(S) < κ. Then S
has a cofinal branch.

Proof. The proof is essentially the same as that of Proposition 3.9 and is thus
mostly left to the reader. We remark only that, due to the fact that dΛ ≥ κ, the
filter F := {u↑ | u ∈ Λ} is κ-complete and, since κ is strongly compact, it can be
extended to a κ-complete ultrafilter U over Λ. The rest of the proof is precisely as
in Proposition 3.9. �

As mentioned already, classical narrow systems were introduced by Magidor and
Shelah in the context of the study of the tree property at successors of singular
cardinals; their first application came in the proof that, if µ is a singular limit of
strongly compact cardinals, then the tree property holds at µ+ [18, Theorem 3.1].
To help get a feel for the utility of narrow Λ-systems, we present here the analogous
result in the more general setting. We first need to recall the notion of a κ-Λ-tree
for an arbitrary directed partial order Λ.

Definition 3.11 ([14]). Let Λ be a directed partial order. A Λ-tree is a structure
T = (〈Tu | u ∈ Λ〉, <T ) such that the following conditions all hold.

(i) 〈Tu | u ∈ Λ〉 is a sequence of nonempty, pairwise disjoint sets.
(ii) <T is a strict partial order on

⋃
u∈Λ Tu.

2We are using the implicit assumption that Λ has no maximal element to ensure that we can
find such j(u) and k(u).
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(iii) For all u, v ∈ Λ, all s ∈ Tu, and all t ∈ Tv, if s <T t, then u <Λ v.
(iv) <T is tree-like, i.e., for all u <Λ v <Λ w, all r ∈ Tu, all s ∈ Tv and all t ∈ Tw,

if r, s <T t, then r <T s.
(v) For all u ≤Λ v in Λ and all t ∈ Tv, there is a unique s ∈ Tu, denoted t � u,

such that s ≤T t.
For a cardinal κ, we say that T is a κ-Λ-tree if, in addition to the above require-
ments, we have |Tu| < κ for all u ∈ Λ. If T is a Λ-tree, then a cofinal branch through
T is a function b ∈

∏
u∈Λ Tu such that, for all u <Λ v in Λ, we have b(u) <T b(v).

The (κ,Λ)-tree property, denoted TPκ(Λ), is the assertion that every κ-Λ-tree has
a cofinal branch. We let TP(Λ) denote TPdΛ(Λ).

Theorem 3.12. Suppose that µ is a singular limit of strongly compact cardinals
and Λ is a µ+-directed partial order. Then TPµ+(Λ) holds.

Proof. Let θ := cf(µ), and let 〈µi | i < θ〉 be an increasing sequence of strongly
compact cardinals, converging to µ, with µ0 > θ. Let T = 〈〈Tu | u ∈ Λ〉, <T 〉 be a
Λ-tree with |Tu| ≤ µ for all u ∈ Λ. We first show that T has a narrow subsystem
indexed by a cofinal subset of Λ.

Claim 3.13. There is a cofinal Γ ⊆ Λ and, for each u ∈ Γ, a nonempty Su ⊆
Tu such that S := 〈〈Su | u ∈ Γ〉, {<S}〉 is a narrow Γ-system, where <S is the
restriction of <T to

⋃
u∈Γ Su.

Proof. For all u ∈ Λ, enumerate Tu as 〈tuη | η < µ〉 (with repetitions, if neces-
sary). Fix an elementary embedding j : V →M witnessing that µ0 is |Λ|-strongly
compact. In particular, we have

• crit(j) = µ0;
• j(µ0) > |Λ|;
• there is W ∈M such that W ⊆ j(Λ), |W |M < j(µ0), and j“Λ ⊆W .

Let j(T ) = T ′ = 〈T ′v | v ∈ j(Λ)〉. Since |W |M < j(µ0) < j(µ+) and j(Λ) is
j(µ+)-directed in M , we can find z ∈ j(Λ) such that w <j(Λ) z for all w ∈ W ;
in particular, j(u) <j(Λ) z for all u ∈ Λ. Choose an arbitrary t ∈ T ′z. For each

u ∈ Λ, enumerate T ′j(u) as 〈(t′)j(u)
η | η < j(µ)〉. For each u ∈ Λ, there is iu < θ and

ηu < j(µiu) such that (t′)
j(u)
ηu <j(T ) t. Since Λ is µ+-directed, we can find a fixed

i < θ and a cofinal Γ ⊆ Λ such that iu = i for all u ∈ Γ. Then, for all u <Λ v, both

in Γ, we have (t′)
j(u)
ηu , (t′)

j(v)
ηv <j(T ) t, and hence (t′)

j(u)
ηu <j(T ) (t′)

j(v)
ηv . In particular,

M |= ∃η, ξ < j(µi)
[
(t′)j(u)

η <j(T ) (t′)
j(v)
ξ

]
,

as witnessed by η = ηu and ξ = ξv. By elementarity, we have

V |= ∃η, ξ < µi
[
tuη <T t

v
ξ

]
.

It is now readily verified that, if we let Su := {tuη | η < µi} for all u ∈ Γ, then
S as in the statement of the claim is indeed a narrow Γ-system: clauses (1)–(4) of
Definition 3.4 are immediate, and clause (5) follows from the elementarity argument
in the previous paragraph. �

Let S be as given by the claim, and let i < θ be such that width(S) < µi. Then
we can apply Proposition 3.10 with µi and Γ in place of κ and Λ, respectively, to
conclude that S has a cofinal branch, b ⊆ S. This readily gives rise to a cofinal
branch b′ ∈

∏
u∈Λ Tu through T : for each u ∈ Λ, find v ∈ Γ such that u ≤Λ v and

b ∩ Sv 6= ∅. Let s be the unique element of b ∩ Sv, and then let b′(u) := s � u. �
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4. Subadditive colorings

In this brief section, we highlight a connection between the narrow system prop-
erties introduced in the previous section and the existence of certain strongly un-
bounded subadditive colorings on arbitrary directed partial orders. Such colorings
on ordinals have been extensively studied and have proven to be useful in a variety
of contexts (cf. [12]). Here we generalize the notion to arbitrary directed orders,
show that instances of the narrow system property imply the nonexistence of certain
strongly unbounded subadditive colorings, and then show that the nonexistence of
certain strongly unbounded subadditive colorings can replace the narrow system
property hypothesis in the statement of Theorem A.

Definition 4.1. Suppose that Λ is a directed partial order and θ is an infinite
regular cardinal. Let c : Λ[2] → θ be a function.

(1) We say that c is subadditive if, for all triples u <Λ v <Λ w from Λ, we have
(a) c(u,w) ≤ max{c(u, v), c(v, w)}; and
(b) c(u, v) ≤ max{c(u,w), c(v, w)}.

(2) We say that c is strongly unbounded if, for every cofinal subset Γ ⊆ Λ, c“Γ[2]

is unbounded in θ.

Proposition 4.2. Suppose that Λ is a directed partial order, θ is an infinite regular
cardinal, and c : Λ[2] → θ is a strongly unbounded subadditive function. Then there
is a Λ-system with width θ and no cofinal branch.

Proof. We will define a Λ-system S = 〈〈Su | u ∈ Λ〉,R〉. First, for each u ∈ Λ, let
Su := {u} × θ, and let R = {R} consist of a single relation defined as follows: for
(u, v) ∈ Λ[2] and i, j < θ, set (u, i) <R (v, j) if and only if i = j and c(u, v) ≤ i.
The fact that S is a Λ-system follows from the subadditivity of c, and it is evident
that width(S) = θ. Now suppose for the sake of contradiction that S has a cofinal
branch, b. Then b is necessarily of the form {(u, i) | u ∈ Γ} for some fixed i < θ
and some cofinal Γ ⊆ Λ. But then c“Γ[2] ⊆ i + 1, contradicting the fact that c is
strongly unbounded. �

Corollary 4.3. Suppose that Λ is a directed partial order and NSP(Λ) holds. Then,
for every infinite regular cardinal θ with θ+ < dΛ, there does not exist a strongly
unbounded subadditive coloring c : Λ[2] → θ. �

We now show that the nonexistence of strongly unbounded subadditive colorings
from (Pκµ

+)[2] to cf(µ) can be used in place of cNSP(Pκµ
+) to yield the conclusion

of Theorem 2.10.

Theorem 4.4. Suppose that κ < µ are infinite cardinals such that

• cf(µ) < κ; and
• there does not exist a strongly unbounded subadditive coloring

c : (Pκµ
+)[2] → cf(µ).

Then CP(D) holds for every uniform, transitive cf(µ)-covering matrix for µ+.

Proof. Let θ := cf(µ), and let D = 〈D(i, β) | i < θ, β < µ+〉 be a uniform,
transitive θ-covering matrix for µ+. By Theorem 2.7, D has the property that, for
every x ∈ Pκµ

+, there is γx < µ+ such that, for all β ∈ [γx, µ
+), there is i < θ

such that, for all j ∈ [i, θ), we have x∩D(j, β) = x∩D(j, γx). For each x ∈Pκµ
+

and each j < θ, let xj := x ∩D(j, γx). Note that x =
⋃
j<θ xj .
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Claim 4.5. For all (x, y) ∈ (Pκµ
+)[2], there is i < θ such that, for all j ∈ [i, θ),

we have xj = yj ∩ x.

Proof. Fix (x, y) ∈ (Pκµ
+)[2], and let γ := max{γx, γy}. Then, by the definition

of xj and yj and the choice of γx and γy, there is i < θ such that, for all j ∈ [i, θ),
we have xj = x ∩D(j, γ) and yj = y ∩D(j, γ). But then, for all j ∈ [i, θ), we have
yj ∩ x = D(j, γ) ∩ x = xj , as desired. �

Now define a function c : (Pκµ
+)[2] → θ by letting c(x, y) be the least i < θ as

in Claim 4.5 for all (x, y) ∈ (Pκµ
+)[2].

Claim 4.6. c is subadditive.

Proof. Fix x ( y ( z in Pκµ
+, and fix j < θ. First, if j ≥ max{c(x, y), c(y, z)},

then zj ∩ y = yj and yj ∩ x = xj . It follows that zj ∩ x = xj , and from this we can
conclude that c(x, z) ≤ max{c(x, y), c(y, z)}.

Second, if j ≥ max{c(x, z), c(y, z)}, then zj ∩ y = yj and zj ∩ x = xj . It then
follows that yj ∩ x = (zj ∩ y) ∩ x = zj ∩ x = xj , and again we can conclude that
c(x, y) ≤ max{c(x, z), c(y, z)}. Therefore, c is subadditive. �

By assumption, c cannot be strongly unbounded. Therefore, there is a ⊆-cofinal
X ⊆Pκµ

+ and an i < θ such that c(x, y) ≤ i for all x ( y in X.

Claim 4.7. For all j ∈ [i, θ) and all x, y ∈ X, we have xj ∩ y = yj ∩ x.

Proof. Fix such j, x, and y, and find z ∈ X such that x ∪ y ⊆ z. Then xj = zj ∩ x
and yj = zj ∩ y, so xj ∩ y = (zj ∩ x) ∩ y = (zj ∩ y) ∩ x = yj ∩ x. �

For all j ∈ [i, θ), let Aj =
⋃
x∈X xj . It follows immediately from the previous

claim that, for all x ∈ X, we have Aj ∩ x = xj .

Claim 4.8. There is j ∈ [i, θ) such that Aj is unbounded in µ+.

Proof. If not, then, for every j ∈ [i, θ), there would be βj < µ+ such that Aj ⊆ βj .
Let β := sup{βj | j ∈ [i, θ)} < µ+, and find x ∈ X such that β ∈ x. Then, for all
large enough j < θ, we must have β ∈ xj and hence β ∈ Aj , contradicting the fact
that Aj ⊆ βj ⊆ β. �

Fix j ∈ [i, θ) such that Aj is unbounded in µ+. We claim that Aj witnesses
CP(D). To this end, fix w ∈ [Aj ]

θ. Let x ∈ X be such that w ⊆ x. Then
w ⊆ Aj ∩ x = xj ⊆ D(j, γx), so [Aj ]

θ is indeed covered by D, as desired. �

Corollary 4.9. Suppose that κ ≥ ω2 is a regular cardinal and, for every singular
cardinal µ > κ of countable cofinality, there does not exist a strongly unbounded
subadditive coloring c : (Pκµ

+)[2] → ω. Then SSH holds above κ.

Proof. By Theorem 4.4, the hypothesis implies that, for every singular cardinal
µ > κ of countable cofinality and every uniform, transitive ω-covering matrix D for
µ+, we have CP(D). Then SSH above κ follows exactly as in proof of Theorem A
at the end of Section 2. �
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5. A preservation lemma

The remainder of the paper is dedicated to the proof of Theorem B, our global
consistency result. In this section, we prove a technical preservation lemma indi-
cating that if a sufficiently closed forcing adds a rich set of branches to a narrow
Λ-system, then that system necessarily has a cofinal branch in the ground model.
The lemma is a generalization of [11, Lemma 4.3] (which itself is a slight improve-
ment on a previous result of Sinapova [24, Theorem 14]) from the context of classical
(ordinal-indexed) narrow systems to the context of narrow Λ-systems for arbitrary
directed orders Λ. We first need a preliminary definition.

Definition 5.1. Suppose that Λ is a directed partial order and

S = 〈〈Su | u ∈ Λ〉,R〉

is a Λ-system with width(S) = θ. Then a full set of branches in S is a set {bi | i < θ}
such that

• for all i < θ, bi is a branch in S;
• for all u ∈ Λ, there is i < θ such that bi ∩ Su 6= ∅.

Proposition 5.2. Suppose that Λ is a directed partial order,

S = 〈〈Su | u ∈ Λ〉,R〉

is a Λ-system with width(S) = θ < dΛ, and {bi | i < θ} is a full set of branches in
S. Then there is i < θ such that bi is a cofinal branch in S.

Proof. Suppose not. Then, for every i < θ, there is ui ∈ Λ such that bi ∩ Sv = ∅
for all v ∈ u↑i . Since dΛ > θ, we can find u∗ ∈ Λ such that ui ≤Λ u∗ for all i < θ.
Since Λ has no maximal element, (u∗)↑ 6= ∅. However, for all v ∈ (u∗)↑ and all
i < θ, we have bi ∩ Sv = ∅, contradicting the fact that {bi | i < θ} is a full set of
branches. �

We are now ready for the main preservation lemma.

Lemma 5.3. Suppose that Λ is a directed partial order, S is a narrow Λ-system,
θ = width(S), P is a θ+-closed forcing poset, and

P “there is a full set of branches in S”.

Then, in V , there is a cofinal branch in S.

Proof. Suppose for the sake of contradiction that there is no cofinal branch in S.
By assumption, we can fix P-names {ḃi | i < θ} such that

P “{ḃi | i < θ} is a full set of branches in S”.

Using the θ+-closure of P, construct a decreasing sequence 〈pi | i < θ〉 of conditions
in P such that, for each i < θ:

• there is Ri ∈ R such that pi P “ḃi is a branch through Ri”;
• pi decides the truth value of the statement “ḃi is a cofinal branch in S”;
• if pi P “ḃi is not a cofinal branch”, then there is ui ∈ Λ such that pi P

“∀v ∈ u↑i (ḃi ∩ Sv = ∅)”.

Again using the θ+-closure of P, let p∗ be a lower bound for 〈pi | i < θ〉. Let

A := {i < θ | pi P “ḃi is a cofinal branch”}
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and, using the fact that dΛ > θ, find a u∗ ∈ Λ such that ui ≤Λ u∗ for all i ∈ θ \A.
Note that, by Proposition 5.2, it must be the case that A 6= ∅.

Claim 5.4. Suppose that p ≤P p∗ and i ∈ A. Then there are q0, q1 ≤P p and
x0, x1 ∈ S such that

(1) for ε < 2, qε P “xε ∈ ḃi”;
(2) x0 ⊥Ri x1.

Proof. Suppose not, and let p and i form a counterexample. Let

b := {x ∈ S | ∃q ≤P p (q P “x ∈ ḃi”)}.

We claim that b is a cofinal branch through Ri in S. Since i ∈ A and p ≤P pi, it
is immediate that {u ∈ Λ | b ∩ Su 6= ∅} is cofinal in Λ. Also, for all x, y ∈ b, our
assumption that p and i form a counterexample to the claim implies that x ‖Ri y.
Thus, b is a cofinal branch in S, contradicting our assumption that no such branch
exists. �

Claim 5.5. Suppose that p0, p1 ≤P p∗ and i ∈ A. Then there are q0 ≤P p0,
q1 ≤P p1, and x0, x1 ∈ S such that

(1) for ε < 2, qε P “xε ∈ ḃi”;
(2) x0 ⊥Ri x1.

Proof. First apply Claim 5.4 to obtain q0,0, q0,1 ≤P p0 and x0,0, x0,1 ∈ S such that

q0,ε P “x0,ε ∈ ḃi” for ε < 2 and x0,0 ⊥Ri x0,1. Then find q1 ≤P p1 and x1 ∈ S such

that `(x0,0), `(x0,1) ≤Λ `(x1) and q1 P “x1 ∈ ḃi”. It cannot be the case that x1

is Ri-compatible with both x0,0 and x0,1, as otherwise x1 would witness that x0,0

and x0,1 are Ri-compatible. Therefore, we can fix ε < 2 such that x0,ε ⊥Ri x1. Let
q0 := q0,ε and x0 := x0,ε. Then q0, q1, x0, and x1 are as desired. �

Claim 5.6. Suppose that p ≤ p∗. Then there are q0, q1 ≤P p and {xiε | i ∈ A, ε <
2} ⊆ S such that

(1) for every i ∈ A and ε < 2, we have qε P “xiε ∈ ḃi”;
(2) for every i ∈ A, we have xi0 ⊥Ri xi1.

Proof. We recursively build two decreasing sequences 〈q0,i | i < θ〉 and 〈q1,i | i < θ〉
from P, together with elements {xiε | i ∈ A, ε < 2} as follows.

First, let q0,0 = q1,0 = p. If j < θ is a limit ordinal, ε < 2, and we have defined
〈qε,i | i < j〉, then let qε,j be any lower bound for 〈qε,i | i < j〉. If i ∈ θ \ A, ε < 2,
and qε,i has been defined, then simply let qε,i+1 = qε,i. Finally, suppose that i ∈ A
and we have defined 〈q0,j | j ≤ i〉 and 〈q1,j | j ≤ i〉. Then apply Claim 5.5 to q0,i,
q1,i, and i to obtain q0,i+1 ≤P q0,i, q1,i+1 ≤P q1,i, and xi0, x

i
1 ∈ S such that

• for ε < 2, qε,i+1 P “xiε ∈ ḃi”;
• xi0 ⊥Ri xi1.

At the end of the construction, for each ε < 2, let qε be a lower bound for 〈qε,i |
i < θ〉. Then q0, q1, and {xiε | i ∈ A, ε < 2} are as desired. �

Now use Claim 5.6 and the closure of P to recursively build a tree of conditions
{pσ | σ ∈ <θ2} and elements {xσ,iε | σ ∈ <θ2, i ∈ A, ε < 2} of S as follows. We
will maintain the hypothesis that, for all τ, σ ∈ <θ2, if τ is an initial segment of σ,
then pσ ≤P pτ .
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Let p∅ := p∗. If η < θ is a limit ordinal, σ ∈ η2, and pσ�ξ has been defined
for every ξ < η, then let pσ be any lower bound for 〈pσ�ξ | ξ < η〉. If σ ∈ <θ2
and pσ has been defined, then apply Claim 5.6 to find pσ_〈0〉, pσ_〈1〉 ≤ pσ, and

{xσ,iε | i ∈ A, ε < 2} ⊆ S such that

(1) for every i ∈ A and ε < 2, we have pσ_〈ε〉 P “xσ,iε ∈ ḃi”;

(2) for every i ∈ A, we have xσ,i0 ⊥Ri x
σ,i
1 .

For each f ∈ θ2, let pf be a lower bound for 〈pf�η | η < θ〉. Choose B ⊆ θ2 with
|B| = θ+, and use the fact that dΛ > θ+ to find v ∈ Λ such that `(xf�η,iε ) <Λ v for
all f ∈ B, η < θ, i ∈ A, and ε < 2. We can also assume that u∗ <Λ v.

For each f ∈ B, use the fact that {ḃi | i < θ} is forced to be a full set of branches

in S to find a qf ≤P pf , an if < θ, and an xf ∈ Sv such that qf P “xf ∈ ḃif ”.
Since u∗ <Λ v and each qf extends p∗, it must be the case that if ∈ A for all f ∈ B.
Since |B| = θ+ > width(S), we can find distinct f, g ∈ B, i ∈ A, and x ∈ Sv such
that if = ig = i and xf = xg = x. Let η∗ < θ be the least η such that f(η) 6= g(η),
and let σ := f � η∗ = g � η∗. Without loss of generality, assume that f(η∗) = 0

and g(η∗) = 1. Then qf ≤P qσ_〈0〉, and therefore qf P “xσ,i0 ∈ ḃi”. Similarly,

qg P “xσ,i1 ∈ ḃi”. Since both qf and qg extend pi and force x to be in ḃi, and since

`(xσ,i0 ), `(xσ,i1 ) <Λ v = `(x), it must be the case that xσ,i0 <Ri x and xσ,i1 <Ri x,

contradicting the fact that xσ,i0 ⊥Ri x
σ,i
1 . �

6. A global consistency result

We are finally ready to prove our consistency result. For organizational reasons,
it will be helpful to have the following definition.

Definition 6.1. For every infinite regular cardinal κ, we say that κ has the strong
narrow system property, denoted SNSPκ, if, for every directed partial order Λ with
dΛ ≥ κ, every Λ-system S with width(S)+ < κ has a cofinal branch.

Theorem 6.2. Let µ < κ be regular uncountable cardinals, with κ supercompact,
and let P := Coll(µ,<κ). Then, in V P, SNSPκ holds and moreover is indestructible
under κ-directed closed set forcing.

Proof. Let G be P-generic over V . Since trivial forcing is κ-directed closed, it
suffices to prove that, if Q is a κ-directed closed set forcing in V [G] and H is
Q-generic over V [G], then SNSPκ holds in V [G][H].

To this end, fix a κ-directed closed Q ∈ V [G] and a Q-generic filter H over V [G].
In V [G][H], let Λ be a κ-directed partial order, and let S = 〈〈Su | u ∈ Λ〉,R〉 be a
Λ-system with width(S) < µ. For concreteness, assume that the underlying sets of
both Q and Λ are ordinals. We will show that, in V [G][H], there is a cofinal branch
in S. By Proposition 3.8, we can assume that S has a single relation, which we will
denote by R.

In V , let Q̇ be a P-name for Q, and let Λ̇ be a P ∗ Q̇-name for Λ. Fix a cardinal
δ > κ such that |P(P ∗ Q̇)| < δ and P∗Q̇ “|Λ̇| < δ”, and let j : V → M be

an elementary embedding witnessing that κ is δ-supercompact, i.e., crit(j) = κ,
j(κ) > δ, and δM ⊆ M . We have j(P) = Coll(µ,<j(κ)) so, by [17, Lemma 3]
(cf. also [2, Fact 6.11]), the natural complete embedding ι of P into j(P) can be

extended to a complete embedding ι′ of P ∗ Q̇ into j(P) in such a way that the

quotient forcing j(P)/ι′[P ∗ Q̇] is µ-closed. Let Ṙ be a P ∗ Q̇-name for this quotient

forcing. We then have j(P) ∼= P ∗ Q̇ ∗ Ṙ, and Ṙ is forced by P ∗ Q̇ to be µ-closed.
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Let R be the realization of Ṙ in V [G][H], and let K be an R-generic filter over
V [G][H]. Since, for all p ∈ P, j(p) = p, which is naturally identified with (p, 1Q̇, 1Ṙ)

in P ∗ Q̇ ∗ Ṙ, we have j“G ⊆ G ∗ H ∗ K, so, in V [G][H][K], we can extend j to
j : V [G]→M [G][H][K].

By the closure of M , we know that j“H ∈M [G][H][K]. Moreover, in that model,
j“H is a directed subset of j(Q) with |j“H| < δ < j(κ), and j(Q) is j(κ)-directed
closed. We can therefore find q∗ ∈ j(Q) such that q∗ ≤j(Q) j(q) for all q ∈ H.

Let H+ be j(Q)-generic over V [G][H][K] with q∗ ∈ H+. Then j“H ⊆ H+, so, in
V [G][H][K][H+], we can extend j one last time to j : V [G][H]→M [G][H][K][H+].

Again by the closure of M , we have j“Λ ∈ M [G][H][K][H+]. Moreover, in
that model, j“Λ is a subset of j(Λ) with |j“Λ| < δ < j(κ), and j(Λ) is j(κ)-
directed. We can therefore find v∗ ∈ j(Λ) such that j(u) <j(Λ) v

∗ for all u ∈ Λ.
Let θ := width(S). Since θ < µ, we have θ = j(θ) = width(j(S)). Write j(S)
as 〈〈S′v | v ∈ j(Λ)〉, {j(R)}〉. Enumerate S′v∗ as 〈yi | i < θ〉, with repetitions if
|S′v∗ | < θ. For each i < θ, let bi := {x ∈ S | j(x) <j(R) yi}.

We claim that {bi | i < θ} is a full set of branches in S. Let us first verify that
each bi is a branch in S. To this end, fix i < θ and x, y ∈ bi. Then, in j(S), we have
j(x), j(y) <j(R) yi, and hence j(x) ‖j(R) j(y). By elementarity, we have x ‖R y, as
desired.

We next verify that, for all u ∈ Λ, there is i < θ such that bi ∩ Su 6= ∅. To
this end, fix u ∈ Λ. Since j(u) <j(Λ) v

∗, clause 5 of Definition 3.4 implies that
there are i < θ and w ∈ S′j(u) such that w <j(R) yi. Since |Su| ≤ θ < κ, we have

S′j(u) = j“Su, so we can find x ∈ Su such that j(x) = w. Then x ∈ bi ∩ Su.

We have thus shown that {bi | i < θ} ∈ V [G][H][K][H+] is a full set of branches
in S. Therefore, since θ+ ≤ µ, we can apply Lemma 5.3 in V [G][H] to S and the
µ-closed poset R ∗ j(Q) to conclude that, in V [G][H], there is a cofinal branch in
S, thus completing the proof of the theorem. �

Remark 6.3. Theorem 6.2 provides a way of verifying our earlier claim from
Remark 2.3 that, in general, cNSPκ does not imply TPκ. For example, if κ is
supercompact and P = Coll(ω1, <κ), then, in V P, we have κ = ℵ2, and Theorem
6.2 implies that cNSPκ holds. On the other hand, CH holds in V P, so there exists
an ℵ2-Aronszajn tree, and hence even TP(κ, κ) fails.

Note that the assertion “SNSPκ holds for every infinite regular cardinal κ” is
equivalent to the assertion “NSP(Λ) holds for every directed partial order Λ”. The
following therefore yields Theorem B.

Theorem 6.4. Suppose that there is a proper class of supercompact cardinals. Then
there is a class forcing extension in which SNSPκ holds for every infinite regular
cardinal κ.

Proof. Let 〈κη | η ∈ On〉 be an increasing, continuous sequence of cardinals such
that

• κ0 = ℵ0;
• if η is a limit ordinal (including 0), then κη+1 = κ+

η ;
• if η is a successor ordinal, then κη+1 is supercompact.

We may assume that κη is singular for every nonzero limit ordinal η; if not, then
simply truncate the universe below κη for the least nonzero limit ordinal η such
that κη is regular (and hence strongly inaccessible).
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We now force with a class-length iteration of Lévy collapses to turn each κη into
ℵη. More formally, recursively define posets 〈Pη | η ∈ On〉 as follows:

• P0 and P1 are trivial forcing;
• if η is a successor ordinal, then Pη+1 = Pη ∗ ˙Coll(κη, <κη+1);
• if η is a nonzero limit ordinal, then Pη is the inverse (i.e., full-support) limit

of 〈Pξ | ξ < η〉 and Pη+1 = Pη.

For ordinals ξ < η, let Ṗξη be a Pξ-name for the quotient Pη/Pξ. Then Ṗξη is
a name for a full-support iteration of Lévy collapses, each of which is forced to
be κξ-directed closed. It follows that Ṗξη is forced to be κξ-closed. In particular,

(H(κξ))
V Pξ

= (H(κξ))
V Pη

, so V P :=
⋃
η∈On V

Pη is a model of ZFC. Also, standard

arguments show that, in V P, we have κη = ℵη for all η ∈ On.
We claim that SNSPκ holds in V P for every infinite regular cardinal κ. Note that

the infinite regular cardinals in V P are precisely the cardinals κη for which η is either
0 or a successor ordinal. If η ≤ 1, then every system S such that (width(S))+ < κη
has finite width. It therefore follows from Proposition 3.9 that SNSPℵ0 and SNSPℵ1
are true in ZFC.

We next note that, if η is a nonzero limit ordinal and S is a system such that
(width(S))+ < κη+1, then there must be a ξ < η such that (width(S))+ < κξ.
Therefore, SNSPκη+1 will follow from the conjunction of SNSPκξ for all ξ < η.

We are therefore left with the task of verifying SNSPκη+1 for all successor ordinals

η. To this end, fix a successor ordinal η and fix in V P a directed partial order Λ
with dΛ ≥ κη+1 and a Λ-system S with width(S)+ < κη+1.

In V Pη , we have κη = ℵη and, since |Pη| < κη+1, we know that κη+1 is still
supercompact. Moreover, Pη,η+1 = Coll(κη, <κη+1) so, by Theorem 6.2, SNSPκη+1

holds in V Pη+1 and every κη+1-directed closed set forcing extension thereof. Let
ζ > η + 1 be large enough so that Λ and S are in V Pζ . In V Pη+1 , Pη+1,ζ is κη+1-
directed closed, so SNSPκη+1 holds in V Pζ . In particular, S has a cofinal branch in

V Pζ and hence also in V P. �

We close the paper with what we feel are the most prominent remaining open
questions.

Question 6.5. Suppose that κ ≥ ω2 is a regular cardinal. Does TPκ imply cNSPκ?
More specifically, if λ ≥ κ is a cardinal, does TP(κ, λ) imply cNSP(Pκλ)? More
generally, suppose that Λ is a directed partial order with dΛ ≥ ℵ2. Does TP(Λ)
imply NSP(Λ)?

By Theorem A, a positive answer to the first part of Question 6.5 would entail a
positive answer to Question 1.3 and therefore a negative answer to Question 1.4. On
the other hand, a negative answer to Question 6.5 would seem to require genuinely
new ideas, since the known methods to verify TP(κ, λ) in practice inevitably yield
cNSP(Pκλ), as well.
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