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To what extent does a mathematical structure’s local behavior determine its global behavior? How
much can one determine about a given structure by examining its small substructures? Such questions of
compactness are among the most fundamental in modern mathematics, and my research is largely devoted to
their investigation. My work lies primarily in logic and set theory, which are often particularly well suited to
addressing questions of compactness, and in applications of set theoretic tools to other areas of mathematics,
such as graph theory, algebra, and topology.

My set-theoretic work is largely combinatorial in nature and comes in two primary flavors: ZFC results
and independence results. ZFC stands for Zermelo-Fraenkel axioms with choice and is the standard set of
axioms used as the basis for set theory and for mathematics more broadly. Many interesting set-theoretic
statements can be proven outright from the axioms of ZFC. However, it has been known since the 1930s
[18] that, given any sufficiently strong, effectively axiomatizable formal system (such as ZFC), there are
statements that can be neither proven nor disproven within the system. In 1963, Cohen [6] introduced the
method of forcing, which, together with earlier work of Gédel [19], allowed him to show that the Continuum
Hypothesis, the most famous open problem of set theory at the time, is undecidable by the axioms of ZFC.
Since then, forcing, which allows one to construct new models of ZFC by introducing certain “generic” sets,
has become a central technique in set theory, and I make extensive use of it in my work.

Another central concept in modern set theory, and in my work on independence results, is the notion of
a large cardinal. Roughly speaking, a large cardinal is a type of infinite cardinal number whose consistent
existence is not implied by ZFC. For example, a weakly compact cardinal is an uncountable cardinal k for
which the following generalization of Ramsey’s theorem holds:

Whenever the edges of the complete graph on x vertices are colored with two colors, there
is a complete subgraph of size k, all of whose edges are the same color.

There is a great variety of large cardinal notions, and, rather strikingly, they form a largely linear hierarchy
when ordered in terms of consistency strength. Assuming the existence of large cardinals can allow set
theorists to prove certain consistency results that could not otherwise be obtained and, indeed, one can often
show a natural infinitary combinatorial statement to be equiconsistent with the existence of a certain type
of large cardinal. For example, the tree property at Ny (TP(X3)), which is a generalization of Konig’s infinity
lemma, is equiconsistent over ZFC with the existence of a weakly compact cardinal [39]. In other words, if
there is a model of ZFC in which TP(RXs) holds, then there is a model in which there is a weakly compact
cardinal, and vice versa.

My recent work applying set theoretic tools to other fields has focused in particular on graph theory and
homological algebra. In graph theory, my work has been around questions about the extent to which global
behavior of infinite graphs can be determined by looking at small subgraphs. In a recent result [29], for
instance, I resolved an open question of Erdds, Hajnal, and Szemerédi about the growth rates of chromatic
numbers of finite subgraphs of uncountably chromatic graphs. My work in homological algebra is joint with
Jeffrey Bergfalk and has focused on the investigation of nontrivial coherent set theoretic objects which arise
from considerations in algebraic topology. In one instance [5], we solved a long-standing open problem arising
from investigations into the additivity of strong homology (and also recently independently from work of
Clausen and Scholze on condensed mathematics).

Notation: We recall here some basic notions and notations. An ordinal is the order-type of a well-ordered
set; in practice, an ordinal is identified with the set of all ordinals less than it. A cardinal is an equivalence
class of sets under the equivalence relation of “having a bijection between.” Cardinals are identified with the
least ordinal of their cardinality. Yy is the smallest infinite cardinal number, Ry is the next smallest cardinal
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number, and so on. If k is a cardinal, then ™ denotes the smallest cardinal greater than . If X is a set,
then |X| denotes the cardinality of X. If X is a set and & is a cardinal, then [X]"® denotes the collection of
all subsets of X of cardinality k.

1. COMPACTNESS AND INCOMPACTNESS IN SET THEORY

Questions about compactness (and, dually, reflection) are among the most fundamental that can be asked
about classes of mathematical structures and concern the extent to which we can learn about the global
properties of a structure simply by examining its local behavior. Compactness questions often take the
following general form:

Suppose a structure is such that all (or most) of its “small” substructures have a certain
property. Must the entire structure have the same property?

The study of compactness principles has played a major role in modern mathematics. A number of seminal
theorems of the twentieth century center around instances of compactness in a finitary setting. These include:

e Konig’s infinity lemma, which asserts that every infinite tree with finite levels has an infinite branch.

e The compactness theorem for first-order logic.

e Tychonoff’s theorem, which states that any product of compact topological spaces is compact.

e The de Bruijn-Erdos compactness theorem: if &k is a natural number and G is a graph, all of whose
finite subgraphs have chromatic number at most k, then G has chromatic number at most k.

Taken together, these theorems assert that the cardinal Ng, the smallest infinite cardinal, exhibits a high
degree of compactness. When the cardinal context of these theorems is shifted up one level, though, they
typically become false:

e There is always a tree of height N; with countable levels and no branch of size N;.

e The logic L., which is obtained from first order logic by allowing countably infinite disjunctions
and conjunctions, fails to be compact.

e There are two Lindel6f topological spaces whose product fails to be Lindelof.

e Under rather mild hypotheses, there is a graph G of size N5 such that all subgraphs of size ®; have
countable chromatic number but G has uncountable chromatic number.

These results, in turn, assert that the cardinal X; exhibits a high degree of incompactness.

For cardinals greater than Ny, questions of compactness become more complicated, and they are inextri-
cably linked with large cardinals and independence over ZFC. For example, the assertion that every tree of
height Ny with levels of size W; has a branch of size Ny is equiconsistent over ZFC with the existence of a
weakly compact cardinal. For another, if x is an uncountable cardinal, then the compactness of the logic
L, which extends first-order logic by allowing conjunctions, disjunctions, and chains of quantifiers of any
length less than , is equivalent to k being a strongly compact cardinal.

Compactness and incompactness phenomena provide a useful way of organizing and classifying a great
deal of set theoretic ideas. Canonical inner models such as L, for example, typically exhibit a great deal of
incompactness, whereas large cardinals or forcing axioms such as the Proper Forcing Axiom (PFA) or Martin’s
Maximum (MM), which are strong generalizations of the Baire Category Theorem, typically imply instances
of compactness. The tension between compactness and incompactness phenomena and the intricate web of
implications and non-implications that exists among various compactness and incompactness statements has
provided and continues to provide fertile ground for set theoretic research, with applications not just in set
theory and logic but throughout mathematics.

1.1. Constructions with small approximations. A portion of my set theoretic work is devoted to the
development of tools for the direct construction of incompact objects, i.e., structures whose behavior differs
dramatically from the behavior of their small substructures. For an infinite cardinal &, it is often helpful
when constructing incompact objects of size k™ to be able to piece together these objects from small ap-
proximations, i.e., approximations of size < k. Such constructions were done, making use of combinatorial
objects known as morasses, by Shelah and Stanley [48, 49] and by Velleman [51]. Shortly thereafter, similar
constructions were carried out using variants of the guessing principle known as diamond by Shelah et al.,
culminating in [47].



One prominent area in which these constructions are relevant is the study of generalizations of the Souslin
Hypothesis (SH). SH asserts that every complete, dense linear order without endpoints and with the count-
able chain condition is isomorphic to the real numbers. SH has inspired a tremendous variety of research in
set theory and was eventually found to be independent of ZFC. SH can be seen as SHy, and has natural
generalizations SH,; for regular cardinals k > X;. SH, can also be thought of as a weakening of the tree
property at s.

In joint work with Rinot [32], we developed a new technique for carrying out such constructions, using a
combination of a square principle and a diamond principle. We encapsulate this technique in a new principle
(of a sort known as a forcing axiom), which we call SDFA(P,). We show that, for uncountable successor
cardinals k, the principle SDFA(P,) is equivalent to an instance of the Generalized Continuum Hypothesis
together with a particular square principle (cf. Subsection 1.2). In our main application, we prove that, for
an infinite cardinal A, SDFA(Py+) implies that SHy++ fails. This leads to the following corollary regarding
the large cardinal strength of the failure of the generalized Souslin Hypothesis, improving upon an almost
forty-year-old result of Shelah and Stanley [48].

Theorem 1.1 (LH-Rinot [32]). Suppose that X\ is an uncountable cardinal, 2° = A\*, and SHy++ holds.
Then A\TT is a Mahlo cardinal in L.

We suspect that SDFA(P,) will have a number of other applications in a variety of fields of mathematics,
and I plan to continue to investigate this. For example, we feel it is likely to entail the existence of exotic
varieties of superatomic Boolean algebras or topological spaces, such as positive solutions to the Arhangel’skii
Problem. As is the case with the generalized Souslin Hypothesis, this could provide better lower bounds
for the large cardinal strength of the non-existence of these objects. We are also interested in removing the
cardinal arithmetic assumptions from the statement of Theorem 1.1. The eventual goal would be an answer
to the following question.

Question 1.2. Is the existence of an infinite cardinal A for which SHy++ holds equiconsistent with the
existence of a weakly compact cardinal?

1.2. Square principles and stationary reflection. Some of the most canonical incompactness and com-
pactness principles in set theory are, respectively, square principles and principles of stationary reflection,
and much of my work has touched directly or indirectly on these principles.

Very roughly speaking, a square principle at a cardinal A\ asserts the existence of a certain coherent
sequence of length A that cannot be extended to have length A + 1. It is thus manifestly an incompactness
principle. A particularly useful family of square principles, introduced by Todorcevic, is denoted by (A, k),
where 1 < k < A are cardinals and X is regular and uncountable. (A, k) is an assertion of incompactness
about the cardinal A, and, if A is held constant, then the strength of the principle O(\, <k) decreases as k
increases.

Stationary reflection principles lie on the other side of the compactness divide. Intuitively, a statonary
subset of an an ordinal 8 of uncountable cofinality is a subset that is “large” in a particular sense. A
stationary reflection principle at A asserts that, for certain collections S of stationary subsets of A, there
are many ordinals 5 < X such that {SN S| S € S} is a collection of stationary subsets of 5. It is thus
an assertion of compactness about A. For a fixed nonzero cardinal x < A, Refl(x, A) denotes this reflection
principle for all collections S of at most k-many subsets of A\. The variant Refl(<x, \) is about collections S
of fewer than k-many subsets. The strength of Refl(k, A) increases as k increases.

It has long been known that square principles put a limit on the amount of stationary reflection that can
hold. For example, it is a classical result that (A, 1) implies the failure of Refl(2,5) for every stationary
S C A. In joint work with Yair Hayut, I established a very strong link between the hierarchy of square
principles and that of stationary reflection principles. (For simplicity, we state the following theorem slightly
imprecisely.)

Theorem 1.3 (Hayut-LH, [20]). Suppose that k < X\ are infinite regular cardinals.

(1) IfO(X, <k) holds, then Refl(<k, A) fails.
(2) This is sharp in the sense that, modulo large cardinal assumptions, O(\, k) is compatible with
Refl(<k, A).



The proofs of the two directions of Theorem 1.3 are very different in nature. The proof of (1) is a purely
combinatorial argument establishing the result in ZFC. The proof of (2) is a consistency result in which we
use forcing to construct a model of ZFC in which O(), k) and Refl(<k, A) both hold.

In other papers, I have studied further aspects of the web of interconnections between various square
principles ([23], [25], [26]) and between various principles of stationary reflection ([8], [24], [16]).

1.3. Productivity of chain conditions. The notion of chain conditions of partially ordered sets has played
a major role in modern set theory, both in providing an impetus for set theoretic investigation and in being
a key tool itself in the development of the technique of forcing.

Definition 1.4. Suppose that PP is a partial order and & is a cardinal.
(1) If p,q € P, then p and g are compatible if there is r € P such that » < p and r < q.

(2) An antichain in P is a subset A C P such that the elements of A are pairwise incompatible.

(3) P satisfies the x-chain condition (k-c.c.) if, for every antichain A in P, we have |A] < k.

(4) P is k-Knaster if, whenever A C P and |A| = k, there is a subset B C A such that |B| = k and B
consists of pairwise compatible elements.

Clearly, if a partial order P is k-Knaster, then it satisfies the k-c.c. One reason the xk-Knaster condition
is useful is that it is productive: if P and Q are k-Knaster partial orders, then the product P x Q is also
k-Knaster. This is not necessarily true for the x-chain condition, and the study of the productivity of chain
conditions has led to much deep work in set theory.

Though the xk-Knaster condition is finitely productive, it is not necessarily infinitely productive, i.e., an
infinite product of xk-Knaster partial orders may not be x-Knaster. If x is a weakly compact cardinal, then
it is in fact the case that any product of fewer than x k-Knaster partial orders is again x-Knaster. In joint
work with Liicke, in conjunction with some work on variants of the tree property, we give a partial converse
to this by showing that, if the x-Knaster condition is even countably productive, then x is weakly compact
in L.

Theorem 1.5 (LH-Liicke, [30]). Suppose that k is an uncountable regular cardinal and O(k) holds. Then
there is a k-Knaster partial order P such that PX° does not satisfy the k-chain condition. Consequently, if
the k-Knaster condition is countably productive, then k is weakly compact in L.

This work left open a question raised by Todorcevic in response to previous work of Cox and Liicke [7]:
Is it consistent that the k-Knaster condition is countably productive for some “small” cardinal x, e.g., Ny
or N, 117 In joint work with Rinot, we resolved this question negatively, in fact showing that the countable
productivity of the x-Knaster condition implies that x is strongly inaccessible.

Theorem 1.6 (LH-Rinot, [31]). Suppose that u is an infinite cardinal and x = p+. Then there is a poset P
such that P is k-Knaster but PX0 does not satisfy the k-c.c.

Our proof of Theorem 1.6 led us to isolate a new combinatorial principle asserting the existence of certain
“strongly unbounded” functions. Roughly speaking, these are functions on the space of two-element subsets
of a cardinal k into some smaller cardinal p such that, for every unbounded subset of x, the range of the
function restricted to that subset is unbounded in g (in fact, the principle gives somewhat more). This
principle is a very strong negation of Ramsey’s theorem at . We began a thorough analysis of this principle
in [31], and this analysis continues today.

One of the most intriguing developments in this work with Rinot has been our isolation of a cardinal
characteristic we call the C-sequence number [34]. This number provides a measure of the compactness of
a cardinal and a concrete indication of how far away it is from being a weakly compact cardinal (weakly
compact cardinals have a C-sequence number of 0, and the larger a cardinal’s C-sequence number is relative
to the cardinal itself, the less compact the cardinal is). We have proven a number of results, both ZFC results
and consistency results, about the C-sequence number. For example, we have investigated the number at
N, +1, the least successor of a singular cardinal.

Theorem 1.7 (LH-Rinot [34]). Let x(Ny+1) denote the C-sequence number of Ry,11.
(1) Ro < x(Rut1) < V.
(2) If O(Nyy1) holds, then x(Ry41) = Ry,. In particular, this is the case if V = L.
(3) Modulo large cardinal assumptions, it is consistent that x(R,41) = No.
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1.4. Singular cardinal combinatorics. An infinite cardinal x is singular if a set of size k can be written
as a union of fewer than k sets, each of size less than k. Many interesting and deep questions in set
theory revolve around combinatorics and cardinal arithmetic at singular cardinals and their successors. For
a variety of reasons, results at singular cardinals and their successors are typically more difficult to obtain
than the analogous results at regular cardinals and their successors and often require stronger large cardinal
assumptions and more intricate forcing arguments.

Some of the most fundamental tools of research into singular cardinal combinatorics are the so-called
Prikry-type forcing notions. A typical Prikry-type forcing notion allows one to pass from a model of set
theory with a suitably large cardinal, x, to an outer model in which x is a singular cardinal. We say that,
in this situation, x has become singularized in the outer model.

In joint work with Ben Neria and Unger [1], we introduce a new Prikry-type forcing notion, known as
diagonal supercompact Radin forcing, and use it to prove the following global consistency result about the
failure of the Singular Cardinals Hypothesis and the non-existence of special Aronszajn trees.

Theorem 1.8 (Ben Neria-LH-Unger, [1]). If there are a supercompact cardinal k and a weakly inaccessible
cardinal 8 > Kk, then there is a forcing extension in which k is inaccessible and there is a club E C k of
singular cardinals v at which SCH and AP both fail.

This is a step in the direction of a possible proof of the consistency of every regular cardinal £ > N;
satisfying the tree property, which would provide a striking example of global compactness and would answer
a long-standing and central question of Magidor.

In other recent work [27], I have extended and generalized previous results [17, 10, 36] indicating that
Prikry-type forcing notions are in some sense the only way to singularize cardinals. More precisely, I prove
a quite general theorem stating that, if x is a regular cardinal that becomes singular in some outer model
of set theory, then, as long as a certain amount of cardinal structure is maintained, then there must be an
object in the outer model which resembles a generic object for a Prikry-type forcing notion. Results such as
this play a key role in providing limits on what kind of consistency results we can hope to prove.

Singular cardinal combinatorics is the setting for a suite of three deep connected problems that continue to
guide much of my research on singular cardinal combinatorics. The questions concern relationships between
regular cardinals k£ < A such that A is the successor of a singular cardinal p and cf(k) > p. The simplest
case is that in which A =X, 7 and k = Ns.

Question 1.9. Are there consistently models V. C W of ZFC with the same ordinals such that (R,41)Y =
(Ro)"' 7

Question 1.10. Is the Chang’s Conjecture variant (R,41,R1) = (N2, Ry) consistent?

Question 1.11. [s it consistent that there is a PCF-theoretic scale of length V1 that has stationarily many
bad points of cofinality Ng ?

There is currently a rather peculiar situation regarding Questions 1.9-1.11. All three questions are known
consistently to have positive answers if Ny is replaced by R; (and N; is replaced by Ry in Question 1.10).
On the other hand, all three questions are known to have negative answers if R, is replaced by R,, for some
natural number n > 4 (and ¥, is replaced by Y,,_1 in Question 1.10). All three questions, though, remain
entirely open both as stated and with Ny replaced by N3. One promising angle of attack on them comes
via combinatorial structures known as covering matrices, used by Viale to prove that the Singular Cardinals
Hypothesis follows from the Proper Forcing Axiom [52]. My work in [23] and [25] is motivated in part by this
line of questions, and by relationships between covering matrices and square principles. For example, in [25]
I provide a new proof of a result of Sharon and Viale [44] stating that positive answers to either Questions
1.9 or 1.10 would entail nontrivial failures of stationary reflection at Ns. I plan to continue pursuing this
work.

Progress on these questions is also likely to shed light on the following major open problem in cardinal
arithmetic.

Question 1.12. Is it consistent that Y, is a strong limit cardinal and 2% > RN, ¢

It follows from the work of Magidor [35] that 2%« can be arbitrarily large below X,,, in models in which X,,
is strong limit. On the other hand, a celebrated theorem of Shelah [46] shows that, if 8, is strong limit, then
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we necessarily have 2%« < X, . The similarities between the current state of knowledge about Questions
1.9-1.11 and about Question 1.12 are not coincidental and arise from deep machinery employed in the proofs
of the best current theorems. It seems likely that a breakthrough in one question will lead to a breakthrough
in the others.

2. GRAPH THEORY

My work in graph theory is motivated by questions about the tension between local and global properties
of uncountable graphs. In particular, I am interested in large graphs which display very complicated behavior
but are locally rather simple. A vague paradigmatic example would be a graph with “very large” chromatic
number such that all of its “small” subgraphs have “very small” chromatic number.

If G is a graph, we denote its vertex set by V(G) and its edge set by E(G). We will sometimes abuse
notation and write |G| instead of |[V(G)|. Recall that, if G is a graph, the chromatic number of G is the
least cardinal x such that the vertices of G can be partitioned into x-many independent sets. The coloring
number is slightly more technical but often more amenable to set theoretic analysis: Given a well-ordering
< of the vertices V(@) and a vertex v, let N5 (v) denote the set {u < v | {u,v} € E(G)}. Then the coloring
number of G is the least cardinal x such that there exists a well-ordering < of V(G) such that |Ng(v)| < k
for all vertices v. A greedy coloring argument shows that the chromatic number of G is always at most the
coloring number of G.

2.1. Chromatic numbers of finite subgraphs. One of the earliest results indicating the extent to which
a graph’s global structure reflects its local structure is given by the De Bruijn-Erdds theorem. As a result
of this theorem, if G is a graph with infinite chromatic number, then, for every natural number k, there is
a finite subgraph of G with chromatic number k. We can therefore define a natural function fg : N — N
by letting fo (k) be the least number of vertices in a subgraph of G with chromatic number k. It is clear
that fg is an increasing function. The question then naturally arises: How fast can fg grow? What can the
behavior of fg tell us about the global behavior of G; in particular, does it have an impact on the possible
values for the chromatic number of G7

Using a result of Erdds from [11], it is not hard to show that if we only ask that G have countably infinite
chromatic number, then fg can grow arbitrarily quickly, so the question of the growth rate of fg is most
interesting for graphs of uncountable chromatic number. In 1982, Erdds, Hajnal, and Szemerédi [13] proved
that, for every n € N, there is a graph G of uncountable chromatic number such that fg grows faster than
expn, where exp, denotes the n-fold iterated exponential function. They then asked whether it is the case
that, for every function f : N — N, there is an uncountably chromatic graph G such that fg grows faster
than f (see also [14]). Recently, I resolved this question positively.

Theorem 2.1 (LH, [29]). For every function f : N — N, there is a graph G of size 2% and chromatic
number Ny such that fa(k) > f(k) for all 3 <k < w.

In subsequent work in progress, I have been able to reduce the size of G in the statement of the theorem
to 2%, A number of open question remain, which I plan to continue investigating. The most significant, I
feel, is whether graphs G as in Theorem 2.1 can be found with arbitrarily large chromatic number.

Question 2.2. Is it the case that, for every function f: N — N and every cardinal k, there is a graph G of
chromatic number at least k such that fo grows faster than f?

The proof of Theorem 2.1 is very particular to the construction of graphs of chromatic number Ny, so it
seems that new ideas will be necessary to resolve Question 2.2. Even the consistency of a positive answer
for Question 2.2 is open for k£ > N; and would be of significant interest.

2.2. Compactness for chromatic and coloring numbers. In joint work with Rinot [33], we investigated
the extent to which analogues of the De Bruijn-Erdés Compactness Theorem hold or fail at higher cardinals.
Our main result indicates that rather mild assumptions imply a spectacular failure of a higher analogue of
the De Bruijn-Erddés theorem and a maximal amount of incompactness for the chromatic number.

Theorem 2.3 (LH-Rinot, [33]). Suppose that the Generalized Continuum Hypothesis holds and X is an
uncountable cardinal such that O(AT) holds. Then there is a graph G of size A\ such that
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(1) every subgraph of G of size less than AT has countable chromatic number;
(2) the chromatic number of G is AT.

Since CJ(AT) is compatible with certain compactness principles, we obtain surprising corollaries stating
that the maximal amount of incompactness for the chromatic number is compatible with large amounts of
compactness in other areas. For example, it is compatible with compactness for the coloring number.

On the other hand, somewhat surprisingly, we show that, in contrast to the chromatic number, the coloring
number cannot admit arbitrarily large compactness gaps.

Theorem 2.4 (LH-Rinot, [33]). Suppose that p is a cardinal, G is a graph, and every subgraph of G of

strictly smaller cardinality than G has coloring number at most p. Then G has coloring number at most
++
ptr.

It is known that one-cardinal incompactness gaps in coloring number can be achieved. The question of
whether two-cardinal gaps are possible remains open. Its solution is likely to involve deep combinatorial
questions, and I plan to continue to investigate it. The most prominent special case of this question is the
following:

Question 2.5. s it consistent that there is a graph G of size N,11 and coloring number Ro such that every
subgraph of G of size less than W11 has countable coloring number?

2.3. Highly connected Ramsey theory on the real numbers. The obvious first attempts to generalize
Ramsey’s theorem to uncountable sets fails dramatically at the level of the real numbers. For example, if
G is the complete graph with vertex set R, then we have the following two strong failures to attempted
generalizations of Ramsey’s theorem:

e There is an edge-coloring of G using Np-many colors such that every infinite complete subgraph of
G contains edges of infinitely-many different colors.

e There is an edge-coloring of G using only 2 colors such that every uncountable complete subgraph
of G contains edges of both colors.

If one weakens the requirement that a witness to the Ramsey-like statement be a complete subgraph,
though, one can obtain nontrivial statements that are at least consistent. One candidate for such a weakening
was introduced by Bergfalk, Hrusdk, and Shelah in [3], is the notion of a highly connected graph.

Definition 2.6. [3] A graph G is highly connected if it is connected and remains connected after the removal
of any collection of fewer than |G|-many vertices.

In the realm of finite graphs, the highly connected graphs are precisely the complete graphs, so an infinitary
version of Ramsey’s theorem in which we ask for highly connected monochromatic graphs can be seen as a
true analogue of Ramsey’s theorem for finite graphs. With this notion, we were able to prove the consistency
of a nontrivial instance of a Ramsey-type statement at the level of the real numbers. In fact, we were able
to show that this statement is equiconsistent with a large cardinal notion.

Theorem 2.7. [28] The following statements are equiconsistent over ZFC:

(1) There is a weakly compact cardinal.

(2) For every edge-coloring of the complete graph G with vertex set R using fewer than |R|-many colors,
there is a highly-connected subgraph H of G such that |H| = |R| and the edges of H have only 2
different colors.

This theorem is optimal in the sense that the “2” in clause (2) provably cannot be reduced to a “17.

2.4. Future work. A number of questions asked by Erdés and Hajnal about uncountable graphs have since
been addressed by consistency results but remain open in general. It seems plausible that they can be
resolved using techniques similar to those we developed to prove Theorem 2.1, and I plan to investigate
them. I mention a couple of them here concerning triangle-free graphs. Recall that K,, denotes the complete
graph on n vertices.

Question 2.8 (Erdés-Hajnal, [12]). Is there a Ky-free graph that cannot be written as the union of countably
many triangle-free graphs?



Shelah [45] proved that, assuming the consistency of certain large cardinals, Question 2.8 consistently has
a positive answer. We plan to investigate whether a positive answer follows simply from ZFC.

Question 2.9 (Erdés-Hajnal). Let k be an uncountable cardinal. If G is a graph with chromatic number k,
must G have a triangle-free subgraph of chromatic number k?

Ro6dl [42] proved that Question 2.9 has a positive answer if kK = Rg. Komjath and Shelah [22] proved that
it consistently has a negative answer if kK = N; and conjectured that this negative answer follows from ZFC.

3. HOMOLOGICAL ALGEBRA

Much of my recent work has centered on questions arising from homological algebra. As questions of the
tension between local and global behavior are prominent in both set theory and homological algebra, it is
natural that there are a number of connections between the two fields, and though there has been some work
done exploring these connections over the last fifty years, we feel that there remains a great deal to be done
and that the common area inhabited by the two fields currently provides particularly fertile ground for new
research.

3.1. Strong homology and the vanishing of higher derived limits. In recent work [5], Jeffrey Bergfalk
and I solved a problem arising from the study of the additivity of strong homology.

Definition 3.1 ([38]). If C is a class of topological spaces, we say a homology theory is additive on C if for
every natural number p and every family {X; | i € I} with each X; and [[; X; in C, we have the isomorphism

@Hp(Xi) = HP(H Xi)
1 I

via the obvious map induced by the inclusions X; — []; X;.

Additivity is satisfied, for example, by singular homology. In [37], Mardesi¢ and Prasolov investigated the
additivity of strong homology and, by computing the strong homology of the k-dimensional Hawaiian earring
and countably infinite topological sums thereof, were able to show that, if strong homology is additive on
closed subspaces of Euclidean space, then lim™ A = 0 for all n > 1, where A is a certain inverse system of
abelian groups indexed by “w. They then translated the statement “lim' A = 0” into a purely set theoretic
statement which they were able to use to prove that the Continuum Hypothesis implies that lim' A # 0 and,
therefore, that strong homology is not additive.

We briefly remark that the question of the vanishing of lim™ A has also arisen recently, independently
of its connection with the additivity of strong homology, in work of Dustin Clausen and Peter Scholze on
condensed mathematics (cf. [43]). They introduce the category of condensed abelian groups as a setting in
which to do algebra when the algebraic objects carry additional topological information, and a foundational
question about this category reduces, in its simplest case, to the vanishing of lim"™ A for n > 1.

The vanishing of lim"™ A can be translated into a purely set theoretic statement about the nonexistence
of certain nontrivial coherent families of functions which are clear instances of incompactness. Mardesi¢ and
Prasolov showed that the statement “lim" A = 07 is equivalent to the assertion that every coherent family is
trivial. In [2], Bergfalk generalized the definitions of “trivial” and “coherent” to higher-dimensional families
of functions, defining the notions of n-coherence and n-triviality for positive integers n. Again, the existence
of non-n-trivial n-coherent families provides a clear instance of set theoretic incompactness. Bergfalk showed
that the statement “lim™ A = 0” is equivalent to the assertion that every n-coherent family is n-trivial.

lim! A and nontrivial coherent families have been the subject of a great amount of set theoretic research (cf.
[9], [21], [15], [50]), but im™ A and non-n-trivial n-coherent families have remained much more mysterious.
In fact, the question of the consistency of the statement * lim' A = 0 = lim? A” was open until very
recently and was explicitly asked by Moore in his 2010 ICM survey on the Proper Forcing Axiom [40]. With
Jeffrey Bergfalk, we answered this question and in fact proved the consistency of the statement “lim” A =
0 for all n > 17.

Theorem 3.2 (Bergfalk-LH, [5]). Suppose that k is a weakly compact cardinal and P is a finite support
iteration of Hechler forcings of length . Then, in VF, lim" A = 0 for every n > 1.
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A number of questions are left open by this result, which we intend to pursue. These include questions
about the optimality of the above theorem. The first asks whether the assumption of the existence of a
weakly compact cardinal is really necessary.

Question 3.3. What is the consistency strength of the statement “lim"™ A =0 for alln > 1" %
The second asks whether the continuum must be as large as in the statement of the theorem.

Question 3.4. What is the smallest value of the continuum that is compatible with the statement “lim"™ A =
0 for alln>177

A natural model in which to try to investigate Question 3.4 is the model obtained by adding N,41-many
Cohen reals to a model of CH.

A more ambitious line of inquiry reconnects these investigations to the original question of the additivity
of strong homology. In [41], Prasolov proved in ZFC that strong homology is not additive on the class of all
topological spaces. His counterexample, though, is not paracompact and hence not metrizable, leaving open
the possibility that strong homology could be additive on some smaller but still substantial class of spaces.

Question 3.5. Is it consistent that strong homology is additive on some nice class of spaces properly ex-
tending the class of spaces homotopy equivalent to a CW-complex? For example, is it consistent that strong
homology is additive on Polish spaces? On locally compact metric spaces? On metric spaces?

The model V¥ of Theorem 3.2 provides a natural model in which to begin investigating Question 3.5.

3.2. Cohomology of the ordinals. In other work with Jeffrey Bergfalk [4], we investigate Cech cohomology
groups of ordinals (with the topology inherited from the natural ordering of the ordinals). We show that,
for a fixed ordinal § and natural number n > 1, the statement “H™(J,7Z) # 0” is equivalent to the existence
of an n-dimensional coherent, nontrivial family of functions indexed by the n-element subsets of §. This is a
purely combinatorial object, and such coherent, nontrivial families provide examples of incompactness at 4.
We prove in ZFC that, if & < n are natural numbers and § is an ordinal of cofinality N, then I:I”(é, Z)=0.
This is sharp in the sense that forthcoming work of Bergfalk implies that, for such §, H*(8,Z) # 0. Things
become much less clear when cf(d) > N,,, and here large cardinals and consistency results come into play.
For example, we show that, if & is a weakly compact cardinal, then H"(k,Z) = 0 for all n, and, if & is
strongly compact, then in fact H"*(\,Z) = 0 for all n and every regular cardinal A > k. We also prove
that, consistently, H*(x,Z) = 0 for all x with cf(k) > X;. On the other hand, we show that, in Godel’s
constructible universe L, the Cech cohomology groups of ordinals are nonzero wherever possible:

Theorem 3.6 (Bergfalk-LH, [4]). Suppose that V = L. Then, for every positive integer n and every regular
cardinal k such that cf(k) > R,, and x is not weakly compact, we have H™(x,Z) # 0.

It remains a question of interest whether we can arrange nontrivial instances of H"(k,Z) = 0 for n > 1
and “small” k. The simplest such open question, which we plan to continue working on, is the following.

Question 3.7. Is H*(N3,Z) = 0 consistent?

We feel that Question 3.7 should have a positive answer relative to large cardinal assumptions, but it is
likely that such an answer will require the development of new ideas in forcing.

In the case of n = 1, the nontrivial coherent families witnessing H" (k, Z) # 0 are very familiar combinato-
rial objects to set theorists: they are precisely the coherent k-Aronszajn trees. Such trees have been studied
extensively and have proven very useful in the study of 2-dimensional combinatorics (particularly Ramsey
theory) on uncountable cardinals. For n > 2, however, the nontrivial coherent families seem to be genuinely
new objects, and we feel that they provide fertile ground for study. In particular, we feel that their study
could yield dividends in higher-dimensional Ramsey theory at uncountable cardinals, which until now has
proven much more difficult than the 2-dimensional case.
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