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Abstract. In 1956, 48 years after Hausdorff provided a comprehensive ac-

count on ordered sets and defined the notion of a scattered order, Erdős and

Rado founded the partition calculus in a seminal paper. The present paper

gives an account of investigations into generalisations of scattered linear or-

ders and their partition relations for both singletons and pairs. We consider

analogues for these order-types of known partition theorems for ordinals or

scattered orders and prove a partition theorem from assumptions about cardi-

nal characteristics. Together, this continues older research by Erdős, Galvin,

Hajnal, Larson and Takahashi and more recent investigations by Abraham,

Bonnet, Cummings, Džamonja, Komjáth, Shelah and Thompson.

1. Introduction

In this paper, we study partition relations in the context of scattered linear

orders and their generalisations. Recall that a linear order is scattered if it does

not embed a copy of the rationals and is σ-scattered if it is a countable union of

scattered linear orders. The classes of scattered and σ-scattered linear orders are,

in a sense, the simplest classes of linear orders past the class of well-orders, and, as

such, they have played a central role in the study of general linear orders.

One of the central questions motivating the investigations of this paper concerns

the extent to which the classes of scattered and σ-scattered linear orders behave

similarly to the class of well-orders. Two seminal results contributing to the under-

standing of this issue are the following:
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• In [Haus908], Hausdorff characterises the class of scattered linear orders as

the smallest class containing all well-orders and anti-well-orders and closed

under well-ordered and anti-well-ordered lexicographic sums.

• In [Lave971], Laver proves Fräıssé’s Conjecture by showing that the class

of σ-scattered linear orders is well-quasi-ordered by embeddability.

We will be interested not just in scattered linear orders but also in generalisations

of scattered linear orders introduced by Džamonja and Thompson in [DT006]. We

first recall some relevant definitions. For unfamiliar notation, see the Notation

subsection at the end of the Introduction.

Definition 1.1. Suppose κ is an infinite cardinal, ϕ is a linear order type, and P

is a linear order of type ϕ.

(1) ϕ is κ-dense if |P | > 1 and, for all a, b ∈ P , if a <P b, then |]a, b[P | > κ.

(2) ϕ is κ-saturated if P 6= ∅ and, for all A,B ⊆ P such that |A|, |B| < κ and

A <P B, there is c ∈ P such that A <P c <P B.

In [Haus908, Haus914] Hausdorff shows that, if κ is an infinite cardinal, the

following hold:

• If P is a κ-saturated linear order, then every linear order of cardinality κ

embeds into P .

• There is a κ+-saturated linear order L of cardinality 2κ such that:

– L is embeddable into every κ+-saturated linear order;

– no suborder of L of cardinality κ++ is well-ordered or anti-well-ordered.

• If κ is singular, then every κ-saturated order is also κ+-saturated.

In [Sier949], Sierpiński defines, for every infinite cardinal κ, a linear order of

size κ<κ, which he calls Qκ. In addition, he shows that, for every κ, Qκ+ is κ+-

saturated. In [Gill956], Gillman shows:

(1) for every infinite cardinal κ, Qκ is embeddable into every κ-saturated linear

order;

(2) for every limit cardinal κ, both that every κ-sized linear order embeds into

Qκ and that it is κ-saturated if and only if κ is inaccessible.

In [DT006] Džamonja and Thompson, building on previous work of Abraham

and Bonnet, introduce the following definition.

Definition 1.2 (Džamonja-Thompson, [DT006]). Suppose κ is an infinite, regular

cardinal, and ϕ is a linear order type.

(1) ϕ is κ-scattered if there is no κ-dense order type τ such that τ 6 ϕ.

(2) ϕ is weakly κ-scattered if there is no κ-saturated τ such that τ 6 ϕ.

Note that, for κ = ℵ0, the classes of κ-scattered and weakly κ-scattered linear

orders coincide and are equal to the class of scattered linear orders. For uncountable

κ, the classes are provably different, i.e., there is a weakly κ-scattered linear order

that is not κ-scattered.

In [ABC+012], Abraham et al. prove a generalisation of Hausdorff’s structure

theorem for the class of κ-scattered linear orders.
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Definition 1.3. Suppose κ is an infinite cardinal. Then BLκ denotes the class of

all linear order types ϕ such that either |ϕ| < κ, ϕ is a well-ordering, or ϕ is an

anti-well-ordering.

Theorem 1.4 ([ABC+012, Theorem 3.10]). Let κ be an infinite cardinal. The class

of κ-scattered linear order types is the smallest class of linear order types containing

BLκ and closed under lexicographic sums with index set in BLκ.

The results in this paper concern the behavior of generalised scattered orders

with respect to partition relations. The following folklore result provides some

motivation for our investigations. The proof uses a pair-colouring first deployed by

Sierpiński, cf. [Sier933].

Theorem 1.5 (Folklore). If τ is a linear order type, then τ 6−→(ω, ω∗)2.

Theorem 1.5 implies that, in any consistent positive partition relation of the

form τ −→ (ϕ0, ϕ1)2, where all variables indicate linear order types, if ϕ0 and

ϕ1 are infinite, then either both must be well-orders or both must be anti-well-

orders. Since we want to work with classes of linear orders larger than the class

of well-orders, this indicates that we should look at partition relations of the form

τ −→ (ϕ, n)2, where n is a natural number. Note that, if κ is an infinite cardinal

and α < κ+, then there is β < κ+ such that, for all n < ω, we have β −→ (α, n)2,

cf. [EM972]. Our goal of comparing the classes of generalised scattered orders with

the class of well-orders thus leads us naturally to the following general question.

Question 1.6. Suppose κ is an infinite cardinal and ϕ is a κ-scattered (resp. weakly

κ-scattered) linear order type of size κ. Must there be a κ-scattered (resp. weakly

κ-scattered) τ of size κ such that, for all n < ω, τ −→ (ϕ, n)2?

In most of the existing literature concerning partition relations and linear or-

ders, the linear orders under consideration are in fact well-orders. Let us mention

the exceptions we are aware of: Erdős and Rado prove in [ER956, Theorem 6]

that η −→ (η,ℵ0)2. Erdős and Hajnal prove in [EH963, Corollary 1] that for

any countable scattered linear order type τ we have that τ −→ (ϕ,ℵ0)2 implies

ϕ ∈ {n, n+ ω∗, ω + n : n < ω}. Larson proves in [Lars974, Theorem 4.1] that

(ωω∗)ω −→
(
(ωω∗)ω, n

)2
for all natural numbers n; she also shows in [Lars974,

Theorem 4.3] that (ωω∗)kn −→
(
(ωω∗)k, n

)2
for all natural numbers k and n.

Remark 1.7. Recall that (αα∗)ω can be defined as the order type of the set Sα :=

α<ω of finite sequences of elements of α, ordered by ≺α. In order to define ≺α let,

for s, t ∈ Sα, δ(s, t) := min {n < ω : n ∈ dom(s)4dom(t) ∨ s(n) 6= t(n)}.

For s, t ∈ Sα let s ≺α t⇔

{
δ(s, t) is even and (t @ s or t(δ(s, t)) < s(δ(s, t))) or

δ(s, t) is odd and (s @ t or s(δ(s, t)) < t(δ(s, t))).

Regarding this order type, cf. Corollaries 5.7 and 5.12 where it appears as a

factor of some order types in negative partition relations. Also cf. Questions 7.3

and 7.4.

The paper is structured as follows. In Section 2, we prove some basic results

concerning generalised scattered orders that will be used throughout the paper.
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Furthermore, we show that, if τ is a κ-saturated linear order type and ϕ is a linear

order type of size κ, then τ −→ (ϕ, n)2 for all n < ω. In Section 3, we show that,

if κ<κ = κ and ϕ is a weakly κ-scattered linear order type of size κ, then there is

a weakly κ-scattered linear order type τ of size κ such that τ −→ (ϕ, n)2 for all

n < ω. 1

In Section 4, we prove that, for a regular cardinal κ, the negative partition

relation κ+κ 6−→(κ+κ, 3)2 follows from bκ = |•(κ) = κ+. This complements a result

of Larson indicating that the same negative relation follows from d = ℵ1. In Section

5, we use this negative partition relation to show that, if b = |• = ℵ1 or d = ℵ1,

then there is an ℵ1-scattered linear order type ϕ of size ℵ1 such that, for every

ℵ1-scattered linear order type τ of size ℵ1, τ 6−→(ϕ, 3)2. We show, moreover, that

if κ > ω is a regular cardinal, it is consistent that κ<κ = κ and that there is a

κ-scattered order type ϕ of size κ such that, for all κ-scattered order types τ of

size κ, τ 6−→(ϕ, 3)2. Finally, in Section 6, we generalise a result of Komjath and

Shelah from [KS003]. We prove that, if κ<κ = κ, ϕ is a κ-scattered linear order

type, and ν is a cardinal, then there is a κ-scattered linear order type τ such that

τ −→ [ϕ]1ν,κ.

1.1. Notation. We use Greek minuscules ρ, τ, ϕ and ψ to refer to order types of

linear orders. In particular, ω refers to the order type of the natural numbers and η

to that of the rational numbers. The Greek letters κ, µ and ν refer to cardinals. All

other Greek letters used refer to ordinals. The only exception is σ which appears

in the notion of σ-scatteredness. We will use Roman capitals to refer to actual

ordered sets, 〈P,<P 〉, for instance. If A,B ⊆ P (with one or both possibly empty),

then A <P B means that, for all a ∈ A and b ∈ B, a <P b. If A ⊆ P and b ∈ P ,

then A <P b and b <P A have the obvious meanings. If P is a linear order of order

type ϕ, we will denote this by otp(P ) = ϕ. We will sometimes abuse notation and

write |ϕ| to denote |P |, where P is an order of type ϕ. If ϕ and τ are linear order

types, we will write ϕ 6 τ to mean that there are linear orders P and Q of type ϕ

and τ , respectively, such that P is a suborder of Q.

If a, b ∈ P and a <P b, then ]a, b[P denotes the open interval {c ∈ ϕ : a <P c <P b}
and [a, b]P denotes the closed interval {c ∈ P : a 6ϕ c 6ϕ b}. [a, b[P and ]a, b]P
are given the obvious meanings. If s is a sequence, then `(s) denotes its length. If

ϕ is an order type, then ϕ∗ denotes the reverse of ϕ. If ϕ is a linear order type

and, for all a ∈ ϕ, τa is a linear order type, then the lexicographic sum
∑
a∈ϕ τa

is the type of the linear order consisting of pairs in X := {〈a, b〉 : a ∈ P ∧ b ∈ Ta}
where 〈P,<P 〉 is an order of type ϕ and, for every a ∈ P , the pair 〈Ta, <Ta〉 is an

order of type τa. If 〈a0, b0〉, 〈a1, b1〉 ∈ X are of this kind, then 〈a0, b0〉 <X 〈a1, b1〉
iff a0 <P a1 or (a0 = a1 and b0 <Ta0

b1). If there is a linear order type τ such that

τa = τ for all a ∈ ϕ, then we may denote the lexicographic sum
∑
a∈ϕ τ as τϕ.

If β is an ordinal and f 6= g are functions with dom(f) = dom(g) = β, then

∆(f, g) is the least α < β such that f(α) 6= g(α). For every sequence of sets

1For κ = ℵ0 this result is probably due to Galvin but has never been published, cf.

[Galv014, Shel015]. Its noticable absence from [Rose982] led the second author to its rediscovery.

Subsequently the first author generalised it to its current form.
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〈Xα : α < β〉 we denote the family of all functions having domain β which, for all

α < β, satisfy f(α) ∈ Xα, by×α<β Xα. If β is an ordinal and, for all α < β, ϕα
is an order type, then

∏
α<β ϕα is given by the lexicographic ordering on×α<β Pα

where Pα has type ϕα for every α < β. More precisely, if f, g ∈×α<β Pα, then

f <lex g iff f(∆(f, g)) <P∆(f,g)
g(∆(f, g)). If there is ϕ such that ϕα = ϕ for

all α < β, we will often write βϕ instead of
∏
α<β ϕα. Finally, for every cardinal

κ, let Qκ denote the lexicographic ordering of the set of sequences s of zeros and

ones of length κ for which there is a largest α < κ such that s(α) = 1. Cf.

[Scho913, Harz005] for discussions of order types and their arithmetic.

For an ordered set X and an order type τ the expression [X]τ denotes the set of

all subsets of X having order type τ . If Y is any set and κ is a cardinal then [X]κ

denotes the collection of all subsets of X having cardinality κ.

If ϕ and τ are linear order types and ν, µ are cardinals, then τ −→ (ϕ)νµ holds

if, whenever P has order type τ and f : [P ]ν → µ, there is a suborder Q of P such

that Q has order type ϕ and f � [Q]ν is constant. If n is a natural number, then

τ −→ (ϕ0, . . . , ϕn)ν holds if, whenever P has order type τ and f : [P ]ν → n + 1,

there is a suborder Q of P and some i 6 n such that Q has order type ϕi and

f � [Q]ν is constant with value i. If n is a natural number and, for all i 6 n, ki is

a natural number, then

τ −→ (ϕ0,0 ∨ . . . ∨ ϕ0,k0
, . . . , ϕn,0 ∨ . . . ∨ ϕn,kn)ν

holds if, whenever P has order type τ and f : [P ]ν → n + 1 there is an i 6 n, an

m 6 ki and a suborder Q of P such that Q has order type ϕi,m and f � [Q]ν is

constant with value i. In all cases of interest to us, ν will be finite.

We will also be discussing square-bracket partition relations, which we recall

here. Suppose ϕ and ψ are linear orders, 1 6 n < ω, and µ 6 ν are cardinals. Then

ψ −→ [ϕ]nν,<µ is the assertion that, whenever P has order type ψ and f : [P ]n → ν,

there is A ∈ [ν]<µ and a suborder Q of P such that Q has order type ϕ and

f
[
[Q]n

]
⊆ A. If κ is a cardinal, ψ −→ [ϕ]n

ν,<κ+ is typically written as ψ −→ [ϕ]nν,κ.

This style of notation for partition problems was first introduced in [ER956]; both

the square-bracket partition relation and the partition relation with alternatives

were introduced in [EHR965]. The latter is was not that widely considered up to

now as it is superfluous whenever all the entries are ordinals, which is still the most

widespread version. To our knowledge, after [EHR965, EMR971, LSW017] this is

only the fourth paper in which this relation is considered.

2. Preliminaries

To state our results in their full generality, we will be interested in the following

notion, which is slightly finer than that given by Definition 1.2.

Definition 2.1. Suppose κ is an infinite, regular cardinal, µ is an infinite cardinal,

ϕ is a linear order type, and P is an order of type ϕ. ϕ is 〈κ, µ〉-scattered (resp.

weakly 〈κ, µ〉-scattered) if there is ν < µ and a sequence of suborders 〈Pζ | ζ < ν〉
of P such that otp(Pζ) is κ-scattered (resp. weakly κ-scattered) for all ζ < ν and⋃
ζ<ν Pζ = P .
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We start by investigating the relationships between these different classes of

linear order types. Suppose κ is an infinite cardinal. The characterisation of the

class of κ-scattered linear order types given by Theorem 1.4 allows one to prove

results about κ-scattered linear order types by induction on the “complexity” of

the type. More precisely, let L be the class of κ-scattered linear order types. Define

Lα inductively for ordinals α as follows. L0 = BLκ. If β is a limit ordinal, then

Lβ =
⋃
α<β Lα. If Lα has been defined, then Lα+1 is the class of all lexicographic

sums
∑
a∈τ ϕa, where τ ∈ BLκ and, for all a ∈ τ , ϕa ∈ Lα. Then

⋃
α∈On Lα = L.

We use this method here to relate the classes of κ-scattered and 〈ℵ0, κ〉-scattered

linear order types when κ is a successor cardinal.

Proposition 2.2. Suppose κ = ν+ and ϕ is a κ-scattered linear order type. Then

ϕ is 〈ℵ0, κ〉-scattered.

Proof. Let P be an order of type ϕ. We proceed by induction on the complexity

of ϕ. First suppose ϕ ∈ BLκ. If |ϕ| < κ, then P is the union of fewer than κ

singletons, so ϕ is certainly 〈ℵ0, κ〉-scattered. If, on the other hand, ϕ is a well-

order or anti-well-order, then ϕ is itself scattered and hence 〈ℵ0, κ〉-scattered.

Next, suppose τ ∈ BLκ, ϕ =
∑
a∈τ ϕa, and each ϕa is 〈ℵ0, κ〉-scattered. Let

T be an order of type τ . For each a ∈ T , let Pa be an order of type ϕa and

let {Pa,ζ : ζ < ν} be a family of suborders of Pa witnessing that ϕa is 〈ℵ0, κ〉-
scattered. We may assume that P consists of the set {〈a, b〉 : a ∈ T ∧ b ∈ Pa}
ordered lexicographically.

Suppose first that |T | < κ. For a ∈ T and ζ < ν, let P ′a,ζ = {a} × Pa,ζ . Then

P ′a,ζ is scattered as a suborder of P , so P =
⋃
a∈T,ζ<ν P

′
a,ζ is the union of fewer

than κ scattered linear orders, so ϕ is 〈ℵ0, κ〉-scattered.

Finally, suppose that T is a well-order or anti-well-order. Then, for each ζ < ν,

Qζ :=
⋃
a∈T P

′
a,ζ is scattered as a suborder of P , so P =

⋃
ζ<ν Qζ and ϕ is 〈ℵ0, κ〉-

scattered. �

For strongly inaccessible κ, the preceding proposition fails. To show this, we

need some useful facts about saturated linear orders. Let µ be an infinite, regular

cardinal. An easy argument shows that there is a µ-saturated linear order of size

µ<µ. In fact, if τ0 is any linear order of size µ<µ, there is a µ-saturated linear order

τ of size µ<µ such that τ0 6 τ . If µ<µ = µ, there is thus a µ-saturated linear order

of size µ. Any two such linear orders are isomorphic. Similarly, if τ is µ-saturated

and ϕ is a linear order of size µ, then ϕ 6 τ . In fact, the following holds.

Lemma 2.3. Suppose τ is a µ-saturated order type and ϕ is an order type of size

µ. Then there are µ-saturated order types {τa : a ∈ ϕ} such that
∑
a∈ϕ τa 6 τ .

Proof. Let P be an order of type ϕ and let {aα : α < µ} be an enumeration of its

elements. Furthermore, let T be an order of type τ . By recursion on α < µ, define

〈b0α, b1α | α < µ〉 such that:

• for all α < µ, b0α, b
1
α ∈ T and b0α <T b

1
α;

• for α, β < µ, if aα <P aβ , then b1α <T b
0
β and, if aβ <P aα, then b1β <T b

0
α.

The construction is straightforward using the fact that τ is µ-saturated. Also, since

τ is µ-saturated, for each α < µ, the interval ]b0α, b
1
α[T is itself a µ-saturated order.
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For all α < µ, let Taα = ]b0α, b
1
α[T , and let τaα = otp(Taα). Then

⋃
a∈P Ta is a

suborder of T of type
∑
a∈ϕ τa. �

Proposition 2.4. Suppose T is a µ-saturated linear order, ν < µ, and {Tα : α < ν}
is a collection of weakly µ-scattered suborders of T . Then

⋃
α<ν Tα 6= T .

Proof. We define sequences 〈Aα | α < ν〉 and 〈Bα | α < ν〉 such that the following

hold:

(1) For all α < ν, Aα, Bα ⊆ Tα and |Aα|, |Bα| < µ (one or both of Aα and Bα
may be empty).

(2) For all α < β < ν, Aα <T Aβ and Bβ <T Bα.

(3) For all α, α′ < ν, Aα < Bα′ .

(4) For all α < ν, ]Aα, Bα[Tα = ∅.
The construction is by recursion, as follows. Suppose β < ν and 〈Aα | α < β〉
and 〈Bα | α < β〉 have been defined. Let Cβ =

⋃
α<β Aα and Dβ =

⋃
α<β Bα.

Note that Cβ <T Dβ . By assumption, Tβ is weakly µ-scattered. In particular,

Tβ ∩ ]Cβ , Dβ [
T

is not µ-saturated. There are thus Aβ , Bβ ⊆ Tβ ∩ ]Cβ , Dβ [
T

such

that |Aβ |, |Bβ | < µ, Aβ <T Bβ , and ]Aβ , Bβ [
Tβ

= ∅. Aβ and Bβ are then as

desired.

At the end of the construction, let A =
⋃
α<ν Aα and B =

⋃
α<ν Bα. Then

|A|, |B| < µ and A <T B. Thus, since T is µ-saturated, there is d ∈ T such that

A <T {d} <T B. Suppose that, for some α < ν, d ∈ Tα. Then d ∈ ]Aα, Bα[Tα ,

which contradicts requirement (4) in the construction. Thus,
⋃
α<ν Tα 6= T . �

This has two corollaries, the first of which is immediate.

Corollary 2.5. Suppose T is a µ-saturated linear order, ν < µ, and c : T → ν.

Then there is a µ-saturated suborder T ′ ⊆ T such that c � T ′ is constant.

Corollary 2.6. Suppose κ is a strongly inaccessible cardinal. Then there is a

κ-scattered linear order that is not 〈ℵ0, κ〉-scattered.

Proof. Let 〈µζ | ζ < κ〉 be an increasing sequence of regular cardinals, cofinal in

κ. For each ζ < κ, let ϕζ be a µζ -saturated linear order type of size µ
<µζ
ζ . Since

κ is strongly inaccessible, |ϕζ | < κ so, in particular, ϕζ is κ-scattered. Let ϕ =∑
ζ<κ ϕζ . Then ϕ is κ-scattered. We claim ϕ is not 〈ℵ0, κ〉-scattered. Otherwise,

there would be ν < κ, an order T of type ϕ, and a family {Tξ : ξ < ν} of suborders

of T such that each Tξ is scattered and T =
⋃
ξ<ν Tξ. Fix ζ < κ such that ν < µζ ,

and let P ⊆ T be a µζ -saturated linear order of size µ
<µζ
ζ . Since P is µζ -saturated,

by Lemma 2.4, P 6=
⋃
ξ<ν(Tξ ∩ P ). This is a contradiction, so ϕ is not 〈ℵ0, κ〉-

scattered. �

On the other hand, it is straightforward to construct even a σ-scattered (i.e.

〈ℵ0,ℵ1〉-scattered) linear order of arbitrarily high density, so, for every regular,

uncountable cardinal κ, there is an 〈ℵ0, κ〉-scattered linear order that is not κ-

scattered. Later results will imply that, for every regular, uncountable κ, there is

a weakly κ-scattered linear order that is not 〈ℵ0, κ〉-scattered. Therefore, we will

obtain the following corollary.
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Corollary 2.7. Suppose κ is a successor cardinal. Let Sκ, Sℵ0,κ, and WSκ be the

classes of κ-scattered, 〈ℵ0, κ〉-scattered, and weakly κ-scattered linear order types,

respectively. Then Sκ ⊆ Sℵ0,κ ⊆ WSκ, and neither of the inclusions is reversible.

We turn now to partition relations. Due to the restrictions identified by Theorem

1.5, we will largely be interested in partition relations of the form τ −→ (ϕ, n)2,

where n < ω. The following Lemma will be very useful.

Lemma 2.8. Suppose ϕ, τ , and ρ are linear order types, n < ω, τ −→ (ϕ, n)2,

and, for all cardinals ν < |ϕ|, ρ −→ (τ)1
ν . Then ρϕ −→ (ϕ, n+ 1)2.

Proof. Let ψ = ρϕ, let 〈R,<R〉 be an ordered set of type ρ and 〈P,<P 〉 an ordered

set of type ϕ. Let f : [P × R]2 → 2. We will show that there is either a subset of

P ×R having order type ϕ under the lexicographic order that is 0-homogeneous for

f or a subset of size n + 1 that is 1-homogeneous for f . Enumerate the elements

of P as 〈aζ : ζ < |P |〉. We will attempt to construct a sequence 〈bζ : ζ < |ϕ|〉 from

R such that H := {〈aζ , bζ〉 : ζ < |P |} is 0-homogeneous for f . Since the order type

of H under the lexicographic ordering is ϕ, a successful construction will establish

the Lemma for this particular coloring..

We proceed by recursion on ζ < |P |. To start, let b0 be an arbitrary element of

R. Suppose ζ < |P | and bξ has been defined for ξ < ζ so that {〈aξ, bξ〉 : ξ < ζ} is 0-

homogeneous for f . If there is b ∈ R such that, for all ξ < ζ, f({〈aξ, bξ〉, 〈aζ , b〉}) =

0, then let bζ be such a b. Suppose there is no such b. Define a function g : R→ ζ

by letting, for all b ∈ R, g(b) be least such that f({〈ag(b), bg(b)〉, 〈aζ , b〉}) = 1. Since

ρ −→ (τ)1
|ζ|, there is ξ < ζ and B ⊆ R of order type τ such that B is ξ-homogeneous

for g. Consider f � [{aζ}×B]2. Since τ −→ (ϕ, n)2, we either have a subset B0 ⊆ B
of order type ϕ such that {aζ} × B0 is 0-homogeneous for f or a subset B1 ⊆ B

of size n such that {aζ} ×B1 is 1-homogeneous for f . In the former case, we have

found a 0-homogeneous subset of P × R of order type ϕ and are thus finished. In

the latter case, {〈aξ, bξ〉} ∪ ({aζ}×B1) is a 1-homogeneous subset of P ×R of size

n+ 1, and we are again done.

Therefore, if our attempted construction of H fails, it is necessarily because we

have found either a 0-homogeneous set of order type ϕ or a 1-homogeneous of size

n+ 1. In any outcome, we have verified the Lemma. �

We now easily have the following.

Theorem 2.9. Suppose κ is an infinite, regular cardinal and ϕ is a linear order type

of size κ. Then, for all n < ω and all κ-saturated linear order types τ , τ −→ (ϕ, n)2.

Proof. We proceed by induction on n simultaneously for all κ-saturated linear order

types τ . If n ∈ {0, 1, 2}, then trivially ϕ −→ (ϕ, n)2, so certainly τ −→ (ϕ, n)2

for all κ-saturated τ . Thus, suppose 2 6 n < ω and we have proven the theorem

for n. Fix a κ-saturated type τ . By Lemma 2.3, we can find κ-saturated order

types {τa : a ∈ ϕ} such that
∑
a∈ϕ τa 6 τ . By Corollary 2.5, the assumption that

ψ −→ (ϕ, n)2 for all κ-saturated ψ, and the argument from Lemma 2.8, we have∑
a∈ϕ τa −→ (ϕ, n+ 1)2, so also τ −→ (ϕ, n+ 1)2. �
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3. Weakly scattered linear orders

In this section, we establish positive partition relations for the class of weakly

κ-scattered linear orders under the assumption κ<κ = κ. Our aim is to prove the

following theorem.

Theorem 3.1. Suppose κ<κ = κ and ϕ is a weakly κ-scattered linear order type

of size at most κ. Then there is a weakly κ-scattered linear order type τ of size at

most κ such that, for all n < ω, τ −→ (ϕ, n)2.

Fix for the rest of the section a cardinal κ such that κ<κ = κ. The following

lemma will be useful.

Lemma 3.2. Suppose ϕ is a linear order type and ν is a cardinal. Then νϕ −→
(ϕ)1

ν .

Proof. Let P be an ordered set of type ϕ, let F : νP → ν, and suppose for sake of

contradiction that there is no homogeneous set of order type ϕ in the lexicographic

order. By recursion on α 6 ν, we will construct fα ∈ αP such that, for all

α < β 6 ν:

(1) fβ � α = fα;

(2) for all g ∈ νP such that g � (α+ 1) = fα+1, F (g) 6= α.

Suppose β 6 ν and we have constructed fα for all α < β. If β is a limit ordinal, then

easily fβ =
⋃
α<β fα satisfies our requirements. Thus, suppose β = α+ 1. Suppose

that, for all a ∈ P , there is g ∈ νP such that g � α = fα, g(α) = a, and F (g) = α.

Choose such a ga for each a ∈ P . Then {ga : a ∈ P} is an α-monochromatic set

for F of order type ϕ, contradicting our assumptions. Thus, there is an a ∈ P such

that, for all g ∈ νP such that g � α = fα and g(α) = a, we have F (g) 6= α. Choose

such an a, and define fβ by fβ � α = fα and fβ(α) = a.

At the end of the recursion, we have constructed fν ∈ νP . Let α = F (fν). Then

fν contradicts requirement (2) from the construction applied to α and ν. Thus,
νϕ −→ (ϕ)1

ν . �

Lemma 3.3. Suppose P0 and P1 are weakly κ-scattered linearly ordered sets. Then

〈P0 × P1, <lex〉 is weakly κ-scattered.

Proof. Suppose for sake of contradiction that C ⊆ P0 × P1 is κ-saturated. Let

T0 = {a ∈ P0 : there is b ∈ P1 such that 〈a, b〉 ∈ C}.

For a ∈ T0, let T1,a = {b ∈ P1 : 〈a, b〉 ∈ C}. The proof now splits into two cases.

Case 1: for all a ∈ T0, |T1,a| = 1. In this case, we must have |T0| > 1. Thus,

choose a0 <P0
a1, both in T0. Since P0 is weakly κ-scattered, T0 ∩ ]a0, a1[P0

is

not κ-saturated. Thus, there are A0, A1 ⊆ T0 ∩ ]a0, a1[P0
such that |A0|, |A1| < κ,

A0 <P0
A1, and there is no c ∈ T0 such that A0 <P0

c <P0
< A1. For each

a ∈ {a0, a1} ∪A0 ∪A1, let ba be the unique b ∈ P1 such that 〈a, b〉 ∈ C. For i < 2,

let Bi = {〈a, ba〉 : a ∈ {ai} ∪Ai}. Then Bi ⊆ C, |Bi| < κ, B0 <lex B1, and there

is no c ∈ C such that B0 <lex c <lex B1, contradicting the assumption that C is

κ-saturated.
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Case 2: there is a ∈ T0 such that |T1,a| > 1. Choose such an a ∈ T0, and

fix b0 <P1
b1, both in T1,a. Since P1 is weakly κ-scattered, T1,a ∩ ]b0, b1[P1

is not

κ-saturated. Thus, there are B0, B1 ⊆ T1,a∩ ]b0, b1[P1
such that |B0|, |B1| < κ and

B0 <P1
B1, and there is no c ∈ T1,a such that B0 <P1

c <P1
B1. For i < 2, let

Ai = {〈a, b〉 : b ∈ {bi} ∪Bi}. As in Case 1, A0 and A1 contradict the assumption

that C is κ-saturated. �

Lemma 3.4. Suppose that β < κ and, for all α < β, ϕα is weakly κ-scattered.

Then
∏
α<β ϕα is weakly κ-scattered.

Proof. The proof is by induction on β. For β ∈ {0, 1}, the Lemma is trivial. For the

successor step of the induction, simply apply the induction hypothesis and Lemma

3.3. Thus, assume γ < κ is a limit ordinal, ϕα is a weakly κ-scattered linear order

type for all α < γ and, for all β < γ,
∏
α<β ϕα is weakly κ-scattered. For all α < γ,

let 〈Pα, <α〉 be an ordered set of type ϕα. For notational simplicity, for β 6 γ, let

Tβ =×α<β Pα. Suppose for sake of contradiction that R ⊆ Tγ is κ-saturated. For

f ∈ R, let

D+(f) :={α < γ : ∃g ∈ R(∆(f, g) = α ∧ f <R g)};

D−(f) :={α < γ : ∃g ∈ R(∆(f, g) = α ∧ g <R f)}.

There are now three cases to consider.

Case 1: there is f ∈ R such that D+(f) is unbounded in γ. For α ∈
D+(f), fix a gα ∈ R such that ∆(f, gα) = α and f <R g. Let A = {f} and

B = {gα : α ∈ D+(f)}. Then A,B ⊆ R, |A|, |B| < κ, A <R B, and there is no

h ∈ R such that A <R h <R B, contradicting the assumption that R is κ-saturated.

Case 2: there is f ∈ R such that D−(f) is unbounded in γ. This is

symmetric to Case 1.

Case 3: for all f ∈ R, there is β < γ such that D+(f) ∪D−(f) ⊆ β. For

all f ∈ R, choose βf such that D+(f) ∪ D−(f) ⊆ βf . By Corollary 2.5, there is

β < γ and a κ-saturated S ⊆ R such that, for all f ∈ S, βf = β. Then, for all

f, g ∈ S, ∆(f, g) < β. In particular, f � β 6= g � β. Let Sβ = {f � β : f ∈ S}. Then

Sβ is a κ-saturated suborder of Tβ , contradicting the inductive hypothesis that Tβ
is weakly κ-scattered. �

We are now ready to prove the main result of this section.

Proof of Theorem 3.1. For n < ω, we will find a weakly κ-scattered order of size κ,

τn, such that τn −→ (ϕ, n)2. Then τ =
∑
n<ω τn will be as desired.

We proceed by induction on n < ω. For n ∈ {0, 1, 2}, we may simply set τn = ϕ.

Suppose 2 6 n < ω and τn has been found. Suppose first that κ is a successor

cardinal, say κ = ν+. In this case, let τn+1 = ντn. If, on the other hand, κ is a

limit ordinal, let τn+1 =
∑
ν<κ

ντn, where the sum is over all cardinals ν < κ. In

either case, by Lemma 3.4, τn+1 is weakly κ-saturated. Also, by Lemma 3.2, for

all ν < κ, τn+1 −→ (τn)1
ν . Therefore, by Lemma 2.8, τn+1 −→ (ϕ, n+ 1)2. �

Remark 3.5. Note that, for the case κ = ν+, for 2 6 n < ω, the value for τn
obtained in the above proof is ν

n−2
ϕ. In particular, we can take τ to be νωϕ.
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4. A negative partition relation from a small unbounding number

and the stick-principle

We define:

|•(κ) := min {|X| : X ⊆ [κ+]κ ∧ ∀y ∈ [κ+]κ
+
∃x ∈ X (x ⊆ y)}.(1)

Remark 4.1. |•(κ) is called |•(κ, κ+) by Brendle in [Bren006], generalising |•, which

was introduced by Fuchino, Shelah and Soukup in [FSS997] and corresponds to

our notion of |•(ℵ0). Fuchino, Shelah and Soukup had in turn generalised the stick

principle |• which can in hindsight be read as a shorthand for |• = ℵ1. The stick

principle was introduced by Broverman, Ginsburg, Kunen & Tall in [BGKT978,

page 1311]. |•(κ) as defined here should not be confused with |•λ as defined in

[FSS997] or |•δ as defined in [Chen].

For an infinite cardinal κ, we let bκ and dκ denote, respectively, the unbounding

number and the dominating number at κ as they are defined by Cummings and

Shelah in [CS995]. Here, b and d are shorthands for bℵ0
and dℵ0

, respectively.

In [EH971, Corollary 1, implicitly], ω1ω 6−→(ω1ω, 3)2 is shown to follow from the

Continuum Hypothesis. In [Taka987], Takahashi shows that the same consequence

follows already from d = |• = ℵ1. In [Lars998], the hypothesis d = |• = ℵ1 is

weakened further and the result is generalised by Jean Larson, who shows that,

for a regular cardinal κ, the hypothesis dκ = κ+ implies κ+κ 6−→(κ+κ, 3)2 . We

provide here an improvement in a different direction.

Theorem 4.2. Suppose that κ is regular and λ = κ+ = bκ = |•(κ). Then

λκ 6−→(λκ, 3)2.

Proof. Assume towards a contradiction that the statement of the Theorem were

wrong, i.e. that bκ = |•(κ) = λ and λκ −→ (λκ, 3)2. Let |•(κ) = λ be witnessed

by a family D = {d(ρ) : ρ ∈ λ \ κ} ⊆ [λ]κ, and let bκ = λ be witnessed by a

family U = {uρ : ρ < λ} of increasing sequences of ordinals below κ having the

property that for all {ξ, ρ}< ∈ [λ]2 the set {ι < κ : uξ(ι) > uρ(ι)} has cardinality

less than κ. We may also assume for notational convenience that d(ρ) ⊆ ρ for all

ρ ∈ λ \κ. Finally, let 〈gγ : κ 6 γ < λ〉 be a sequence of bijections gγ : κ←→ γ. We

are now going to define a graph E ⊆ [λκ]2 by transfinite induction on the set of

ordinals less than λ. We are going to have E =
⋃
ρ<λEρ. In step ρ we will define

Eρ := E ∩ [{λν + ξ : ξ < ρ ∧ ν < κ}]2. The following is going to hold in every step

ρ of the induction:

∀ξ < ρ∀ι, ν < κ
(
|
{
ϑ < ξ

∣∣ {λι+ ϑ, λν + ξ} ∈ E
}
| < κ∧(2)

∀ϑ < ξ({λι+ ξ, λν + ϑ} ∈ E ⇒ ι < ν)
)

Let E0 be the empty set. For positive limit ordinals ρ < λ, define Eρ :=
⋃
ξ<ρEξ,

and for all ordinals ρ < λ let Eρ+1 := Eρ ∪Dρ, where Dρ is constructed as follows.

We inductively define a sequence 〈Cκρ+ι : ι < κ〉 of sets Cκρ+ι ∈ [ρ]<κ as follows:

Let ζ be a ordinal less than κ and suppose that Cξ has been defined for all ξ < κρ+ζ.
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We now define Cκρ+ζ by letting

Cκρ+ζ :=
{

min
(
d
(
ggρ(ι)(µ)

) ∖ ⋃
ϑ∈

⋃
ν<ζ Cκρ+ν

Cκϑ+ζ

) ∣∣∣ ι < ζ ∧ µ < uρ(ζ)
}

(3)

Finally we set Dρ :=
{
{λι + ρ, λν + ξ}

∣∣ {ι, ν} ⊆ κ ∧ ι < ν ∧ ξ ∈ Cκρ+ν
}

. This

completes the construction of E.

Now suppose that T = {λι+ ρ, λν+ ξ, λµ+ϑ} ∈ [λκ]3. If [T ]2 ⊆ E then w.l.o.g.

ι < ν < µ and ϑ < ξ < ρ. Then ξ ∈ Cκρ+ν while ϑ ∈ Cκξ+µ∩Cκρ+µ, contradicting

ν < µ in conjunction with (3). So by λκ −→ (λκ, 3)2 there must be an X ∈ [λκ]λκ

such that [X]2 ⊆ [λκ]2 \ E. Let A :=
{
ι < κ

∣∣ |{ξ < λ : λι+ ξ ∈ X}| = λ
}

and

ν := min(A). Furthermore, for all ι ∈ A, let γι ∈ λ \ κ be such that λι + ϑ ∈ X
for all ϑ ∈ d(γι). Set ξ := supι<κ γι and define a sequence of natural numbers

〈σι : ι < κ〉 by setting σι := min(A \ ι). We are going to define a function f from

κ into itself:

f : κ −→ κ,(4)

ι 7−→ max
(
σι, g

−1
ξ (γσι)

)
.

Now let ρ ∈ λ \ ξ be such that λν + ρ ∈ X and uρ is unbounded over f . Set

ι := g−1
ρ (ξ) and let τ ∈ κ \

(
1 + max(ι, ν)

)
be such that uρ(τ) > f(τ). Let ζ = στ .

By definition of f , we have ζ < uρ(τ). Now consider (3) with µ := g−1
ξ (γζ). We

have ι < τ 6 ζ = στ ∈ A, and hence

µ = g−1
ξ (γζ) 6 max

(
ζ, g−1

ξ (γζ)
)

= max
(
στ , g

−1
ξ (γστ )

)
= f(τ) < uρ(τ) < uρ(ζ).

(5)

Finally we have gρ(ι) = ξ and A 3 ν < τ 6 ζ ∈ A. Then there is a ϑ ∈
d
(
ggρ(ι)(µ)

)
= d(γζ) with ϑ ∈ Cκρ+ζ so we get that {λν + ρ, λζ + ϑ} ∈ Dρ ⊆

Eρ+1 ⊆ E, contradicting the assumption that [X]2 ⊆ [λκ]2 \ E. �

Observe that if n is a natural number, ι and ξ are ordinals, µ is a cardinal,

α ∈ µ+ \ µ and E is an (n + 1)-hypergraph on ιµ which witnesses ιµ 6−→(ιµ, ξ)n,

then for any bijection f : α↔ µ witnessing α < µ+ the n-hypergraph{
{ιγ0 + δ0, . . . , ιγn + δn}

∣∣ {ιγk + f(δk) : k 6 n} ∈ E
}

witnesses ια 6−→(ια, ξ)n. We therefore obtain the following corollary.

Corollary 4.3. If κ is regular and λ = κ+ = bκ = |•(κ), then α 6−→(λκ, 3)2 for all

α < λ2.

In an upcoming paper of William Chen, Shimon Garti and the second author

the same hypothesis is shown to imply λ2 6−→(λκ, 4)2 as well.

Recall that ♣, introduced in [Osta976], implies |• = ℵ1. To see that this is the

case, consider a sequence witessing the truth of ♣. Its range then witnesses the

truth of |•. In [FSS997], Fuchino, Shelah and Soukup show that ♣ is consistent

with cov(M) = 2ℵ0 = ℵ2. Brendle [Bren017] points out that in their model the

unbounding number is small as well. As cov(M) 6 d, we have

ZFC +“ℵ1 = |• = b < d = ℵ2” is consistent,
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which shows that our result does in fact provide information not given by Larson’s

result.

Brendle proves in [Bren006] that ♣ is consistent with cov(N ) = ℵ2. In the same

paper in a footnote on page 45 he also gives a sketch of how to extract a proof of

the consistency of ♣ with add(M) = ℵ2 from [DS999]. Before all this, Truss, in

[Trus983], shows limitations to these pursuits by proving—in effect—that if |• = ℵ1,

then min
(
cov(M), cov(N )

)
= ℵ1.

5. Scattered linear orders

In this section, we deal with κ-scattered linear orders for infinite, regular cardi-

nals κ. We first prove a generalisation of the Milner-Rado paradox [MR965] to the

class of κ-scattered linear orders of size κ. We call to your attention the classical

statement of the paradox.

Paradox 5.1 ([MR965, Theorem 5]). Suppose κ is an infinite cardinal and α < κ+.

Then α can be written as
⋃
n<ωXn where, for all n < ω, otp(Xn) < κn+1.

A related statement can be found in a paper by Komjáth and Shelah:

Lemma 5.2 ([KS003, Lemma 1]). Suppose ϕ is a scattered order type and S is a

linear order of type ϕ. Then there is f : S → ω such that, for all n < ω, f−1(n) has

no subset of order type (ω∗+ω)n. Therefore, ϕ 6−→(ψ)1
ℵ0

where ψ =
∑
n<ω(ω∗+ω)n.

Fix infinite cardinals κ and µ such that cof(µ) > κ. Let Bκ,µ be the class of

linear order types ϕ such that either |ϕ| < κ or ϕ is a well-order or anti-well-order

of size 6 µ. The following structure theorem for κ-scattered linear orders of size at

most µ follows from Theorem 1.4.

Theorem 5.3 ([ABC+012, Corollary 3.11]). The class of κ-scattered linear orders

of size at most µ is the smallest class of orders containing Bκ,µ which is closed

under lexicographic sums with index set in Bκ,µ.

The following Lemma has a straightforward proof and can be found, for example,

in [LH014, Lemma 5].

Lemma 5.4. Suppose κ is an infinite cardinal, ν < cof(κ), and m < ω. Suppose

that, for each ζ < ν, Xζ is a set of ordinals such that otp(Xζ) < κm. Let X =⋃
ζ<ν Xζ . Then otp(X) < κm.

A close relative is the following Lemma.

Lemma 5.5. Suppose α is an indecomposable ordinal, ν < cof(α), and m < ω.

Suppose that X is an ordered set, X =
⋃
ζ<ν Xζ , and, for each ζ < ν, otp(Xζ) 6>

(αα∗)m. Then otp(X) 6> (αα∗)m.

Proof. Suppose towards a contradiction that the Lemma were false, and let m be

the largest natural number for which it holds. So otp(X) > (αα∗)1+m. Let Y be

a set of order type αα∗ and let f : 1+mY −→ X be an embedding preserving the

lexicographic ordering on 1+mY . For y ∈ Y , define

Zy := {x ∈ X : ∃~y ∈ mY (f(y, ~y) 6 x) ∧ ∃~y ∈ mY (x 6 f(y, ~y))},(6)
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and let Zy,ζ := Zy ∩Xζ .
Note that for any y, z ∈ Y with y < z and any x0 ∈ Zy and x1 ∈ Zz we have

x0 < x1. Clearly, for every y ∈ Y we have Zy =
⋃
ζ<ν Zy,ζ , and f � ({y} × mY )

yields an order-preserving embedding of mY into Zy. Now we may use the inductive

hypothesis and conclude that for every y ∈ Y there is a ζy < ν and an order-

preserving embedding fy : mY −→ Zy,ζy . Considering both the indecomposability

and the cofinality of α twice, we conclude that there is an A ∈ [Y ]αα
∗

and a ζ < ν

such that ζa = ζ for all a ∈ A. Then the function

g : A×mY −→ X(7)

〈a, ~y〉 7−→ fa(~y)

is an order-preserving embedding of a set of order type (αα∗)1+m into Xζ , a con-

tradiction. �

An easy variation yields the fact that Lemma 5.5 remains true if all instances of

αα∗ are replaced by α∗α. We are now ready to state and prove our generalisation

of Theorem 5.1.

Theorem 5.6. Let κ, µ be infinite regular cardinals such that κ 6 µ, and suppose ϕ

is a 〈κ,max(ℵ1, κ)〉-scattered linear order type of size at most µ. Then every order

P of type ϕ can be written as a union P =
⋃
n<ω Pn such that there is no n < ω

for which Pn has a suborder of type µn, (µn)∗, (κκ∗)n, or (κ∗κ)n.

Proof. We first prove the theorem assuming ϕ is a κ-scattered linear order type of

size at most µ. We proceed by induction on the complexity of ϕ. If ϕ ∈ Bκ,µ, then

the statement of the theorem is either trivial (if |ϕ| < κ) or is trivially implied by

the Milner-Rado paradox (if ϕ is a well-order or anti-well-order). It thus suffices to

prove that, if ϕ =
∑
a∈τ ρa, where τ and ρa satisfy the statement of the theorem

for all a ∈ τ , then ϕ satisfies the statement of the theorem. Fix such a ϕ.

Let T be an order of type τ , and, for a ∈ T , let Ra be an order of type ρa.

Let P = {〈a, b〉 : a ∈ T ∧ b ∈ Ra} be equipped with the lexicographic order, and

note that otp(P ) = ϕ. Fix f : T → ω such that, for all n < ω, f−1(n) does not

contain a suborder of type µn, (µn)∗, (κκ∗)n, or (κ∗κ)n. Similarly, for all a ∈ T ,

fix fa : Ra → ω such that, for all n < ω, f−1
a (n) does not contain a suborder of

type µn, (µn)∗, (κκ∗)n, or (κ∗κ)n. Fix an injective function π : ω × ω → ω such

that, for all m,n < ω, π(m,n) > m+ n+ 1. Define g : P → ω by letting, for a ∈ T
and b ∈ Ra, g(a, b) = π

(
f(a), fa(b)

)
. We claim that, for all i < ω, g−1(i) does not

contain a suborder of type µi, (µi)
∗
, (κκ∗)i, or (κ∗κ)i.

Suppose for sake of contradiction that there is an i < ω such that g−1(i) contains

a suborder of type µi. There must be m,n < ω such that π(m,n) = i, as g−1(i) is

empty for all other values of i. Let P ′ ⊆ g−1(i) have type µi, and let T ′ = {a ∈ T :

∃b ∈ Ra(〈a, b〉 ∈ P ′)}. T ′ is then a well-ordered subset of f−1(m), so otp(T ′) < µm.

For each a ∈ T ′, let R′a = {b ∈ Ra : 〈a, b〉 ∈ P ′}. R′a is a well-ordered subset of

f−1
a (n), so otp(R′a) < µn. Moreover, P ′ =

∑
a∈T ′ R

′
a, so otp(P ′) < (µn) · (µm) =

µm+n < µi. Contradiction.

The argument for (µi)
∗

is similar.
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Now suppose that there is an i < ω such that g−1(i) contains a suborder of

type (κκ∗)i. Again there are natural numbers m and n such that π(m,n) = i.

Let P ′ ⊆ g−1(i) have type (κκ∗)i. As before, we may define T ′ := {a ∈ T :

∃b ∈ Ra(〈a, b〉 ∈ P ′}) and, for each a ∈ T ′, R′a := {b ∈ Ra : 〈a, b〉 ∈ P ′}. We then

have T ′ 6> (κκ∗)m and otp(R′a) 6> (κκ∗)n. Now let Q be a linear order of type

(κκ∗)i−n and, for all q ∈ Q, let Pq ⊆ P ′ be a suborder of type (κκ∗)n such that,

for all p < q in Q, Pp < Pq. Consider the function f : Q −→ POW(T ′) given by

q 7−→ {a ∈ T ′ : ∃b ∈ Ra(〈a, b〉 ∈ Pq)}. Clearly, for every q ∈ Q, the set f(Q) is an

interval in T ′. Moreover for any p, q, r ∈ Q with p < q < r we have f(p)∩ f(r) = ∅,
as f(p) ∩ f(r) ⊆ f(q) and (κκ∗)n 66 otp(R′a) for every a ∈ f(p) ∩ f(q) ∩ f(r).

Consider a partition {Q0, Q1} of Q having the property that for both i < 2 and

p, q ∈ Qi with p < q there is always an r ∈ ]p, q[<Q
∩ Q1−i. Let c be a choice

function for f
[
Q0
]
. Then otp(Q0) = (κκ∗)i−n > (κκ∗)m and c◦ f is an embedding

of Q0 into T ′. Contradiction.

The argument for (κ∗κ)i is similar.

This finishes the proof for the special case of κ-scattered linear orders of car-

dinality at most µ. Now we continue the proof to prove the general case stated

above.

Fix a 〈κ,max(ℵ1, κ)〉-scattered linear order type ϕ of size at most µ. Let P be

an order of type ϕ, let ν < max(ℵ1, κ) be a cardinal, and, for each ζ < ν, let Pζ
be a κ-scattered suborder of P such that P =

⋃
ζ<ν Pζ . Without loss of generality,

we may assume that the Pζ ’s are pairwise disjoint. For each ζ < ν, let fζ : Pζ → ω

be such that, for all n < ω, f−1
ζ (n) does not contain a suborder of type µn, (µn)∗,

(κκ∗)n, or (κ∗κ)n.

Now we distinguish two non-exclusive cases which cover the issue at hand:

First, assume that κ is uncountable. For each n < ω, let f−1(n) :=
⋃
ζ<ν f

−1
ζ (n).

Then ν < κ so, by Lemmas 5.4 and 5.5, for all n < ω, f−1(n) does not contain a

suborder of type µn, (µn)∗, (κκ∗)n, or (κ∗κ)n.

Now assume that κ < ℵ2. Then ν 6 ℵ0. Let ι : ω× ν −→ ω be an injection such

that for all m < ω and n < ν one has ι(m,n) > m. For each a ∈ P , let ζa be the

unique ζ < ν such that a ∈ Pζ , and let f(a) := ι
(
fζa(a), ζa

)
. Clearly, for all n < ω,

f−1(n) does not contain a suborder of type µn, (µn)∗, (κκ∗)n, or (κ∗κ)n. �

For κ = ℵ0 and µ = ℵ1 this yields the following corollary.

Corollary 5.7. Suppose ϕ is a σ-scattered linear order type of size at most ℵ1.

Then every order P of type ϕ can be written as a union P =
⋃
n<ω Pn such that

there is no n < ω for which Pn has a suborder of type ωn1 , (ω
n
1 )∗, (ωω∗)n, or (ω∗ω)n.

We can now complete the proof of Corollary 2.7.

Proposition 5.8. Suppose κ is a regular, uncountable cardinal. Then there is a

linear order of size κ that is weakly κ-scattered but not 〈κ, κ〉-scattered.

Proof. Suppose first that κℵ0 = κ. Let δ = κω (ordinal exponentiation), and let

ϕ = ωδ. Since κℵ0 = κ, |ϕ| = κ. By Lemma 3.4, ϕ is weakly κ-scattered. By

Lemma 3.2, ϕ −→ (κω)1
ℵ0

. Therefore, by Theorem 5.6, ϕ is not 〈κ, κ〉-scattered.
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Next, suppose that κℵ0 > κ. Then there is a regular µ < κ such that µℵ0 > κ.

Let P be a suborder of ωµ of size κ. By Lemma 3.4, P is weakly κ-scattered. Also,
ωµ has a dense suborder of size µ, namely the set of f ∈ ωµ such that f(n) = 0

for all but finitely many n < ω. Thus, P does not contain a suborder of type κ or

κ∗. Suppose for sake of contradiction that P =
⋃
ζ<ν Pζ , where ν < κ and Pζ is

κ-scattered for all ζ < ν. Since |P | = κ, there is ζ < ν such that |Pζ | = κ. But

Theorem 5.3 implies that every κ-scattered linear order of size κ contains either a

suborder of type κ or a suborder of type κ∗, which is a contradiction. �

We next use Theorem 5.6 to give a negative partition relation for 〈ℵ1,ℵ1〉-
scattered linear order types of size at most ℵ1, assuming ω1ω 6−→(ω1ω, 3)2.

Theorem 5.9. Assume that ω1ω 6−→(ω1ω, 3)2, and let τ be an 〈ℵ1,ℵ1〉-scattered

linear order type of size at most ℵ1. Then τ 6−→(ωω1 ∨ (ωω1 )∗, 3)2.

Proof. Let T be a linear order of type τ , and use Theorem 5.6 to write T as a

union T =
⋃
n<ω Tn such that, for all n < ω, ωω1 , (ω

ω
1 )∗ 66 otp(Tn). Then use

ω1ω 6−→(ω1ω, 3)2 to find E ⊆ [T ]2 such that [X]2 6⊆ E for all X ∈ [T ]3 and

[Y ]2 6⊆ [T ]2 \ E for all Y ⊆ τ such that |{n < ω : |Y ∩ Tn| = ℵ1}| = ℵ0. It is

easily verified that the function f : [T ]2 → 2 defined by f(a, b) = 0 iff {a, b} 6∈ E
witnesses the negative partition relation. �

Since ωω1 and (ωω1 )∗ are themselves scattered, and therefore ℵ1-scattered, order

types of size ℵ1, Theorem 5.9, when compared with Theorem 3.1, provides an

instance in which the classes of ℵ1-scattered or 〈ℵ1,ℵ1〉-scattered linear orders

behave quite differently from the class of weakly ℵ1-scattered linear orders. By

examining the proof of Theorem 5.9, it is evident that ℵ1 can be replaced by an

arbitrary regular, uncountable κ provided that κω 6−→(κω, 3)2. This hypothesis

does not always hold. In [SS987], Shelah and Stanley prove that, if κ > ω is regular

and, for all µ < κ, µℵ0 < κ, then κω −→ (κω, n)2 for all n < ω. However, in

the same paper, they show that, if κ > ℵ1 is regular, then there is a ccc forcing

extension in which κω 6−→(κω, 3)2. We thus easily obtain the following corollary.

Corollary 5.10. Suppose that κ > ℵ1 is regular. Then there is a ccc forcing

extension in which there is a κ-scattered linear order type ϕ of size κ such that, for

all 〈κ, κ〉-scattered linear order types τ of size κ, τ 6−→(ϕ, 3)2.

We are also able to prove a slightly recondite theorem which, assuming ω1ω 6−→(ω1ω, 3)2,

provides a stark contrast to Theorem 2.9 for κ = ℵ0. It is strongly inspired by

[EH971, §2, Corollary 2] and features six different order types ϕ of size ℵ1 such

that either ϕ or ϕ∗ has one of the following three characteristics of smallness:

(1) It is well-ordered.

(2) It is both scattered and the product of ω1 with a countable order-type.

(3) Every proper initial segment is countable.

In (2), note that the multiplication of order types fails to be commutative in gen-

eral. Also note that the sole order types satisfying any two of the above conditions

are ordinals smaller than ω2
1 .
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Theorem 5.11. Assume ω1ω 6−→(ω1ω, 3)2, let τ be a σ-scattered linear order type

of size at most ℵ1, and let ρ be an order type such that (ωω∗)n 6 ρ for all natural

numbers n. Then

τ 6−→
(
ωω1 ∨ (ωω1 )∗ ∨ ω1ρ ∨ ω

∗
1ρ ∨ ρω1 ∨ ρω

∗
1 , 3
)2
.

Proof. The first part of the proof follows the line of the proof of Theorem 5.9.

Let T be an order of type τ , and use Corollary 5.7 to write T as a union T =⋃
n<ω Tn such that, for all n < ω, Tn does not contain a suborder of type ωω1 , (ω

ω
1 )∗,

or (ωω∗)n. Use ω1ω 6−→(ω1ω, 3)2 to find E ⊆ [T ]2 such that [X]2 6⊆ E for all X ∈
[T ]3 and [Y ]2 6⊆ [T ]2 \ E for all Y ⊆ T such that |{n < ω : |Y ∩ Tn| = ℵ1}| = ℵ0.

Define c : [T ]2 → 2 by c(a, b) = 0 iff {a, b} /∈ E. We show that c witnesses

the negative partition relation, i.e. that, for every suborder Y of T whose order

type appears in the first coordinate of the partition relation, [Y ]2 ∩ E 6= ∅. For

Y ∈ [T ]ω
ω
1 ∪ [T ](ω

ω
1 )∗ , this follows as in the proof of Theorem 5.9.

Now let ρ be an order-type such that (ωω∗)n 6 ρ for all natural numbers n and let

R be an order of type ρ. First assume that Y ∈ [T ]ω1ρ. Let f : 〈R×ω1, <lex〉 ←→ Y

be order-preserving. By the pigeonhole principle we may assume w.l.o.g. that for

all r ∈ R there is an n < ω such that f
[
{r} × ω1

]
⊆ Tn. Since, for all n < ω,

(ωω∗)n 6 ρ and (ωω∗)n 66 otp(
⋃
k<n Tk), it follows that for all natural numbers n

there is an r ∈ R and a k ∈ ]n, ω[< such that f
[
{r}×ω1

]
⊆ Tk. This easily implies

that [Y ]2 ∩ E 6= ∅.
Next, assume that Y ∈ [T ]ρω1 . Let f : 〈ω1×R,<lex〉 ←→ Y be order-preserving.

We distinguish two cases:

First assume that there are α < ω1 and n < ω such that (ωω∗)n 6 otp{r ∈ R :

f(α, r) ∈
⋃
k<n Tk}. But then (ωω∗)n 6 otp(

⋃
k<n Tk) and so by Lemma 5.5 there

is a k < n with (ωω∗)n 6 otp(Tk), a contradiction.

Next, assume that for all α < ω1 and n < ω we have

(ωω∗)n 66 otp{r ∈ R : f(α, r) ∈
⋃
k<n

Tk}.

This means that, in particular, f
[
{α} × R

]
6⊆
⋃
k<n Tk. Using the pigeonhole

principle, let X0 ∈ [ω1]ω1 , r0 ∈ R, and n0 < ω be such that f(α, r0) ∈ Tn0 for all

α ∈ X0. Now, inductively, for every k < ω, choose Xk+1 ∈ [Xk]ω1 , rk+1 ∈ R, and

nk+1 ∈ ]nk, ω[< such that f(α, rk+1) ∈ Tnk+1
for all α ∈ Xk+1.

At the end of the inductive construction let Z := {f(α, ri) : i < ω ∧ α ∈ Xi}.
Then Z ⊆ Y and, clearly, |{n < ω : |Z ∩ Tn| = ℵ1}| = ℵ0, so E ∩ [Y ]2 6= ∅.

The arguments for sets of order-type ρω∗1 and ω∗1ρ are analogous, so this finishes

the proof of the Theorem. �

Corollary 4.3 yields the following (cf. Remark 1.7):

Corollary 5.12. Assume ω1ω 6−→(ω1ω, 3)2, and let τ be a σ-scattered linear order

type of size at most ℵ1. Then

τ 6−→
(
ωω1 ∨ (ωω1 )∗ ∨ ω1(ωω∗)ω ∨ ω∗1(ωω∗)ω ∨ (ωω∗)ωω1 ∨ (ωω∗)ωω∗1 , 3

)2
.(8)
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6. Generalizing a result of Komjáth and Shelah

In this section, we generalise the following result of Komjáth and Shelah from

[KS003] about partitioning scattered linear orders.

Theorem 6.1. If ϕ is a scattered linear order and ν is a cardinal, then there is a

scattered linear order ψ such that ψ −→ [ϕ]1ν,ℵ0
.

We will prove the following generalisation.

Theorem 6.2. Suppose κ is a cardinal such that κ<κ = κ, ϕ is a κ-scattered linear

order type, and ν is a cardinal. Then there is a κ-scattered linear order type ψ such

that ψ −→ [ϕ]1ν,κ.

The proof of Theorem 6.2 is a modification of Komjáth and Shelah’s proof from

[KS003]. We will state without proof the main technical lemma from [KS003] but

will provide the rest of the details for completeness.

Suppose β is an ordinal, 〈Pα | α < β〉 is a sequence of linear orders and, for all

α < β, we have specified a designated element 0α ∈ Pα. Then
⊕′

α<β Pα is a linear

order whose underlying set is the set of functions f such that:

• dom(f) = β;

• for all α < β, f(α) ∈ Pα;

• for all but finitely many α < β, f(α) = 0α.

If f ∈
⊕′
α<β Pα, then supp(f) is the set of α < β such that f(α) 6= 0α.

⊕′
α<β Pα

is ordered anti-lexicographically. Namely, if f, g ∈
⊕′

α<β Pα, let ∆′(f, g) denote

the largest α < β such that f(α) 6= g(α), and let f <⊕′
α<β Pα

g iff f(α) <Pα g(α).

As usual, if there is P such that Pα = P for all α < β, we write
⊕′

α<β P in place

of
⊕′
α<β Pα.

Lemma 6.3. Let β be an ordinal and, for α < β, let Pα be a linear order.

Let Q =
⊕′
α<β Pα. Suppose f, g, h ∈ Q are such that f <Q g <Q h. Then

max(∆′(f, g),∆′(g, h)) 6 ∆′(f, h).

Proof. Let α = ∆′(f, h). Suppose for sake of contradiction that γ = ∆′(f, g) > α.

Then f(γ) <Pγ g(γ), and, since f(γ) = h(γ), we also have h(γ) <Pγ g(γ). Since

g <Q h, we must have ξ = ∆′(g, h) > γ. Then g(ξ) <Pξ h(ξ) = f(ξ), contradicting

the fact that ξ > γ and ∆′(f, g) = γ. Thus, ∆′(f, g) 6 α. ∆′(g, h) 6 α follows

similarly. �

Lemma 6.4. Suppose β is an ordinal, κ is a regular cardinal, and, for all α < β,

Pα is a κ-scattered linear order. Let Q =
⊕′

α<β Pα. Then Q is κ-scattered.

Proof. Suppose for sake of contradiction that R is a κ-dense suborder of Q. Let

α < β be least such that, for some f, g ∈ R, ∆′(f, g) = α, and fix such f, g ∈ R. As

R is κ-dense, ]f, g[R itself must be κ-dense as a suborder of R. By the minimality

of α and Lemma 6.3, for all h0 <R h1 in ]f, g[R, we must have ∆′(h0, h1) = α and

hence h0(α) <Pα h1(α). But this implies that {h(α) | h ∈ R} is a κ-dense suborder

of Pα, contradicting the assumption that Pα is κ-scattered. �
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We now need some definitions and a lemma from [KS003].

Definition 6.5. Suppose α is an ordinal. FS(α) is the set of all finite decreasing

sequences from α, i.e. sequences of the form ~s = 〈s0, s1, . . . , sn−1〉 such that α >

s0 > s1 > . . . > sn−1. For such an ~s of length n, min(~s) will denote sn−1. An α-tree

is a function x : FS(α)→ On such that, for all ~s ∈ FS(α) and all γ0 < γ1 < min(~s),

we have x(~s _〈γ0〉) < x(~s _〈γ1〉) < x(~s).

Lemma 6.6. Suppose α is an ordinal and ν is a cardinal. Let µ =
(
|α|νℵ0

)+
, and

suppose that F : FS(µ+) → ν. Then there is an α-tree x : FS(α) → µ+ and a

function c : ω → ν such that, for every n < ω and every 〈s0, s1, . . . , sn〉 in FS(α)

of length n+ 1, we have F (x(〈s0〉), x(〈s0, s1〉), . . . , x(〈s0, s1, . . . , sn〉)) = c(n).

A proof of Lemma 6.6 can be found in [KS003].

Fix now a cardinal κ such that κ<κ = κ. We next identify a class of κ-scattered

linear orders such that every κ-scattered linear order embeds into a member of the

class. First, let T be a set of linear orders such that, for every linear order type τ of

size < κ, there is a unique T ∈ T such that otp(T ) = τ . Now, let 〈〈Tα, 0α〉 | α < κ〉
enumerate all pairs 〈T, a〉 such that T ∈ T and a ∈ T . For the rest of the section,

let S denote
⊕′
α<κ Tα. If δ is an ordinal, let Pδ =

⊕′
γ<δ S. We will sometimes

think of elements of Pδ as functions f such that dom(f) = δ × κ, f(γ, α) ∈ Tα for

all 〈γ, α〉 ∈ δ× κ, and, for all but finitely many 〈γ, α〉 ∈ δ× κ, f(γ, α) = 0α. If f, g

are two such functions, then ∆′(f, g) is the lexicographically largest 〈γ, α〉 ∈ δ × κ
such that f(γ, α) 6= g(γ, α), and f <Pδ g iff f(γ, α) <Tα g(γ, α). By Lemma 6.4,

for every ordinal δ, Pδ is κ-scattered. Let ψδ = otp(Pδ).

Lemma 6.7. For every κ-scattered linear order ϕ, there is δ such that ϕ 6 ψδ.

Proof. We proceed by induction. If |ϕ| < κ, then there is α < κ such that otp(Tα) =

ϕ. But then ϕ 6 otp(S) = ψ1. Suppose β is an ordinal, ϕ =
∑
ξ<β ϕξ and, for

each ξ < β, there is δξ such that ϕξ 6 otp(Pδξ ). For ξ < β, let Qξ be an order of

type ϕξ, and let Q =
∑
ξ<β Qξ, so otp(Q) = ϕ.. Let δ′ = sup {δξ : ξ < β}, and, for

all ξ < β, fix an order embedding Fξ : Qξ → Pδ′ . Let α′ < κ be such that Tα′ is

a 2-element linear order and 0α′ is the smaller of the elements (call the other 1α′).

Let δ = δ′+β. Define F : Q→ Pδ as follows. If ξ < β and a ∈ Qξ, let F (ξ, a) ∈ Pδ
be defined as follows.

F (ξ, a)(γ, α) =


Fξ(a)(γ, α) if 〈γ, α〉 ∈ δ′ × κ
1α′ if 〈γ, α〉 = 〈δ′ + ξ, α′〉
0α otherwise

It is easy to check that F is an order embedding. The cases in which ϕ is a

lexicographic sum whose index set is anti-well-ordered or of size < κ are similar. �

Theorem 6.2 will therefore follow from the following lemma.

Lemma 6.8. For every ordinal δ and every cardinal ν, there is µ such that ψµ −→
[ψδ]

1
ν,κ.
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Proof. Fix an ordinal δ and a cardinal ν. Let µ =
(
|δ|νκ

)++
. Let H : Pµ → ν. We

define a colouring F of FS(µ) as follows. Suppose ~s = 〈s0, . . . , sn−1〉 ∈ FS(µ). Then

F (~s) is the function defined on
∏
i<n S defined as follows. If ~a = 〈a0, . . . , an−1〉 ∈∏

i<n S, then F (~s)(~a) = H(f), where f ∈ Pµ is such that supp(f) ⊆ {s0, . . . , sn−1}
and, for all i < n, f(si) = ai. Since |S| = κ, F is a colouring with νκ colours.

Therefore, by Lemma 6.6, there is a δ-tree x : FS(δ) → µ and a function c

with domain ω such that, for every n < ω and every 〈s0, . . . , sn−1〉 ∈ FS(δ),

F (x(〈s0〉), . . . , x(〈s0, . . . , sn−1〉)) = c(n).

Fix such an x and c. Define a function h : Pδ → Pµ as follows. Suppose

f ∈ Pδ and supp(f) = 〈s0, . . . , sn−1〉, listed in decreasing order. For each i < n,

let ti = x(〈s0, . . . , si〉). Let h(f) ∈ Pµ be such that supp(h(f)) = {ti : i < n} and

such that, for all i < n, h(f)(ti) = f(si).

Claim 6.9. h is order-preserving.

Proof. Suppose f, f ′ ∈ Pδ with f <Pδ f ′. Let supp(f) = 〈s0, . . . , sm−1〉 and

supp(f ′) = 〈s′0, . . . , s′n−1〉, both listed in decreasing order. Let i be least such that

either si 6= s′i or f(si) 6= f(s′i).
Suppose first that si 6= s′i. Without loss of generality, assume si < s′i (the

argument in the other case is symmetric). In particular, since f <Pδ f
′, we have

0 <S f ′(s′i). Then x(〈s0, . . . , si〉) < x(〈s0, . . . , s
′
i〉), so, by our definition of h,

∆′(h(f), h(f ′)) = x(〈s0, . . . , s
′
i〉) =: t and h(f)(t) = 0 <S f ′(s′i) = h(f ′)(t), so

h(f) <Pµ h(f ′).
If si = s′i and f(si) <S f(s′i), let x(〈s0, . . . , si〉) = t. Again, ∆′(h(f), h(f ′)) = t

and h(f)(t) = f(si) <S f
′(si) = h(f ′)(t), so h(f) <Pµ h(f ′). �

Now let P ′ = h
[
Pδ
]
. Then P ′ ⊆ Pµ and otp(P ′) = ψδ. We claim that |H

[
P ′
]
| 6

κ.

Recall that, for n < ω, c(n) is a function from
∏
i<n S to ν. Let An = c

[∏
i<n S

]
,

and let A =
⋃
n<ω An. Since |S| = κ, we have |A| = κ. We claim that H

[
P ′
]
⊆ A.

To see this, let g ∈ P ′. By definition, there is f ∈ Pδ such that g = h(f). Let

~s = 〈s0, . . . , sn−1〉 = supp(f) and, for i < n, ti = x(〈s0, . . . , si〉), so supp(g) =

〈t0, . . . , tn−1〉. Let ~a = 〈a0, . . . , an−1〉 be such that, for i < n, f(si) = ai = g(ti).

Retracing the definitions, we have:

H(f) = F (~t)(~a) = F (x(〈s0〉), . . . , x(〈s0, . . . , sn−1〉))(~a) = c(n)(~a) ∈ An ⊆ A.

Thus, |H
[
P ′
]
| 6 κ, completing the proof the theorem. �

7. Questions

At the end of this paper we are left with many open questions, some of which

we would like to state explicitly.

Recall that Todorcevic showed in [Todo989, Chapter 2] that b = ℵ1 implies

ω1 6−→(ω1, ω+2)2. Together with Theorem 4.2 this suggests the following Question:

Question 7.1. Does b = ℵ1 imply ω1ω 6−→(ω1ω, 3)2?
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Both the statements ∀n < ω
(
ω1ω −→ (ω1ω, n)2

)
and ∀n < ω

(
ω1ω

2 −→ (ω1ω
2, n)2

)
were shown to follow from MAℵ1

in [Baum989]. For the time being, we failed to

answer the following Question:

Question 7.2. Does ω1ω −→ (ω1ω, 3)2 imply ω1ω
2 −→ (ω1ω

2, 3)2?

Regarding weakly scattered orders, the following questions seems to be central.

Question 7.3. Is it consistent that there is a regular κ such that for all weakly

κ-scattered linear order types ϕ of size κ there is a weakly κ-scattered linear order

type τ > ϕ of size κ such that τ −→ (τ, 3)2?

Question 7.4. Is it consistent that there is a regular κ such that for all κ-scattered

linear orders ϕ of size κ there is a κ-scattered linear order τ > ϕ of size κ such that

τ −→ (τ, 3)2?

The obvious candidate for κ here is ℵ0, but note that even the analogous question

referring to ordinals is unanswered. Another obvious question is whether the ana-

logue of Theorem 3.1 attained by replacing “weakly κ-scattered” by “κ-scattered”

is consistently true. This question is of interest both for successor cardinals and

inaccessible cardinals.

Question 7.5. Is it consistent that there is an uncountable, regular cardinal κ

such that, for every κ-scattered linear order ϕ of size κ, there is a κ-scattered linear

order τ of size κ such that τ −→ (ϕ, n)2 for all n < ω?

A question which may be cumbersome to answer, is the following:

Question 7.6. Are all consistent negative partition relations for σ-scattered orders

of cardinality ℵ1 for two colours implied by the conclusion of Theorem 5.11?

Finally, we ask whether Theorem 6.2 is optimal in terms of the numbers of

colours. In particular, we ask the following.

Question 7.7. Do the axioms of ZFC imply that there is a κ-scattered order type

ϕ such that, for every κ-scattered order type ψ, ψ 6−→[ϕ]1κ,<κ?
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[EHR965] Paul Erdős, András Hajnal and Richard Rado. “Partition relations for cardinal num-

bers”. Acta Math. Acad. Sci. Hungar., vol. 16 :(1965), pp. 93–196. ISSN 0001-5954
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