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Abstract. We derive a forcing axiom from the conjunction of square and

diamond, and present a few applications, primary among them being the exis-
tence of super-Souslin trees. It follows that for every uncountable cardinal 𝜆,

if 𝜆++ is not a Mahlo cardinal in Gödel’s constructible universe, then 2𝜆 = 𝜆+

entails the existence of a 𝜆+-complete 𝜆++-Souslin tree.

1. Introduction

1.1. Trees. A tree is a partially ordered set (𝑇,<𝑇 ) with the property that for
every 𝑥 ∈ 𝑇 , the downward cone 𝑥↓ := {𝑦 ∈ 𝑇 | 𝑦 <𝑇 𝑥} is well-ordered by <𝑇 .
The order type of (𝑥↓, <𝑇 ) is denoted by ht(𝑥), and the 𝛼𝑡ℎ-level of the tree is the
set 𝑇𝛼 := {𝑥 ∈ 𝑇 | ht(𝑥) = 𝛼}. The tree (𝑇,<𝑇 ) is said to be 𝜒-complete if for
every chain 𝐶 ⊆ 𝑇 of size < 𝜒, there is 𝑥 ∈ 𝑇 such that 𝐶 ⊆ 𝑥↓ ∪ {𝑥}.

If 𝜅 is a regular, uncountable cardinal, then a 𝜅-Aronszajn tree is a tree of size
𝜅 having no chains or levels of size 𝜅, and a 𝜅-Souslin tree is a tree of size 𝜅 having
no chains or antichains of size 𝜅. As tree levels are antichains, any 𝜅-Souslin tree
is a 𝜅-Aronszajn tree.

In 1920, Mikhail Souslin [24] asked whether every ccc, dense, complete linear
ordering with no endpoints is isomorphic to the real line.1 In [12], Kurepa showed
that a negative answer to Souslin’s question is equivalent to the existence of an
ℵ1-Souslin tree. Attempts to settle the question by constructing an ℵ1-Souslin tree
proved unsuccessful but did lead to Aronszajn’s construction of an ℵ1-Aronszajn
tree, which is described in [12]. The question remained open until it was proven,
in [26], [9], [11], and [23], that, in contrast to the existence of ℵ1-Aronszajn trees,
the existence of ℵ1-Souslin trees is independent of the usual axioms of set theory
(ZFC).

As these objects proved incredibly useful and important, a systematic study of
their consistency and interrelation was carried out. Following standard conventions,
we let TP𝜅 stand for the nonexistence of 𝜅-Aronszajn trees (the tree property at
𝜅), SH𝜅 stand for the nonexistence of 𝜅-Souslin trees (the Souslin Hypothesis at 𝜅),
and CH𝜆 stand for 2𝜆 = 𝜆+. Two early results read as follows:

Theorem 1.1 (Specker, [25]). For every cardinal 𝜆, CH𝜆 implies the failure of
TP𝜆++ .2
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1Here, ccc is a consequence of separability, asserting that every pairwise-disjoint family of open

intervals is countable.
2By a cardinal, we always mean an infinite cardinal.
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Theorem 1.2 (Jensen, [10]). In Gödel’s constructible universe, 𝐿, for every regu-
lar, uncountable cardinal 𝜅, the following are equivalent:

∙ TP𝜅;
∙ SH𝜅;
∙ 𝜅 is a weakly compact cardinal.

We remind the reader that a cardinal 𝜅 is weakly compact iff it is uncountable
and Ramsey’s theorem holds at the level of 𝜅, i.e., every graph of size 𝜅 contains a
clique or an anticlique of size 𝜅.

Ever since Jensen’s result, the general belief has been that the consistency of
SH𝜅 for 𝜅 of the form 𝜆++ requires the consistency of a weakly compact cardinal.
This conjecture is supported by the following later results:

Theorem 1.3 (Mitchell and Silver, [15]). The existence of a regular cardinal 𝜆 for
which TP𝜆++ holds is equiconsistent with the existence of a weakly compact cardinal.
In particular, the consistency of a weakly compact cardinal gives the consistency of
¬CH𝜆 together with SH𝜆++ .

Theorem 1.4 (Laver and Shelah, [14]). For every cardinal 𝜆, if there is a weakly
compact cardinal above 𝜆, then there is a forcing extension by a 𝜆+-directed closed
forcing notion in which CH𝜆 and SH𝜆++ both hold.

Theorem 1.5 (Rinot, [17]). For every cardinal 𝜆, if CH𝜆, CH𝜆+ , and SH𝜆++ all
hold, then 𝜆++ is a weakly compact cardinal in 𝐿.

Whether the hypotheses of Theorem 1.5 are consistent, relative to any large
cardinal assumption, is a major open problem.

In this paper, we are interested in a possible converse for Theorem 1.4. As of now,
the best result in this direction gives a lower bound of an inaccessible cardinal.3

Theorem 1.6 (Shelah and Stanley, [18]). For every cardinal 𝜆, if CH𝜆 and SH𝜆++

both hold, then 𝜆++ is an inaccessible cardinal in 𝐿.

Here, we establish the following.

Theorem A. For every uncountable cardinal 𝜆, if CH𝜆 and SH𝜆++ both hold, then
𝜆++ is a Mahlo cardinal in 𝐿.

The following table provides a clear summary of all of these results.

Theorem 𝜆 CH𝜆 CH𝜆+ SH𝜆++ lower bound upper bound
1.3 regular 7 3 3 weakly compact
1.5 arbitrary 3 3 3 weakly compact
1.4 arbitrary 3 7 3 weakly compact
1.6 arbitrary 3 7 3 inaccessible
A uncountable 3 7 3 Mahlo

1.2. Combinatorial constructions. In order to prove Theorem A, we develop a
general framework for carrying out combinatorial constructions. It turns out that,
in this and other applications, it is often desirable to be able to construct an object
of size 𝜅+, where 𝜅 is a regular, uncountable cardinal, using approximations to that

3Recall that any weakly compact cardinal admits stationarily many Mahlo cardinals below it,
and any Mahlo cardinal admits stationarily many inaccessible cardinals below it.
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object of size < 𝜅. When one attempts to carry out such a construction just using
the axioms of ZFC, though, one naturally runs into problems: the construction
seems to require 𝜅+ steps, but the approximations may become too large after only
𝜅 steps.

The usual way to attempt to overcome this problem is to assume, in addition
to ZFC, certain nice combinatorial features of 𝜅 or 𝜅+. One such feature, whose
definition is motivated by precisely such constructions, is the existence of a (𝜅, 1)-
morass (see [4, S4] or [5, Chapter VIII]). Velleman [30], and Shelah and Stanley
[18], present frameworks for carrying out constructions of objects of size 𝜅+ using a
(𝜅, 1)-morass. In both instances, these frameworks take the form of forcing axioms
which turn out to be equivalent to the existence of morasses.

Another combinatorial assumption that can be helpful in these constructions is
the existence of a diamond sequence. In a series of papers on models with second
order properties, culminating in a general treatment in [20], Shelah et al. develop
a technique for using ♢(𝜅) to build objects of size 𝜅+ out of approximations of size
< 𝜅. Ideas from these papers were used by Foreman, Magidor, and Shelah [6] to
prove, assuming the consistency of a huge cardinal, the consistency of the existence
of an ultrafilter 𝒰 on 𝜔1 such that |𝜔𝜔1/𝒰| = ℵ1, and later by Foreman [7] to prove,
again assuming the consistency of a huge cardinal, the consistency of the existence
of an ℵ1-dense ideal on ℵ2.

In this paper, we present a framework for constructions of objects of size 𝜅+ using
♢(𝜅) and �𝐵

𝜅 , a weakening of �𝜅 that, unlike �𝜅 itself, is implied by the existence
of a (𝜅, 1)-morass. As in [30] and [18], our framework takes the form of a forcing
axiom. Specifically, in Section 2, we isolate a class of forcing notions 𝒫𝜅, introduce
the notion of a sharply dense system, and formulate a forcing axiom, SDFA(𝒫𝜅),
that asserts that for every P from the class 𝒫𝜅 and every sequence ⟨𝒟𝑖 | 𝑖 < 𝜅⟩ of
sharply dense systems, there is a filter 𝐺 on P that meets each 𝒟𝑖 everywhere.

The last two sections of the paper are devoted to the proof of the following:

Theorem B. For every regular uncountable cardinal 𝜅, if ♢(𝜅) and �𝐵
𝜅 both hold,

then so does SDFA(𝒫𝜅).

In Section 3, we give a few simple applications of the forcing axiom SDFA(𝒫𝜅).
We open by pointing out that the Cohen forcing Add(𝜅, 𝜅+) is a member of the
class 𝒫𝜅. Then, we show that SDFA(𝒫𝜅) entails 𝜅<𝜅 = 𝜅 and �𝐵

𝜅 . This has three
consequences. First, it shows that our square hypothesis in Theorem B is optimal:

Theorem B’. Suppose that 𝜅 is a regular, uncountable cardinal and ♢(𝜅) holds.
Then the following are equivalent:

∙ �𝐵
𝜅 holds;

∙ SDFA(𝒫𝜅) holds.

Second, by Shelah’s theorem [19] stating that CH𝜆 entails ♢(𝜆+) for every un-
countable cardinal 𝜆, it gives cases in which the diamond hypothesis is optimal, as
well:

Theorem B”. For every successor cardinal 𝜅 > ℵ1, the following are equivalent:

∙ ♢(𝜅) and �𝐵
𝜅 both hold;

∙ SDFA(𝒫𝜅) holds.

Third, it implies that SDFA(𝒫𝜅) entails the existence of a strong stationary
coding set, i.e., a stationary subset of [𝜅+]<𝜅 on which the map 𝑥 ↦→ sup(𝑥) is
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injective. This is of interest because the existence of such a set was previously
obtained by Shelah and Stanley [21] from their forcing axiom 𝑆𝜅(♢), which is
equivalent to the existence of a (𝜅, 1)-morass with a built-in diamond sequence,
and later (though earlier in terms of publication date) by Velleman [29] from the
existence of a stationary simplified (𝜅, 1)-morass.

Section 4 is dedicated to the the study of super-Souslin trees. For a cardinal
𝜆, a 𝜆++-super-Souslin tree is a 𝜆++-tree (𝑇,<𝑇 ) with a certain highly absolute
combinatorial property that ensures that (𝑇,<𝑇 ) has a 𝜆++-Souslin subtree in any
ZFC extension 𝑊 of the universe 𝑉 that satisfies 𝒫𝑊 (𝜆) = 𝒫𝑉 (𝜆) and (𝜆++)𝑊 =
(𝜆++)𝑉 . These trees were introduced in a paper by Shelah and Stanley [18], where
the existence of super-Souslin trees provided the primary application of the forcing
axiom isolated in that paper. In particular, they proved that the existence of
a 𝜆++-super-Souslin tree follows from the existence of a (𝜆+, 1)-morass together
with CH𝜆. In [30] and [21] the same hypotheses are shown to entail the existence
of a 𝜆++-super-Souslin tree which is moreover 𝜆+-complete. Here, we prove the
following analogous result.

Theorem C. For every cardinal 𝜆, SDFA(𝒫𝜆+) entails the existence of a 𝜆+-
complete 𝜆++-super-Souslin tree.

By Theorems B and C, and the fact that for any super-Souslin tree (𝑇,<𝑇 ),
there exists some 𝑥 ∈ 𝑇 such that (𝑥↑, <𝑇 ) is Souslin, we obtain:

Corollary 1. For every cardinal 𝜆, if ♢(𝜆+) and �𝐵
𝜆+ both hold, then there is a

𝜆+-complete 𝜆++-Souslin tree.

Recalling Jensen’s theorem [10] stating that if �𝜅 fails, then 𝜅+ is a Mahlo
cardinal in 𝐿, and Shelah’s theorem [19] stating that CH𝜆 entails ♢(𝜆+) for every
uncountable cardinal 𝜆, we see that Theorem A follows from Corollary 1.

We also obtain a corollary concerning partition relations. Recall that, for ordinals
𝛼, 𝛽, and 𝛾, the statement 𝛼 → (𝛽, 𝛾)2 asserts that, for every coloring 𝑐 : [𝛼]2 →
{0, 1}, either there exists 𝐵 ⊆ 𝛼 of order type 𝛽 which is 0-monochromatic, or
there exists 𝐶 ⊆ 𝛼 of order type 𝛾 which is 1-monochromatic. By a recent theorem
of Raghavan and Todorcevic [16], the existence of a 𝜅+-Souslin tree entails 𝜅+ 9
(𝜅+, log𝜅(𝜅+) + 2)2, where log𝜅(𝜅+) denotes the least cardinal 𝜈 such that 𝜅𝜈 > 𝜅.
We thus obtain the following corollary:

Corollary 2. Suppose that 𝜆 is an uncountable cardinal. If CH𝜆 and 𝜆++ →
(𝜆++, 𝜆+ + 2)2 both hold, then 𝜆++ is a Mahlo cardinal in 𝐿.

Note that by a theorem of Erdős and Rado, CH𝜆 entails 𝜆++ → (𝜆++, 𝜆+ + 1)2.

1.3. Notations and conventions. We write c.o.i. as a shorthand for “continuous,
order-preserving injection.” In particular, a c.o.i. is a map 𝜋 from a set of ordinals
into the ordinals such that 𝜋 is continuous, order-preserving, and injective, and,
moreover, dom(𝜋) is closed in its supremum. Thus, when we write, for example,
“𝜋 : 𝑦 → 𝜅+ is a c.o.i.,” it is implicit that 𝑦 is closed in its supremum. For ordinals
𝜃 < 𝜇, let

(︀
𝜇
𝜃

)︀
:= {Im(𝜋) | 𝜋 : 𝜃 → 𝜇 is a c.o.i.}, i.e.,

(︀
𝜇
𝜃

)︀
consists of all closed copies

of 𝜃 in 𝜇.
For a set of ordinals 𝑥, otp(𝑥) denotes the order type of 𝑥 and, for all 𝑖 < otp(𝑥),

𝑥(𝑖) denotes the unique element 𝛼 of 𝑥 such that otp(𝑥∩𝛼) = 𝑖. We write ssup(𝑥) :=
sup{𝛼 + 1 | 𝛼 ∈ 𝑥}, acc(𝑥) := {𝛼 ∈ 𝑥 | sup(𝑥 ∩ 𝛼) = 𝛼 > 0}, nacc(𝑥) := 𝑥 ∖ acc(𝑥),
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acc+(𝑥) := {𝛼 < ssup(𝑥) | sup(𝑥 ∩ 𝛼) = 𝛼 > 0}, and cl(𝑥) := 𝑥 ∪ acc+(𝑥). By
convention, ssup(∅) = sup(∅) = 0. For sets of ordinals 𝑥 and 𝑦, we write 𝑥 ⊑ 𝑦
iff 𝑦 is an end-extension of 𝑥, i.e., 𝑦 ∩ ssup(𝑥) = 𝑥. For cardinals 𝜆 < 𝜇, let
𝐸𝜇

𝜆 := {𝛼 < 𝜇 | cf(𝛼) = 𝜆}, let 𝐸𝜇
<𝜆 := {𝛼 < 𝜇 | cf(𝛼) < 𝜆}, let [𝜇]<𝜆 := {𝑥 ⊆ 𝜇 |

|𝑥| < 𝜆}, and let [𝜇]2 := {(𝛼, 𝛽) | 𝛼 < 𝛽 < 𝜇}. Also, let 𝐻𝜇 denote the collection of
all sets of hereditary cardinality less than 𝜇.

Throughout the paper, 𝜅 stands for an arbitrary regular, uncountable cardinal.
For simplicity, the reader may assume that 𝜅 = ℵ1.

2. The forcing axiom

We begin by introducing the class 𝒫𝜅 of forcing notions that will be of interest.

Definition 2.1. 𝒫𝜅 consists of all triples (P,≤P,Q) such that (P,≤P) is a forcing
notion, 1P ∈ Q ⊆ P, and all of the following requirements hold.

(1) (Realms) For all 𝑝 ∈ P, there is a unique 𝑥𝑝 ∈ [𝜅+]<𝜅, which we refer to as
the realm of 𝑝. The map 𝑝 ↦→ 𝑥𝑝 is a projection from (P,≤P) to ([𝜅+]<𝜅,⊇):
(a) 𝑥1P = ∅;
(b) for all 𝑞 ≤P 𝑝, we have 𝑥𝑞 ⊇ 𝑥𝑝;
(c) for all 𝑝 ∈ P and 𝑥 ∈ [𝜅+]<𝜅 with 𝑥 ⊇ 𝑥𝑝, there is 𝑞 ≤P 𝑝 with 𝑥𝑞 = 𝑥.

(2) (Scope) For all 𝑦 ⊆ 𝜅+, let P𝑦 := {𝑝 ∈ P | 𝑥𝑝 ⊆ 𝑦} and Q𝑦 := Q ∩ P𝑦.
Then P∅ = {1P} and P𝜅 ⊆ 𝐻𝜅.

(3) (Actions of c.o.i.’s) For every 𝑦 ⊆ 𝜅+ and every c.o.i. 𝜋 : 𝑦 → 𝜅+, 𝜋 acts
on P𝑦 in such a way that, for all 𝑝, 𝑞 ∈ P𝑦:
(a) 𝜋.𝑝 is in P with 𝑥𝜋.𝑝 = 𝜋“𝑥𝑝, and if 𝑝 ∈ Q𝑦, then 𝜋.𝑝 is in Q;
(b) 𝜋.𝑞 ≤P 𝜋.𝑝 iff 𝑞 ≤P 𝑝;
(c) if 𝜋 is the identity map, then 𝜋.𝑝 = 𝑝;
(d) if 𝜋′ : 𝑦′ → 𝜅+ is a c.o.i. with Im(𝜋) ⊆ 𝑦′, then 𝜋′.(𝜋.𝑝) = (𝜋′ ∘ 𝜋).𝑝;
(e) if 𝜋′ : 𝑦′ → 𝜅+ is a c.o.i. with 𝑥𝑝 ⊆ 𝑦′, then 𝜋 � 𝑥𝑝 = 𝜋′ � 𝑥𝑝 implies

that 𝜋.𝑝 = 𝜋′.𝑝.
(4) (Restrictions) For all 𝑝 ∈ P and 𝛼 < 𝜅+, there is a unique ≤P-least

condition 𝑟 such that 𝑥𝑟 = 𝑥𝑝 ∩ 𝛼 and 𝑝 ≤P 𝑟. This condition 𝑟 is referred
to as 𝑝 �� 𝛼. Moreover:
(a) if 𝑝 ∈ Q, then 𝑝 �� 𝛼 ∈ Q;
(b) if 𝑞 ≤P 𝑝, then 𝑞 �� 𝛼 ≤P 𝑝 �� 𝛼.

(5) (Vertical limits) Suppose that 𝜉 < 𝜅 and ⟨𝑝𝜂 | 𝜂 < 𝜉⟩ is a sequence of
conditions from P such that, for all 𝜂 < 𝜂′ < 𝜉, we have 𝑝𝜂 = 𝑝𝜂′ ��ssup(𝑥𝑝𝜂

).
Then there is a unique condition 𝑝 ∈ P such that 𝑥𝑝 =

⋃︀
𝜂<𝜉 𝑥𝑝𝜂

and, for

all 𝜂 < 𝜉, 𝑝𝜂 = 𝑝 �� ssup(𝑥𝑝𝜂
). Moreover, if 𝑝𝜂 ∈ Q for all 𝜂 < 𝜉, then 𝑝 ∈ Q.

(6) (Sharpness) For all 𝑞 ∈ Q, 𝑥𝑞 is closed in its supremum. Moreover, for all
𝑝 ∈ P, there is 𝑞 ≤P 𝑝 with 𝑥𝑞 = cl(𝑥𝑝) such that 𝑞 ∈ Q.

(7) (Controlled closure) Suppose that 𝜉 < 𝜅 and ⟨𝑞𝜂 | 𝜂 < 𝜉⟩ is a decreasing
sequence of conditions from Q. Let 𝑥 :=

⋃︀
𝜂<𝜉 𝑥𝑞𝜂 . Suppose that 𝛼 <

ssup(𝑥) and that 𝑟 ∈ Qssup(𝑥∩𝛼) is a lower bound for ⟨𝑞𝜂 �� 𝛼 | 𝜂 < 𝜉⟩. Then
there is 𝑞 ∈ Q such that:
(a) 𝑞 �� ssup(𝑥 ∩ 𝛼) = 𝑟;
(b) 𝑥𝑞 = cl(𝑥𝑟 ∪ 𝑥);
(c) 𝑞 is a lower bound for ⟨𝑞𝜂 | 𝜂 < 𝜉⟩.
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(8) (Amalgamation) For all 𝑝 ∈ Q, 𝛼 < ssup(𝑥𝑝), and 𝑞 ∈ P𝛼 with 𝑞 ≤P 𝑝��𝛼,
we have that 𝑝 and 𝑞 have a unique ≤P-greatest lower bound 𝑟. Moreover,
it is the case that 𝑥𝑟 = 𝑥𝑞 ∪ 𝑥𝑝 and 𝑟 �� 𝛼 = 𝑞.

We now introduce the class of families of dense sets that we will be interested in
meeting.

Definition 2.2 (Sharply dense set). Suppose that (P,≤P,Q) ∈ 𝒫𝜅 and 𝐷 is a
nonempty subset of P. Denote 𝑥𝐷 :=

⋂︀
{𝑥𝑝 | 𝑝 ∈ 𝐷}. We say that 𝐷 is sharply

dense iff for every 𝑝 ∈ P, there is 𝑞 ∈ 𝐷 with 𝑞 ≤P 𝑝 such that 𝑥𝑞 = cl(𝑥𝑝 ∪ 𝑥𝐷).

Definition 2.3 (Sharply dense system). Suppose that (P,≤P,Q) ∈ 𝒫𝜅. We say
that 𝒟 ⊆ 𝒫(P) is a sharply dense system iff there exists an ordinal 𝜃𝒟 < 𝜅 such

that 𝒟 is of the form {𝐷𝑥 | 𝑥 ∈
(︀
𝜅+

𝜃𝒟

)︀
}, where for all 𝑥 ∈

(︀
𝜅+

𝜃𝒟

)︀
:

∙ 𝐷𝑥 is sharply dense with 𝑥𝐷𝑥
= 𝑥;

∙ for every 𝑝 ∈ P, and every c.o.i. 𝜋 : 𝑦 → 𝜅+ with 𝑥 ⊆ 𝑥𝑝 ⊆ 𝑦, we have
𝑝 ∈ 𝐷𝑥 iff 𝜋.𝑝 ∈ 𝐷𝜋“𝑥.

Definition 2.4. Suppose that (P,≤P,Q) ∈ 𝒫𝜅 and 𝒟 is a sharply dense system.
We say that a filter 𝐺 on P meets 𝒟 everywhere iff, for all 𝐷 ∈ 𝒟, 𝐺 ∩𝐷 ̸= ∅.

We are now ready to formulate our forcing axiom for sharply dense systems.

Definition 2.5. SDFA(𝒫𝜅) is the assertion that, for every (P,≤P,Q) ∈ 𝒫𝜅 and
every collection {𝒟𝑖 | 𝑖 < 𝜅} of sharply dense systems, there exists a filter 𝐺 on P
such that, for all 𝑖 < 𝜅, 𝐺 meets 𝒟𝑖 everywhere.

3. Applications

In this section we present a few applications of SDFA(𝒫𝜅). Just before that, let
us point out two features of members of the class 𝒫𝜅.

Proposition 3.1. Suppose that (P,≤P,Q) ∈ 𝒫𝜅. Then:

(1) (Q,≤P) is 𝜅-closed.
(2) For all 𝑥 ⊆ 𝜅+, denote 𝐷𝑥 := {𝑞 ∈ Q | 𝑥𝑞 ⊇ 𝑥}. Then, for all 𝜃 < 𝜅, {𝐷𝑥 |

𝑥 ∈
(︀
𝜅+

𝜃

)︀
} is a sharply dense system.

Proof. (1) Suppose that 𝜉 < 𝜅 and �⃗� = ⟨𝑞𝜂 | 𝜂 < 𝜉⟩ is a decreasing sequence of
conditions from Q. Note that if 𝑥 :=

⋃︀
𝜂<𝜉 𝑥𝑞𝜂 is empty, then 1P is a lower bound

for �⃗�, so we may assume that 𝑥 is nonempty. Since 1P ∈ Q and P0 = {1P}, we
infer from Clause (4) of Definition 2.1 that {𝑞𝜂 �� 0 | 𝜂 < 𝜉} = Q0 = {1P}. So, by
Clause (7) of Definition 2.1, using 𝛼 := 0 and 𝑟 := 1P, we infer that �⃗� admits a
lower bound.

(2) By Clauses (3a) and (6) of Definition 2.1. �

Next, we show that the actions of c.o.i.’s behave as expected with respect to the
restriction operation.

Proposition 3.2. Suppose that (P,≤P,Q) ∈ 𝒫𝜅, 𝑝 ∈ P, 𝛼 ∈ 𝑥𝑝, and 𝜋 : 𝑦 → 𝜅+ is
a c.o.i. with 𝑥𝑝 ⊆ 𝑦 ⊆ 𝜅+. Then 𝜋.(𝑝 �� 𝛼) = (𝜋.𝑝) �� 𝜋(𝛼).

Proof. Let 𝑟 := 𝜋.(𝑝 �� 𝛼). Since 𝑝 ≤P 𝑝 �� 𝛼, Clause (3b) (of Definition 2.1) implies
that 𝜋.𝑝 ≤P 𝑟. In addition, by Clauses (3a) and (4), and since 𝛼 ∈ 𝑦, we have:

𝑥𝑟 = 𝜋“𝑥𝑝��𝛼 = 𝜋“(𝑥𝑝 ∩ 𝛼) = 𝜋“𝑥𝑝 ∩ 𝜋“𝛼 = 𝜋“𝑥𝑝 ∩ 𝜋(𝛼) = 𝑥𝜋.𝑝 ∩ 𝜋(𝛼).
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This shows that 𝑟 is a candidate for being (𝜋.𝑝) �� 𝜋(𝛼). To finish the proof, fix an
arbitrary 𝑞 ∈ P such that 𝑥𝑞 = 𝑥𝜋.𝑝 ∩ 𝜋(𝛼) and 𝜋.𝑝 ≤P 𝑞. We have to verify that
𝑟 ≤P 𝑞.

Let 𝜋′ := {(𝛿, 𝜀) | (𝜀, 𝛿) ∈ 𝜋}, so that 𝜋′ is a c.o.i. and 𝜋′ ∘ 𝜋 and 𝜋 ∘ 𝜋′ are the
identity maps on their respective domains. Since 𝜋.𝑝 ≤P 𝑞 and 𝑥𝑞 ⊆ Im(𝜋), and
by Clauses (3c) and (3d), we have 𝑝 = 𝜋′.(𝜋.𝑝) ≤P 𝜋′.𝑞. Moreover, 𝑥𝜋′.𝑞 = 𝑥𝑝 ∩ 𝛼,
so, by Clause (4), 𝑝 �� 𝛼 ≤P 𝜋′.𝑞. Now another application of Clauses (3b) and (3c)
yields 𝑟 ≤P 𝑞. �

3.1. A warm-up example. Let us point out that P := Add(𝜅, 𝜅+) belongs to
the class 𝒫𝜅. Specifically, 𝑝 ∈ P iff 𝑝 is a function from a subset of 𝜅+ × 𝜅 to 2
and |𝑝| < 𝜅. Let 𝑝 ≤P 𝑞 iff 𝑝 ⊇ 𝑞. Let 𝑥𝑝 := {𝛽 ∈ 𝜅+ | ∃𝜂[(𝛽, 𝜂) ∈ dom(𝑝)]}.
Let Q := {𝑝 ∈ P | 𝑥𝑝 = cl(𝑥𝑝)}. Whenever 𝜋 is a c.o.i. from a subset of 𝜅+ to
𝜅+ and 𝑝 ∈ Pdom(𝜋), we let 𝜋.𝑝 := {((𝜋(𝛽), 𝜂), 𝑖) | ((𝛽, 𝜂), 𝑖) ∈ 𝑝}. We also let
𝑝 ��𝛼 := {((𝛽, 𝜂), 𝑖) ∈ 𝑝 | 𝛽 < 𝛼}. The reader is now encouraged to verify that, with
this definition, (P,≤P,Q) ∈ 𝒫𝜅.

3.2. Cardinal arithmetic. In this subsection, we identify a simple member of 𝒫𝜅

and use it to prove that SDFA(𝒫𝜅) implies 𝜅<𝜅 = 𝜅.

Definition 3.3. P consists of all pairs 𝑝 = (𝑥, 𝑓) such that:

(1) 𝑥 ∈ [𝜅+]<𝜅;
(2) 𝑓 is a function such that:

(a) |𝑓 | < 𝜅;
(b) dom(𝑓) ⊆ 𝑥× 𝜅;
(c) for all (𝛽, 𝜂) ∈ dom(𝑓), we have 𝑓(𝛽, 𝜂) ⊆ 𝛽 ∩ 𝑥.

The coordinates of a condition 𝑝 ∈ P will often be identified as 𝑥𝑝 and 𝑓𝑝,
respectively.

Definition 3.4. For all 𝑝, 𝑞 ∈ P, we let 𝑞 ≤P 𝑝 iff 𝑥𝑞 ⊇ 𝑥𝑝 and 𝑓𝑞 ⊇ 𝑓𝑝.

Definition 3.5. Q := {𝑝 ∈ P | 𝑥𝑝 = cl(𝑥𝑝)}.

Definition 3.6. Suppose that 𝜋 is a c.o.i. from a subset of 𝜅+ to 𝜅+. For each
𝑝 ∈ Pdom(𝜋), we let 𝜋.𝑝 be the condition (𝑥, 𝑓) such that:

(1) 𝑥 = 𝜋“𝑥𝑝;
(2) 𝑓 = {((𝜋(𝛽), 𝜂), 𝜋“𝑧) | ((𝛽, 𝜂), 𝑧) ∈ 𝑓𝑝}.

Definition 3.7. Suppose that 𝑝 ∈ P and 𝛼 < 𝜅+. Then we define 𝑝 �� 𝛼 to be the
condition (𝑥, 𝑓) such that:

(1) 𝑥 = 𝑥𝑝 ∩ 𝛼;
(2) 𝑓 = {((𝛽, 𝜂), 𝑧) ∈ 𝑓𝑝 | 𝛽 < 𝛼}.

It is readily verified that, with these definitions, (P,≤P,Q) is a member of 𝒫𝜅.

Theorem 3.8. Suppose 𝜅<𝜅 > 𝜅. Then (P,≤P,Q) witnesses that SDFA(𝒫𝜅) fails.

Proof. We commence with a simple observation.

Claim 3.8.1. There exists a cardinal 𝜆 < 𝜅 for which |
(︀
𝜆
𝜆

)︀
| > 𝜅.

Proof. Since 𝜅 is regular, we have 𝜅<𝜅 =
∑︀

𝜆<𝜅 𝜆
𝜆. So, since 𝜅<𝜅 ≥ 𝜅+ and 𝜅+ is

regular, we may fix a cardinal 𝜆 < 𝜅 such that 𝜆𝜆 ≥ 𝜅+. For every 𝐴 ⊆ 𝜆, let

𝐶𝐴 := acc(𝜆) ∪ {𝛼 + 1 | 𝛼 ∈ 𝐴}.
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Then 𝐴 ↦→ 𝐶𝐴 is an injection from 𝒫(𝜆) to
(︀
𝜆
𝜆

)︀
, and we are done. �

Fix a cardinal 𝜆 < 𝜅 such that |
(︀
𝜆
𝜆

)︀
| > 𝜅. For each 𝑥 ∈

(︀
𝜅+

𝜆+1

)︀
, let 𝐷𝑥 be the set

of all conditions (𝑥𝑝, 𝑓𝑝) ∈ P such that:

∙ 𝑥 ⊆ 𝑥𝑝;
∙ there is 𝜂 < 𝜅 with (max(𝑥), 𝜂) ∈ dom(𝑓𝑝) such that

𝑓𝑝(max(𝑥), 𝜂) = 𝑥 ∩ max(𝑥).

Evidently, 𝒟 := {𝐷𝑥 | 𝑥 ∈
(︀
𝜅+

𝜆+1

)︀
} is a sharply dense system.

Towards a contradiction, suppose that SDFA(𝒫𝜅) holds. In particular, there
exists a filter 𝐺 on P that meets 𝒟 everywhere. Let 𝑓 :=

⋃︀
𝑝∈𝐺 𝑓𝑝, so that 𝑓 is a

function from a (possibly proper) subset of 𝜅+ × 𝜅 to 𝒫(𝜅+). Put Λ := {𝑓(𝜆, 𝜂) |
∃𝜂 < 𝜅[(𝜆, 𝜂) ∈ dom(𝑓)]}. Clearly, |Λ| ≤ 𝜅. Finally, let 𝐶 ∈

(︀
𝜆
𝜆

)︀
be arbitrary. Since

𝐶 ∪ {𝜆} ∈
(︀
𝜅+

𝜆+1

)︀
, we have 𝐺 ∩ 𝐷𝐶∪{𝜆} ̸= ∅, and hence 𝐶 ∈ Λ. It follows that(︀

𝜆
𝜆

)︀
⊆ Λ, contradicting the fact that |

(︀
𝜆
𝜆

)︀
| > 𝜅 ≥ |Λ|. �

Corollary 3.9. SDFA(𝒫𝜅) entails 𝜅<𝜅 = 𝜅. �

3.3. Baumgartner’s square. In unpublished work, Baumgartner introduced the
principle �𝐵

𝜅 , which is a natural weakening of Jensen’s �𝜅 principle.

Definition 3.10. A �𝐵
𝜅 -sequence is a sequence ⟨𝐶𝛽 | 𝛽 ∈ Γ⟩ such that:

(1) 𝐸𝜅+

𝜅 ⊆ Γ ⊆ acc(𝜅+);
(2) for all 𝛽 ∈ Γ, 𝐶𝛽 is club in 𝛽 and otp(𝐶𝛽) ≤ 𝜅;
(3) for all 𝛽 ∈ Γ and all 𝛼 ∈ acc(𝐶𝛽), we have 𝛼 ∈ Γ and 𝐶𝛼 = 𝐶𝛽 ∩ 𝛼.

The principle �𝐵
𝜅 asserts the existence of a �𝐵

𝜅 -sequence.4

Some basic facts about �𝐵
𝜅 can be found in [30], where it goes by the name

“weak �𝜅.” In particular, it is shown in [30] that �𝐵
𝜅 follows from the existence of

a (𝜅, 1)-morass.

Theorem 3.11. Suppose that SDFA(𝒫𝜅) holds. Then so does �𝐵
𝜅 .

The rest of this subsection is devoted to proving Theorem 3.11. We must first
identify a relevant member of 𝒫𝜅, which will be a slight modification of the poset
used to add �𝐵

𝜅 in [30, S1.3].

Definition 3.12. P consists of all pairs 𝑝 = (𝑥, 𝑓) such that:

(1) 𝑥 ∈ [𝜅+]<𝜅;
(2) 𝑓 is a function from 𝑥 to 𝒫(𝑥) such that for all 𝛽 ∈ 𝑥:

(a) 𝑓(𝛽) is a closed subset of 𝛽;5

(b) for all 𝛼 ∈ acc(𝑓(𝛽)), we have 𝑓(𝛼) = 𝑓(𝛽) ∩ 𝛼.

The coordinates of a condition 𝑝 ∈ P will often be identified as 𝑥𝑝 and 𝑓𝑝,
respectively.

Definition 3.13. For all 𝑝, 𝑞 ∈ P, we let 𝑞 ≤P 𝑝 iff:

∙ 𝑥𝑝 ⊆ 𝑥𝑞;
∙ for all 𝛽 ∈ 𝑥𝑝, we have 𝑓𝑝(𝛽) ⊑ 𝑓𝑞(𝛽);

4Note that �𝐵
𝜅 is equivalent to the principle �𝜅(𝜅+,⊑𝜅) from [1, S1].

5We say that 𝑐 is a closed subset of 𝛽 iff 𝑐 ⊆ 𝛽 and for every 𝛼 < 𝛽, 𝑐∩𝛼 ̸= ∅ =⇒ sup(𝑐∩𝛼) ∈ 𝑐.
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∙ for all 𝛽 ∈ 𝑥𝑝, if sup(𝑥𝑝 ∩ 𝛽) = 𝛽, then 𝑓𝑞(𝛽) = 𝑓𝑝(𝛽).

Definition 3.14. Q is the set of all conditions 𝑝 ∈ P such that:

(1) 𝑥𝑝 = cl(𝑥𝑝);
(2) for all 𝛽 ∈ nacc(𝑥𝑝) ∖ {min(𝑥𝑝)}, we have max(𝑓𝑝(𝛽)) = max(𝑥𝑝 ∩ 𝛽).

In order to show that (P,≤P,Q) ∈ 𝒫𝜅, we must define the actions of c.o.i.’s on
P and a restriction operation.

Definition 3.15. Suppose that 𝜋 is a c.o.i. from a subset of 𝜅+ to 𝜅+. For each
𝑝 ∈ Pdom(𝜋), we define 𝜋.𝑝 to be the condition (𝑥, 𝑓) ∈ P such that:

(1) 𝑥 = 𝜋“𝑥𝑝;
(2) for all 𝛼 ∈ 𝑥𝑝, we have 𝑓(𝜋(𝛼)) = 𝜋“𝑓𝑝(𝛼).

Definition 3.16. Suppose that 𝑝 ∈ P and 𝛼 < 𝜅+. Then 𝑝 �� 𝛼 is the condition
(𝑥, 𝑓) ∈ P such that 𝑥 = 𝑥𝑝 ∩ 𝛼 and 𝑓 = 𝑓𝑝 � 𝑥.

Naturally, for each 𝑝 ∈ P, we let 𝑥𝑝 denote the realm of 𝑝. With these definitions,
it is immediate that (P,≤P,Q) satisfies Clauses (1)–(5) of Definition 2.1. We now
verify Clauses (6)–(8), in order.

Lemma 3.17. Suppose that 𝑝 ∈ P. Then there is 𝑞 ∈ Q with 𝑞 ≤P 𝑝 such that
𝑥𝑞 = cl(𝑥𝑝).

Proof. Set 𝑥𝑞 := cl(𝑥𝑝), so that nacc(𝑥𝑞) = nacc(𝑥𝑝) and acc(𝑥𝑞) ⊇ acc(𝑥𝑝). Next,
define 𝑓𝑞 : 𝑥𝑞 → 𝒫(𝑥𝑞) by stipulating:

𝑓𝑞(𝛼) :=

⎧⎪⎨⎪⎩
𝑓𝑝(𝛼) ∪ {max(𝑥𝑞 ∩ 𝛼)} if 𝛼 ∈ nacc(𝑥𝑞) ∖ {min(𝑥𝑞)};

∅ if 𝛼 ∈ 𝑥𝑞 ∖ 𝑥𝑝;

𝑓𝑝(𝛼) otherwise.

It is clear that 𝑞 := (𝑥𝑞, 𝑓𝑞) is as desired. �

Lemma 3.18. Suppose that 𝜉 < 𝜅 and ⟨𝑞𝜂 | 𝜂 < 𝜉⟩ is a decreasing sequence
of conditions from Q. Let 𝑥 :=

⋃︀
𝜂<𝜉 𝑥𝑞𝜂 , and suppose that 𝛼 < ssup(𝑥) and

𝑟 ∈ Qssup(𝑥∩𝛼) is a lower bound for ⟨𝑞𝜂 �� 𝛼 | 𝜂 < 𝜉⟩. Then there is 𝑞 ∈ Q such that:

(1) 𝑞 �� ssup(𝑥 ∩ 𝛼) = 𝑟;
(2) 𝑥𝑞 = cl(𝑥𝑟 ∪ 𝑥);
(3) 𝑞 is a lower bound for ⟨𝑞𝜂 | 𝜂 < 𝜉⟩.

Proof. We will construct a condition 𝑞 = (𝑥𝑞, 𝑓𝑞) as desired. We are required to let
𝑥𝑞 := cl(𝑥𝑟∪𝑥) and to ensure that 𝑓𝑞 �𝑥𝑟 := 𝑓𝑟. As 𝑥𝑟 ⊑ 𝑥𝑞, it remains to determine
𝑓𝑞 � (𝑥𝑞 ∖ ssup(𝑥∩ 𝛼)). We will define 𝑓𝑞(𝛽) by recursion on 𝛽 ∈ (𝑥𝑞 ∖ ssup(𝑥∩ 𝛼)),
maintaining the hypothesis that (𝑥𝑞 ∩ (𝛽 + 1), 𝑓𝑞 � (𝛽 + 1)) is an element of Q and a
lower bound for ⟨𝑞𝜂��(𝛽+1) | 𝜂 < 𝜉⟩. For notational ease, if 𝛽 ∈ nacc(𝑥𝑞)∖{min(𝑥𝑞)},
then let 𝛽− := max(𝑥𝑞 ∩ 𝛽).
I If 𝛽 ∈ acc(𝑥), then fix 𝜂𝛽 < 𝜉 such that 𝛽 ∈ 𝑥𝑞𝜂𝛽

, and let 𝑓𝑞(𝛽) :=⋃︀
𝜂∈[𝜂𝛽 ,𝜉)

𝑓𝑞𝜂 (𝛽). There are two possibilities to consider here. If there is 𝜂* ∈ [𝜂𝛽 , 𝜉)

such that sup(𝑥𝑞𝜂* ∩ 𝛽) = 𝛽, then it follows from Definition 3.13 that 𝑓𝑞(𝛽) =
𝑓𝑞𝜂* (𝛽).

If, on the other hand, there is no such 𝜂*, then the fact that each 𝑥𝑞𝜂 is closed
in its supremum implies that, for all 𝜂 ∈ [𝜂𝛽 , 𝜉), we have 𝛽 ∈ nacc(𝑥𝑞𝜂 ) and hence
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max(𝑓𝑞𝜂 (𝛽)) = max(𝑥𝑞𝜂 ∩ 𝛽). Since 𝛽 ∈ acc(𝑥), it then follows that 𝑓𝑞(𝛽) is club
in 𝛽.
I If 𝛽 ∈ acc+(𝑥) ∖ 𝑥, then let 𝛾 := min(𝑥 ∖ (𝛽 + 1)). There is 𝜂𝛽 < 𝜉 such

that, for all 𝜂 ∈ [𝜂𝛽 , 𝜉), we have 𝛾 ∈ 𝑥𝑞𝜂 and 𝑥𝑞𝜂 ∩ 𝛽 ̸= ∅. For all such 𝜂, let
𝛿𝜂 := max(𝑥𝑞𝜂 ∩𝛽). It follows that sup{𝛿𝜂 | 𝜂 ∈ [𝜂𝛽 , 𝜉)} = 𝛽 and, for all 𝜂 ∈ [𝜂𝛽 , 𝜉),
we have max(𝑓𝑞𝜂 (𝛾)) = 𝛿𝜂. We can therefore let 𝑓𝑞(𝛽) :=

⋃︀
𝜂∈[𝜂𝛽 ,𝜉)

𝑓𝑞𝜂 (𝛾).

I If 𝛽 ∈ nacc(𝑥) and 𝛽− /∈ 𝑥, then, by the construction in the previous case, we
have 𝑓𝑞(𝛽−) =

⋃︀
𝜂<𝜉 𝑓𝑞𝜂 (𝛽). We can therefore let 𝑓𝑞(𝛽) := 𝑓𝑞(𝛽−) ∪ {𝛽−}.

I If 𝛽 ∈ nacc(𝑥) and 𝛽− ∈ 𝑥, then there is 𝜂𝛽 < 𝜉 such that {𝛽, 𝛽−} ⊆ 𝑥𝑞𝜂𝛽
.

But then, for all 𝜂 ∈ [𝜂𝛽 , 𝜉), we have 𝑓𝑞𝜂 (𝛽) = 𝑓𝑞𝜂𝛽 (𝛽) and max(𝑓𝑞𝜂 (𝛽)) = 𝛽−. We

can therefore let 𝑓𝑞(𝛽) := 𝑓𝑞𝜂𝛽 (𝛽).

It is easily verified that 𝑞, constructed in this manner, is as desired. �

Lemma 3.19. Suppose that 𝑝 ∈ Q, 𝛼 < ssup(𝑥𝑝), 𝑞 ∈ P𝛼, and 𝑞 ≤P 𝑝 �� 𝛼. Then
𝑝 and 𝑞 have a ≤P-greatest lower bound, 𝑟. Moreover, we have 𝑥𝑟 = 𝑥𝑝 ∪ 𝑥𝑞 and
𝑟 �� 𝛼 = 𝑞.

Proof. Let 𝑥𝑟 := 𝑥𝑝∪𝑥𝑞, so that 𝑥𝑟∩𝛼 = 𝑥𝑞. Define 𝑓𝑟 : 𝑥𝑟 → 𝒫(𝑥𝑟) by stipulating:

𝑓𝑟(𝛽) :=

{︃
𝑓𝑞(𝛽) if 𝛽 < 𝛼;

𝑓𝑝(𝛽) otherwise.

To see that 𝑟 := (𝑥𝑟, 𝑓𝑟) is a condition, we fix arbitrary 𝛽 ∈ 𝑥𝑟 and 𝛾 ∈
acc(𝑓𝑟(𝛽)), and verify that 𝑓𝑟(𝛾) = 𝑓𝑟(𝛽) ∩ 𝛾. To avoid trivialities, suppose that
𝛽 ≥ 𝛼 > 𝛾. Since 𝑓𝑟(𝛽) = 𝑓𝑝(𝛽) ⊆ 𝑥𝑝, we have sup(𝑥𝑝∩𝛾) = 𝛾, so, since 𝑞 ≤P 𝑝 ��𝛼,
we infer that 𝑓𝑞(𝛾) = 𝑓𝑝(𝛾) = 𝑓𝑝(𝛽) ∩ 𝛾, i.e., 𝑓𝑟(𝛾) = 𝑓𝑟(𝛽) ∩ 𝛾.

It is now readily checked that 𝑟 has the desired properties. �

It follows that (P,≤P,Q) ∈ 𝒫𝜅. For each 𝑥 ∈
(︀
𝜅+

3

)︀
, let 𝐷𝑥 := {𝑝 ∈ Q | 𝑥𝑝 ⊇ 𝑥}.

By Proposition 3.1(2), 𝒟 := {𝐷𝑥 | 𝑥 ∈
(︀
𝜅+

3

)︀
} is a sharply dense system, so we

can apply SDFA(𝒫𝜅) to obtain a filter 𝐺 on P that meets 𝒟 everywhere. For all

𝛽 ∈ 𝐸𝜅+

𝜅 , let 𝐶𝛽 :=
⋃︀
{𝑓𝑝(𝛽) | 𝑝 ∈ 𝐺, 𝛽 ∈ 𝑥𝑝}. Note that for all 𝑝 ∈ 𝐺 and 𝛽 ∈ 𝑥𝑝,

we have |𝑓𝑝(𝛽)| ≤ |𝑥𝑝| < 𝜅.

Claim 3.20. Suppose that 𝛽, 𝛾 ∈ 𝐸𝜅+

𝜅 . Then:

(1) 𝐶𝛽 is club in 𝛽 and otp(𝐶𝛽) = 𝜅;
(2) For all 𝛼 ∈ acc(𝐶𝛽) ∩ acc(𝐶𝛾), we have 𝐶𝛽 ∩ 𝛼 = 𝐶𝛾 ∩ 𝛼.

Proof. (1) By the definition of P and the fact that 𝐺 is a filter, it follows that 𝐶𝛽

is a subset of 𝛽, closed in its supremum, such that every proper initial segment of
𝐶𝛽 has size < 𝜅. It thus suffices to verify that 𝐶𝛽 is unbounded in 𝛽. To this end,
fix 𝛼 < 𝛽. Since 𝐺 meets 𝒟 everywhere, we can find 𝑝 ∈ 𝐺 ∩ 𝐷{𝛼,𝛽,𝛽+1}. Since
cf(𝛽) = 𝜅 and |𝑥𝑝| < 𝜅, we have 𝛽 ∈ nacc(𝑥𝑝). Therefore, since 𝑝 ∈ Q, we have
max(𝑓𝑝(𝛽)) = max(𝑥𝑝 ∩ 𝛽) ≥ 𝛼, so 𝐶𝛽 ∩ [𝛼, 𝛽) ̸= ∅.

(2) Given 𝛼 ∈ acc(𝐶𝛽)∩acc(𝐶𝛾), we fix 𝑝 ∈ 𝐺∩𝐷{𝛼,𝛽,𝛾}. As in the previous case,
we have max(𝑓𝑝(𝛽)) ≥ 𝛼 and max(𝑓𝑝(𝛾)) ≥ 𝛼. Consequently, 𝐶𝛽 ∩ 𝛼 = 𝑓𝑝(𝛽) ∩ 𝛼
and 𝐶𝛾 ∩ 𝛼 = 𝑓𝑝(𝛾) ∩ 𝛼. By the definition of P, it then follows that 𝐶𝛽 ∩ 𝛼 =
𝑓𝑝(𝛼) = 𝐶𝛾 ∩ 𝛼. �

Let Γ := 𝐸𝜅+

𝜅 ∪
⋃︀
{acc(𝐶𝛽) | 𝛽 ∈ 𝐸𝜅+

𝜅 }. For each 𝛼 ∈ Γ ∖ 𝐸𝜅+

𝜅 , find 𝛽 ∈ 𝐸𝜅+

𝜅

such that 𝛼 ∈ acc(𝐶𝛽), and let 𝐶𝛼 := 𝐶𝛽 ∩ 𝛼. By the preceding Claim, this is
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independent of the choice of 𝛽. It follows that ⟨𝐶𝛼 | 𝛼 ∈ Γ⟩ is a �𝐵
𝜅 -sequence, thus

completing the proof of Theorem 3.11.

3.4. Strong stationary coding sets. In [21], Shelah and Stanley derive a sta-
tionary coding set from the existence of a (𝜅, 1)-morass with built-in ♢. Specifically,
they obtain a stationary subset 𝒮 of [𝜅+]<𝜅 on which the map 𝑥 ↦→ sup(𝑥) is one-to-
one. By Theorem 3.11 and the next proposition, this also follows from the forcing
axiom SDFA(𝒫𝜅).

Proposition 3.21 (folklore). If �𝐵
𝜅 holds, then there exists a stationary subset of

[𝜅+]<𝜅 on which the map 𝑥 ↦→ sup(𝑥) is one-to-one.

Proof. Let ⟨𝐶𝛽 | 𝛽 ∈ Γ⟩ be a �𝐵
𝜅 -sequence. Enlarge it to a sequence �⃗� = ⟨𝐶𝛽 |

𝛽 < 𝜅⟩ by letting, for all limit 𝛽 ∈ 𝜅 ∖Γ, 𝐶𝛽 be an arbitrary club in 𝛽 of order type
cf(𝛽), and letting 𝐶𝛽+1 := {𝛽} for all 𝛽 < 𝜅.

Let 𝜌�⃗�1 : [𝜅+]2 → 𝜅 denote the associated maximal weight function from [27,

S6.2]. For each 𝛽 < 𝜅+, let 𝜌1𝛽 : 𝛽 → 𝜅 denote the fiber map 𝜌�⃗�1 (·, 𝛽). Note that:

∙ for all 𝛽 < 𝜅+, 𝜌1𝛽 [𝐶𝛽 ] = otp(𝐶𝛽);
∙ for all 𝛽 < 𝜅+, 𝜌1𝛽 is (< 𝜅)-to-1;
∙ for all 𝛽 ∈ Γ and 𝛼 ∈ acc(𝐶𝛽), we have 𝜌1𝛼 ⊆ 𝜌1𝛽 .

In particular, for every 𝛽 ∈ 𝐸𝜅+

<𝜅, we have that

𝑥𝛽 := (𝜌1𝛽)−1[otp(𝐶𝛽)]

is a cofinal subset of 𝛽 of size < 𝜅. Thus, we are left with proving the following.

Claim 3.22. {𝑥𝛽 | 𝛽 ∈ 𝐸𝜅+

<𝜅} is stationary in [𝜅+]<𝜅.

Proof. Given a function 𝑓 : [𝜅+]<𝜔 → 𝜅+, let us fix some 𝛾 ∈ 𝐸𝜅+

𝜅 such that
𝑓“[𝛾]<𝜔 ⊆ 𝛾. Define 𝑔 : 𝜅 → 𝜅 by letting, for all 𝜀 < 𝜅,

𝑔(𝜀) := sup(𝜌1𝛾“𝑓“[𝜌−1
1𝛾 [𝜀]]<𝜔).

Fix 𝜖 ∈ acc(𝜅) such that 𝑔[𝜖] ⊆ 𝜖. Put 𝛽 := 𝐶𝛾(𝜖), so that otp(𝐶𝛽) = 𝜖 and
𝜌1𝛽 ⊆ 𝜌1𝛾 . To see that 𝑓“[𝑥𝛽 ]<𝜔 ⊆ 𝑥𝛽 , let {𝛼𝑖 | 𝑖 < 𝑛} ∈ [𝑥𝛽 ]<𝜔 be arbitrary. Since
𝑥𝛽 = (𝜌1𝛽)−1[𝜖] and 𝜌1𝛽 ⊆ 𝜌1𝛾 , we have

{𝜌1𝛾(𝛼𝑖) | 𝑖 < 𝑛} = {𝜌1𝛽(𝛼𝑖) | 𝑖 < 𝑛} ∈ [𝜖]<𝜔.

Fix a large enough 𝜀 < 𝜖 such that {𝛼𝑖 | 𝑖 < 𝑛} ∈ [𝜌−1
1𝛾 [𝜀]]<𝜔. Since 𝑔(𝜀) < 𝜖, we

then have 𝑓({𝛼𝑖 | 𝑖 < 𝑛}) ∈ 𝑥𝛽 . �

This completes the proof. �

Note that, by [8, S3], strong stationary coding sets can be seen as a GCH-free
version of ♢. For more information on stationary coding sets, see [31].

4. Super-Souslin trees

Throughout this section, 𝜆 denotes an arbitrary cardinal.

The notion of a 𝜆++-super-Souslin tree was isolated by Shelah in response to
work by Laver on trees with ascent paths. Ascent paths provide obstacles to a
tree being special; super-Souslin trees are designed to present a similar obstacle
that entails the existence not only of a non-special tree but of a Souslin one. In
Subsection 4.1, we provide, as a means of helping to motivate and provide context
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for the definition of super-Souslin trees, some remarks on the connection between
these notions. In Subsection 4.2, we provide a proof of Theorem C:

Theorem C. Suppose that SDFA(𝒫𝜆+) holds. Then there exists a 𝜆+-complete
𝜆++-super-Souslin tree.

4.1. Introduction to super-Souslin trees. A tree (𝑇,<𝑇 ) is said to be a 𝜅-tree
if for every 𝛼 < 𝜅, 𝑇𝛼 is a nonempty set of size < 𝜅 and 𝑇𝜅 = ∅. The tree is said
to be splitting if every node in the tree admits at least two immediate successors.
It is said to be normal if, for all 𝛼 < 𝛽 < 𝜅 and all 𝑢 ∈ 𝑇𝛼, there is 𝑣 ∈ 𝑇𝛽 such
that 𝑢 <𝑇 𝑣. It is said to be Hausdorff if for all limit 𝛼 < 𝜅 and all 𝑢, 𝑣 ∈ 𝑇𝛼, the
equality 𝑢↓ = 𝑣↓ implies 𝑢 = 𝑣. For convenience, we will not require that a tree
be Hausdorff. Note, however, that any splitting (resp. normal) tree (𝑇,<𝑇 ) can
easily be turned into a splitting (resp. normal) Hausdorff tree (𝑇 ′, <𝑇 ′) by shifting
all levels 𝑇𝛼 to be 𝑇 ′

𝛼+1 and, for limit 𝛼 < 𝜅, letting 𝑇 ′
𝛼 consist of unique limits of

all branches through
⋃︀

𝛽<𝛼 𝑇𝛽 that are continued in 𝑇𝛼.

Definition 4.1. Let 𝜃 be an arbitrary cardinal. For each 𝛼 < 𝜅, let 𝑇 𝜃
𝛼 denote the

collection of all injections 𝑎 : 𝜃 → 𝑇𝛼. Let 𝑇 𝜃 denote
⋃︀

𝛼<𝜅 𝑇
𝜃
𝛼.

An element of 𝑇 𝜃 will be referred to as a 𝜃-level sequence from 𝑇 (or, simply, a
level sequence from 𝑇 ). For 𝑎, 𝑏 ∈ 𝑇 𝜃, we abuse notation and write 𝑎 <𝑇 𝑏 iff, for
all 𝑖 < 𝜃, 𝑎(𝑖) <𝑇 𝑏(𝑖). Likewise, 𝑎 ≤𝑇 𝑏 iff, for all 𝑖 < 𝜃, 𝑎(𝑖) ≤𝑇 𝑏(𝑖).

Definition 4.2. [𝑇 𝜃]2 := {(𝑎, 𝑏) ∈ 𝑇 𝜃 × 𝑇 𝜃 | 𝑎 <𝑇 𝑏}.

Definition 4.3 (Shelah, [18]). A 𝜆++-super-Souslin tree is a normal, splitting
𝜆++-tree (𝑇,<𝑇 ) for which there exists a function 𝐹 : [𝑇𝜆]2 → 𝜆+ satisfying the
following condition: for all 𝑎, 𝑏, 𝑐 ∈ 𝑇𝜆 with 𝑎 <𝑇 𝑏, 𝑐, if 𝐹 (𝑎, 𝑏) = 𝐹 (𝑎, 𝑐), then
there is 𝑖 < 𝜆 such that 𝑏(𝑖) and 𝑐(𝑖) are <𝑇 -comparable.

Fact 4.4 (Shelah, [18]). Suppose (𝑇,<𝑇 ) is a 𝜆++-super-Souslin tree. If 𝑊 is an
outer model of 𝑉 with the same 𝒫(𝜆) and 𝜆++, then, in 𝑊 , there exists some 𝑥 ∈ 𝑇
such that (𝑥↑, <𝑇 ) is a 𝜆++-Souslin tree.

The next lemma shows that the two-dimensional function 𝐹 witnessing that a
tree (𝑇,<𝑇 ) is 𝜆++-super-Souslin cannot be replaced by a one-dimensional function.

Lemma 4.5. Suppose that (𝑇,<𝑇 ) is a normal, splitting 𝜅-tree, and 𝜃, 𝜇 are cardi-
nals < 𝜅 (e.g., 𝜅 = 𝜆++, 𝜇 = 𝜆+, and 𝜃 = 𝜆.) There exists no function 𝐹 : 𝑇 𝜃 → 𝜇
such that, for every 𝑎, 𝑏 ∈ 𝑇 𝜃, if 𝐹 (𝑎) = 𝐹 (𝑏), then there is 𝑖 < 𝜃 such that 𝑎(𝑖)
and 𝑏(𝑖) are <𝑇 -comparable.

Proof. Suppose for sake of contradiction that there is such a function 𝐹 . We first
argue that (𝑇,<𝑇 ) is a 𝜅-Souslin tree. Furthermore:

Claim 4.5.1. Suppose 𝑊 is an outer model of 𝑉 in which 𝜅 is not collapsed. Then
(𝑇,<𝑇 ) is a 𝜅-Souslin tree in 𝑊 .

Proof. Work in 𝑉 . As the proof of Claim A.7.1 of [3] makes clear, the fact that
(𝑇,<𝑇 ) is normal and splitting implies that for every 𝑢 ∈ 𝑇 , we may find some
𝑎𝑢 ∈ 𝑇 𝜃 such that 𝑢 <𝑇 𝑎𝑢(𝑖) for all 𝑖 < 𝜃. Next, let us work in 𝑊 , where 𝑊 is an
outer model of 𝑉 in which 𝜅 is not collapsed. Since (𝑇,<𝑇 ) is a splitting 𝜅-tree, to
show that (𝑇,<𝑇 ) is 𝜅-Souslin, it suffices to show that it has no antichains of size
𝜅. Towards a contradiction, suppose that 𝑈 := {𝑢𝛼 | 𝛼 < 𝜅} is an antichain. While



A FORCING AXIOM DECIDING THE GENERALIZED SOUSLIN HYPOTHESIS 13

it is possible that 𝑈 ∈ 𝑊 ∖ 𝑉 , we nevertheless have {𝑎𝑢𝛼
| 𝛼 < 𝜅} ⊆ 𝑉 . Since

𝜅 is not collapsed, we may find ordinals 𝛼 < 𝛽 < 𝜅 such that 𝐹 (𝑎𝑢𝛼) = 𝐹 (𝑎𝑢𝛽
).

Pick 𝑖 < 𝜃 such that 𝑎𝑢𝛼
(𝑖) and 𝑎𝑢𝛽

(𝑖) are <𝑇 -comparable. Then 𝑢𝛼 and 𝑢𝛽 are
<𝑇 -comparable. This is a contradiction. �

Now force over 𝑉 with the forcing notion P := (𝑇,>𝑇 ) (i.e., the order of P is
the reverse of the tree order). As (𝑇,<𝑇 ) is a 𝜅-Souslin tree in 𝑉 , we have that
P has the 𝜅-c.c. and does not collapse 𝜅. Therefore, the preceding claim implies
that (𝑇,<𝑇 ) is a 𝜅-Souslin tree in 𝑉 P, contradicting the fact that P adds a cofinal
branch through (𝑇,<𝑇 ). �

The next lemma shows that the range of the function 𝐹 witnessing that a tree
(𝑇,<𝑇 ) is 𝜆++-super-Souslin cannot be smaller than 𝜆+. In particular, there is
no straightforward generalization of the notion of super-Souslin tree to inaccessible
cardinals.

Lemma 4.6. Suppose that (𝑇,<𝑇 ) is a normal, splitting 𝜅-tree, and 𝜃, 𝜇 are car-
dinals < 𝜅. If 𝜇+ < 𝜅, then there exists no function 𝐹 : [𝑇 𝜃]2 → 𝜇 such that, for
all 𝑎, 𝑏, 𝑐 ∈ 𝑇 𝜃 with 𝑎 <𝑇 𝑏, 𝑐, if 𝐹 (𝑎, 𝑏) = 𝐹 (𝑎, 𝑐), then there is 𝑖 < 𝜃 such that 𝑏(𝑖)
and 𝑐(𝑖) are <𝑇 -comparable.

Proof. Suppose that 𝐹 is a counterexample. Fix an arbitrary 𝑎 ∈ 𝑇 𝜃. As the proof
of Claim A.7.1 of [3] makes clear, the fact that (𝑇,<𝑇 ) is normal and splitting
implies that there exists some large enough 𝛽 < 𝜅 and an injection 𝑏 : 𝜇+× 𝜃 → 𝑇𝛽

such that for all 𝜂 < 𝜇+ and all 𝑖 < 𝜃, 𝑎(𝑖) <𝑇 𝑏(𝜂, 𝑖). For each 𝜂 < 𝜇+, define
𝑏𝜂 : 𝜃 → 𝑇𝛽 by stipulating 𝑏𝜂(𝑖) := 𝑏(𝜂, 𝑖). Now, find 𝜂 < 𝜁 < 𝜇+ such that
𝐹 (𝑎, 𝑏𝜂) = 𝐹 (𝑎, 𝑏𝜁). Then there must exist some 𝑖 < 𝜃 such that 𝑏𝜂(𝑖) and 𝑏𝜁(𝑖) are
<𝑇 -comparable, contradicting the fact that 𝑏𝜂(𝑖) and 𝑏𝜁(𝑖) are two distinct elements
of 𝑇𝛽 . �

Now, we move on to deal with the notion of an ascent path.

Definition 4.7 (Laver). Suppose that 𝜃 is a cardinal < 𝜅 and ℱ is a family
satisfying 𝜃 ∈ ℱ ⊆ 𝒫(𝜃). An ℱ-ascent path through a 𝜅-tree (𝑇,<𝑇 ) is a sequence

𝑓 = ⟨𝑓𝛼 | 𝛼 < 𝜅⟩ such that for all 𝛼 < 𝛽 < 𝜅:

(1) 𝑓𝛼 is a function from 𝜃 to 𝑇𝛼;
(2) {𝑖 < 𝜃 | 𝑓𝛼(𝑖) <𝑇 𝑓𝛽(𝑖)} ∈ ℱ .

Definition 4.8. For every cardinal 𝜃, write ℱfin
𝜃 := {𝑍 ⊆ 𝜃 | |𝜃 ∖ 𝑍| < 𝜔},

ℱbd
𝜃 := {𝑍 ⊆ 𝜃 | sup(𝜃 ∖ 𝑍) < 𝜃}, and ℱ𝜃 := 𝒫(𝜃) ∖ {∅}.

By [22], if (𝑇,<𝑇 ) is a special 𝜆+-tree that admits an ℱbd
𝜃 -ascent path, then

cf(𝜃) = cf(𝜆). By [28], if 𝜆 is regular and (𝑇,<𝑇 ) is a special 𝜆+-tree that admits
an ℱ𝜃-ascent path, then 𝜃 = 𝜆. A construction of a special 𝜆+-tree with an ℱbd

cf(𝜆)-

ascent path may be found in [13]. Constructions of 𝜅-Souslin trees with ℱfin
𝜃 -ascent

paths may be found in [3].

Proposition 4.9 (folklore). Any 𝜆++-super-Souslin tree (𝑇,<𝑇 ) admits an ℱ𝜆-
ascent path.

Proof. Suppose (𝑇,<𝑇 ) is a 𝜆++-super-Souslin tree with a witnessing map 𝐹 :
[𝑇𝜆]2 → 𝜆+. Fix an arbitrary 𝑎 ∈ 𝑇𝜆. Let 𝜖 be such that 𝑎 ∈ 𝑇𝜆

𝜖 . By normality of
(𝑇,<𝑇 ), for each 𝛽 ∈ 𝜆++ ∖ 𝜖, we may fix 𝑎𝛽 ∈ 𝑇𝜆

𝛽 with 𝑎 ≤𝑇 𝑎𝛽 . Pick a cofinal
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subset 𝐵 ⊆ 𝜆++ ∖ 𝜖 on which the map 𝛽 ↦→ 𝐹 (𝑎, 𝑎𝛽) is constant. Then ⟨𝑎𝛽 | 𝛽 ∈ 𝐵⟩
induces an ℱ𝜃-ascent path 𝑓 = ⟨𝑓𝛼 | 𝛼 < 𝜅⟩, as follows. For every 𝛼 < 𝜆++, let
𝛽(𝛼) := min(𝐵 ∖𝛼), and define 𝑓𝛼 : 𝜆 → 𝑇𝛼 by letting 𝑓𝛼(𝑖) be the unique element
of 𝑇𝛼 which is ≤𝑇 𝑎𝛽(𝛼)(𝑖). �

Aiming for an ℱbd
𝜆 -ascent path, one may want to strengthen Definition 4.3 to

assert that for all 𝑎, 𝑏, 𝑐 ∈ 𝑇𝜆 with 𝑎 <𝑇 𝑏, 𝑐, if 𝐹 (𝑎, 𝑏) = 𝐹 (𝑎, 𝑐), then 𝐼(𝑏, 𝑐) :=
{𝑖 < 𝜆 | 𝑏(𝑖) and 𝑐(𝑖) are <𝑇 -comparable} is in ℱbd

𝜆 . However, this is impossible:

Lemma 4.10. Suppose (𝑇,<𝑇 ) is a normal, splitting 𝜆++-tree, 𝐹 : [𝑇𝜆]2 → 𝜆+,
and ℱ is a proper filter on 𝜆. Then there are (𝑎, 𝑏), (𝑎, 𝑐) ∈ [𝑇𝜆]2 with 𝐹 (𝑎, 𝑏) =
𝐹 (𝑎, 𝑐) such that 𝐼(𝑏, 𝑐) /∈ ℱ .

Proof. Towards a contradiction, suppose that for all (𝑎, 𝑏), (𝑎, 𝑐) ∈ [𝑇𝜆]2 with
𝐹 (𝑎, 𝑏) = 𝐹 (𝑎, 𝑐), we have 𝐼(𝑏, 𝑐) ∈ ℱ . For all 𝑎 ∈ 𝑇𝜆 and 𝜂 < 𝜆+, let 𝑈𝑎 :=
{𝑏 ∈ 𝑇𝜆 | 𝑎 ≤𝑇 𝑏} and 𝑈𝜂

𝑎 := {𝑏 ∈ 𝑈𝑎 | 𝐹 (𝑎, 𝑏) = 𝜂}. Now, fix some 𝑎 ∈ 𝑇𝜆 arbi-
trarily, and, for every 𝜂 < 𝜆+, let 𝑈𝜂 := {𝑏 ∈ 𝑈𝑎 | 𝑈𝑏 ∩ 𝑈𝜂

𝑎 ̸= ∅} be the downward
closure of 𝑈𝜂

𝑎 within 𝑈𝑎.

Claim 4.10.1. Suppose that 𝜂 < 𝜆+ and 𝑏, 𝑐 ∈ 𝑈𝜂. Then 𝐼(𝑏, 𝑐) ∈ ℱ .

Proof. Pick 𝑏′ ∈ 𝑈𝑏 ∩ 𝑈𝜂
𝑎 and 𝑐′ ∈ 𝑈𝑐 ∩ 𝑈𝜂

𝑎 . Since 𝐹 (𝑎, 𝑏′) = 𝜂 = 𝐹 (𝑎, 𝑐′), and by
assumption, we have that 𝐼(𝑏′, 𝑐′) ∈ ℱ .

Let 𝛽, 𝛽′, 𝛾, 𝛾′ be such that 𝑏 ∈ 𝑇𝜆
𝛽 , 𝑏′ ∈ 𝑇𝜆

𝛽′ , 𝑐 ∈ 𝑇𝜆
𝛾 , and 𝑐′ ∈ 𝑇𝜆

𝛾′ . Without

loss of generality, 𝛽′ ≤ 𝛾′. Now, there are two relevant configurations of the other
ordinals to consider.

Case 1: 𝛽 ≤ 𝛽′ < 𝛾. In this case, for all 𝑖 ∈ 𝐼(𝑏′, 𝑐′), we have 𝑏(𝑖) ≤𝑇 𝑏′(𝑖) and
𝑏′(𝑖), 𝑐(𝑖) ≤𝑇 𝑐′(𝑖), so 𝑏(𝑖) and 𝑐(𝑖) are <𝑇 -comparable.

Case 2: 𝛽, 𝛾 ≤ 𝛽′. In this case, for all 𝑖 ∈ 𝐼(𝑏′, 𝑐′), we have 𝑏(𝑖), 𝑐(𝑖) ≤𝑇 𝑏′(𝑖)
and again, 𝑏(𝑖) and 𝑐(𝑖) are <𝑇 -comparable. �

For any two distinct ordinals 𝜂, 𝜁 below 𝜆+, let 𝛿𝜂,𝜁 denote the least ordinal 𝛿
below 𝜆++ such that there are 𝑏 ∈ 𝑈𝜂 ∩ 𝑇𝜆

𝛿 and 𝑐 ∈ 𝑈𝜁 ∩ 𝑇𝜆
𝛿 for which 𝐼(𝑏, 𝑐) = ∅,

if such an ordinal exists; otherwise, leave 𝛿𝜂,𝜁 undefined.

Claim 4.10.2. Suppose 𝛿𝜂,𝜁 is defined. Then 𝑈𝜂 ∩ 𝑈𝜁 ⊆
⋃︀
{𝑇𝜆

𝛽 | 𝛽 < 𝛿𝜂,𝜁}.

Proof. Towards a contradiction, suppose that 𝑑 ∈ 𝑈𝜂 ∩𝑈𝜁 ∩ 𝑇𝜆
𝛽 for some 𝛽 ≥ 𝛿𝜂,𝜁 .

Since 𝑈𝜂 and 𝑈𝜁 are downward closed, we may simply assume that 𝛽 = 𝛿𝜂,𝜁 .
Using the fact that 𝛽 = 𝛿𝜂,𝜁 , fix 𝑏 ∈ 𝑈𝜂∩𝑇𝜆

𝛽 and 𝑐 ∈ 𝑈𝜁∩𝑇𝜆
𝛽 such that 𝐼(𝑏, 𝑐) = ∅.

By Claim 4.10.1, since 𝑏, 𝑑 ∈ 𝑈𝜂 and 𝑐, 𝑑 ∈ 𝑈𝜁 , we have that 𝐼(𝑏, 𝑑) and 𝐼(𝑐, 𝑑) are
in ℱ . In particular, 𝐼(𝑏, 𝑑)∩ 𝐼(𝑐, 𝑑) ̸= ∅, contradicting the fact that 𝐼(𝑏, 𝑐) = ∅. �

As 𝜆+ < 𝜆++, let 𝛽 < 𝜆++ be large enough so that, if 𝜂, 𝜁 are two distinct
ordinals below 𝜆+ and 𝛿𝜂,𝜁 is defined, then 𝛿𝜂,𝜁 < 𝛽. By increasing 𝛽 if necessary, we
may assume that 𝑈𝑎∩𝑇𝜆

𝛽 ̸= ∅. Fix 𝑑 ∈ 𝑈𝑎∩𝑇𝜆
𝛽 . By the fact that (𝑇,<𝑇 ) is splitting,

for each 𝑖 < 𝜆 we may fix 𝑒0(𝑖) ̸= 𝑒1(𝑖), both in 𝑇𝛽+1, with 𝑑(𝑖) <𝑇 𝑒0(𝑖), 𝑒1(𝑖).
Let 𝜂 := 𝐹 (𝑎, 𝑒0) and 𝜁 := 𝐹 (𝑎, 𝑒1). Clearly, 𝐼(𝑒0, 𝑒1) = ∅, so that 𝛿𝜂,𝜁 is defined.
So, by our choice of 𝛽, we have 𝛿𝜂,𝜁 < 𝛽. However, since 𝑑 <𝑇 𝑒0, 𝑒1, we have
𝑑 ∈ 𝑈𝜂 ∩ 𝑈𝜁 ∩ 𝑇𝜆

𝛽 , contradicting Claim 4.10.2. �
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4.2. Proof of Theorem C. The rest of this section is devoted to proving Theo-
rem C. We will define a poset (P,≤P,Q) ∈ 𝒫𝜆+ and a collection {𝒟𝑖 | 𝑖 < 𝜆+} of
sharply dense systems such that any filter that meets each 𝒟𝑖 everywhere gives rise
to a 𝜆+-complete 𝜆++-super-Souslin tree. We intend to construct a tree (𝑇,<𝑇 )
with underlying set 𝜆++ × 𝜆+, such that, furthermore, 𝑇𝛼 = {𝛼} × 𝜆+ for all
𝛼 < 𝜆++. We start by defining P.

Definition 4.11. P consists of all quintuples 𝑝 = (𝑥,<0, 𝑡, <1, 𝑓) satisfying the
following requirements.

(1) 𝑥 ∈ [𝜆++]<𝜆+

.
(2) <0 is a partial ordering on 𝑥 such that for all 𝛽 ∈ 𝑥, we have that

pred0
𝑝(𝛽) := {𝛼 ∈ 𝑥 | 𝛼 <0 𝛽}

is a closed subset of 𝛽 which is well-ordered by <0.

(3) 𝑡 ∈ [𝑥×𝜆+]<𝜆+

. In a slight abuse of notation, and anticipating the generic
object, for all 𝛼 ∈ 𝑥, we let 𝑡𝛼 denote 𝑡 ∩ ({𝛼} × 𝜆+), and we let 𝑡𝜆𝛼 denote
the set of injective functions from 𝜆 to 𝑡𝛼. For each 𝑎 in 𝑡𝜆 :=

⋃︀
𝛼∈𝑥 𝑡

𝜆
𝛼, we

let Lev(𝑎) denote the unique ordinal 𝛼 such that 𝑎 ∈ 𝑡𝜆𝛼.
(4) <1 is a tree order on 𝑡 such that, for all 𝛽 ∈ 𝑥 and all 𝑣 ∈ 𝑡𝛽 , letting

pred1
𝑝(𝑣) := {𝑢 ∈ 𝑡 | 𝑢 <1 𝑣}, we have that

{𝛼 ∈ 𝑥 | pred1
𝑝(𝑣) ∩ 𝑡𝛼 ̸= ∅} = pred0

𝑝(𝛽).

Let [𝑡𝜆]2 := {(𝑎, 𝑏) | 𝑎, 𝑏 ∈ 𝑡𝜆, 𝑎 <1 𝑏}, where for 𝑎, 𝑏 ∈ 𝑡𝜆, we write 𝑎 <1 𝑏
iff 𝑎(𝑖) <1 𝑏(𝑖) for all 𝑖 < 𝜆.

(5) 𝑓 is a partial function from [𝑡𝜆]2 to [𝜆+]<𝜆+ ∖ {∅}, and |𝑓 | ≤ 𝜆.
(6) Suppose that (𝑎, 𝑏), (𝑎, 𝑐) ∈ dom(𝑓). If 𝑓(𝑎, 𝑏) ∩ 𝑓(𝑎, 𝑐) ̸= ∅ and Lev(𝑏) ≤0

Lev(𝑐), then |{𝑖 < 𝜆 | 𝑏(𝑖) ≤1 𝑐(𝑖)}| = 𝜆.
(7) For all (𝑎, 𝑐) ∈ dom(𝑓) and all 𝑏 ∈ 𝑡𝜆 such that 𝑎 <1 𝑏 <1 𝑐, we have

(𝑎, 𝑏) ∈ dom(𝑓) and 𝑓(𝑎, 𝑏) ⊇ 𝑓(𝑎, 𝑐).

The coordinates of a condition 𝑝 ∈ P will often be identified as 𝑥𝑝, <
0
𝑝, 𝑡𝑝, <

1
𝑝,

and 𝑓𝑝, respectively.

Definition 4.12. For all 𝑝, 𝑞 ∈ P, we let 𝑞 ≤P 𝑝 iff:

∙ 𝑥𝑞 ⊇ 𝑥𝑝;
∙ <0

𝑞⊇<0
𝑝;

∙ 𝑡𝑞 ⊇ 𝑡𝑝;
∙ <1

𝑞⊇<1
𝑝;

∙ dom(𝑓𝑞) ⊇ dom(𝑓𝑝);
∙ for all (𝑎, 𝑏) ∈ dom(𝑓𝑝), we have 𝑓𝑞(𝑎, 𝑏) ⊇ 𝑓𝑝(𝑎, 𝑏).

Definition 4.13. Q is the set of all conditions 𝑝 ∈ P such that:

(1) 𝑥𝑝 = cl(𝑥𝑝);
(2) <0

𝑝 is the usual ordinal ordering on 𝑥𝑝.

We now show that (P,≤P,Q) is in 𝒫𝜆+ . For 𝑝 ∈ P, 𝑥𝑝 is the realm of 𝑝. We next
describe how c.o.i.’s act on P. In order to make it easier to refer to and manipulate
level sequences in our conditions, we introduce the following notation.

Notation 4.14. By SDFA(𝒫𝜆+) and Corollary 3.9, CH𝜆 holds, and we can let
⟨𝜎𝛿 | 𝛿 < 𝜆+⟩ injectively enumerate 𝜆𝜆+. For all 𝛼 < 𝜆++ and 𝛿 < 𝜆+, let
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𝑎𝛼,𝛿 : 𝜆 → {𝛼}×𝜆+ be defined by stipulating 𝑎𝛼,𝛿(𝑖) := (𝛼, 𝜎𝛿(𝑖)). Note that every
level sequence in our desired tree (𝑇,<𝑇 ) will be of the form 𝑎𝛼,𝛿 for a unique pair
(𝛼, 𝛿) ∈ 𝜆++ × 𝜆+.

Definition 4.15. Suppose that 𝜋 is a c.o.i. from a subset of 𝜆++ to 𝜆++. For each
𝑝 ∈ Pdom(𝜋), we define 𝜋.𝑝 to be the condition (𝑥,<0, 𝑡, <1, 𝑓) ∈ P such that:

(1) 𝑥 = 𝜋“𝑥𝑝;
(2) <0= {(𝜋(𝛼), 𝜋(𝛽)) | (𝛼, 𝛽) ∈<0

𝑝};
(3) 𝑡 = {(𝜋(𝛼), 𝜂) | (𝛼, 𝜂) ∈ 𝑡𝑝};
(4) <1= {((𝜋(𝛼), 𝜂), (𝜋(𝛽), 𝜁)) | ((𝛼, 𝜂), (𝛽, 𝜁)) ∈<1

𝑝};
(5) 𝑓 = {((𝑎𝜋(𝛼),𝛿, 𝑎𝜋(𝛽),𝜖), 𝑧) | ((𝑎𝛼,𝛿, 𝑎𝛽,𝜖), 𝑧) ∈ 𝑓𝑝}.

Finally, we describe the restriction operation.

Definition 4.16. Suppose that 𝑝 ∈ P and 𝛼 < 𝜆++. Then 𝑝 �� 𝛼 is the condition
(𝑥,<0, 𝑡, <1, 𝑓) such that:

∙ 𝑥 = 𝑥𝑝 ∩ 𝛼;
∙ <0=<0

𝑝 ∩𝑥2;

∙ 𝑡 = 𝑡𝑝 ∩ (𝛼× 𝜆+);
∙ <1=<1

𝑝 ∩𝑡2;

∙ 𝑓 = {((𝑎, 𝑏), 𝑧) ∈ 𝑓𝑝 | (𝑎, 𝑏) ∈ [𝑡𝜆]2}.

With these definitions, it follows easily that (P,≤P,Q) satisfies Clauses (1)–(5)
of Definition 2.1. We now verify Clauses (6)–(8), in order.

Lemma 4.17. Suppose 𝑝 ∈ P. Then there is 𝑞 ∈ Q with 𝑞 ≤P 𝑝 such that 𝑥𝑞 =
cl(𝑥𝑝).

Proof. We need to define 𝑞 = (𝑥𝑞, <
0
𝑞, 𝑡𝑞, <

1
𝑞, 𝑓𝑝). Of course, we let 𝑥𝑞 := cl(𝑥𝑝)

and let <0
𝑞 be the usual ordinal ordering on 𝑥𝑞. Thus, the main task is in finding

suitable 𝑡𝑞, <1
𝑞 and 𝑓𝑞. Our strategy is to define the first two and then derive 𝑓𝑞 by

minimally extending 𝑓𝑝 so as to satisfy Clause (7) of Definition 4.11. To be precise,
once 𝑡𝑞 and <1

𝑞 are determined, we will let

dom(𝑓𝑞) := dom(𝑓𝑝) ∪ {(𝑎, 𝑏) ∈ [𝑡𝜆𝑞 ]2 | ∃𝑐 ∈ 𝑡𝜆𝑝
(︀
𝑎 <1

𝑞 𝑏 <1
𝑞 𝑐 and (𝑎, 𝑐) ∈ dom(𝑓𝑝)

)︀
}

and, for all (𝑎, 𝑏) ∈ dom(𝑓𝑞), we will let

𝑓𝑞(𝑎, 𝑏) := 𝑓𝑝(𝑎, 𝑏) ∪
⋃︁

{𝑓𝑝(𝑎, 𝑐) | (𝑎, 𝑐) ∈ dom(𝑓𝑝) and 𝑎 <1
𝑞 𝑏 <1

𝑞 𝑐}.

We now turn to defining 𝑡𝑞 and <1
𝑞 to ensure that Clauses (4) and (6) of Defini-

tion 4.11 hold. By our intended definition of 𝑓𝑞 and <0
𝑞, these clauses dictate that,

for all 𝛽 ∈ 𝑥𝑞 and 𝛼 ∈ 𝑥𝑞 ∩ (𝛽 + 1):

(4′) for all 𝑣 ∈ (𝑡𝑞)𝛽 , there is some 𝑢 ∈ (𝑡𝑞)𝛼 with 𝑢 ≤1
𝑞 𝑣;

(6′) for all (𝑎, 𝑏), (𝑎, 𝑐) ∈ dom(𝑓𝑝) with 𝑓𝑝(𝑎, 𝑏) ∩ 𝑓𝑝(𝑎, 𝑐) ̸= ∅, if 𝑏 ∈ (𝑡𝑝)𝜆𝛼 and
𝑐 ∈ (𝑡𝑝)𝜆𝛽 , then |{𝑖 < 𝜆 | 𝑏(𝑖) ≤1

𝑞 𝑐(𝑖)}| = 𝜆.

In order to satisfy Clause (4′), it is possible that we will have to add new nodes
to 𝑡𝑞, i.e., that 𝑡𝑞 ∖ 𝑡𝑝 ̸= ∅. However, we will do so in such a way that each element
of 𝑡𝑞 ∖ 𝑡𝑝 will be a <1

𝑞-predecessor of an element of 𝑡𝑝. Consequently, to define 𝑡𝑞
and <1

𝑞, it suffices to specify pred1
𝑞(𝑣) for all 𝑣 ∈ 𝑡𝑝.

Now, by recursion on 𝛽 ∈ 𝑥𝑝, we define pred1
𝑞(𝑣) for all 𝑣 ∈ (𝑡𝑝)𝛽 in a way

that ensures that Clauses (4′) and (6′) hold for all 𝛼 ∈ 𝑥𝑞 ∩ (𝛽 + 1). Suppose
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that 𝛽 ∈ 𝑥𝑝 and, for all 𝛼 ∈ 𝑥𝑝 ∩ 𝛽, we have specified pred1
𝑞(𝑢) for every 𝑢 ∈

(𝑡𝑝)𝛼. Let 𝑡<𝛽 denote the underlying set of the tree we have defined thus far, i.e.,⋃︀
𝛼∈𝑥𝑝∩𝛽

⋃︀
𝑢∈(𝑡𝑝)𝛼

(pred1
𝑞(𝑢) ∪ {𝑢}).

If pred0
𝑝(𝛽) = ∅ and 𝑣 ∈ (𝑡𝑝)𝛽 , then let 𝐵 be a maximal branch through 𝑡<𝛽 .

It might be the case that 𝐵 is bounded below 𝛽, i.e., there is 𝛾 ∈ 𝑥𝑞 ∩ 𝛽 with
𝐵 ∩ ({𝛾} × 𝜆+) = ∅. If this is the case, then, for each such 𝛾, add a new element
from {𝛾} × 𝜆+ to 𝑡𝑞 and require that these new elements, together with 𝐵, form
a branch whose levels are unbounded in 𝑥𝑞 ∩ 𝛽. Let this unbounded branch be

denoted by 𝐵*, and set pred1
𝑞(𝑣) := 𝐵*.

If pred0
𝑝(𝛽) is unbounded in 𝛽, then, for all 𝑣 ∈ (𝑡𝑝)𝛽 , we are obliged to let

pred1
𝑞(𝑣) be precisely

⋃︀
𝑢∈pred1

𝑝(𝑣)
(pred1

𝑞(𝑢) ∪ {𝑢}).

It remains to consider the case in which pred0
𝑝(𝛽) is nonempty and bounded in

𝛽. Put 𝛽′ := sup(pred0
𝑝(𝛽)). Since pred0

𝑝(𝛽) is a closed, nonempty subset of 𝛽, we
have 𝛽′ ∈ 𝑥𝑝. If there is no 𝛾 ∈ 𝑥𝑝 with 𝛽′ < 𝛾 < 𝛽, then, for all 𝑣 ∈ (𝑡𝑝)𝛽 , we are

again obliged to let pred1
𝑞(𝑣) :=

⋃︀
𝑢∈pred1

𝑝(𝑣)
(pred1

𝑞(𝑢) ∪ {𝑢}). Thus, from now on,

suppose that 𝑥𝑝 ∩ (𝛽′, 𝛽) ̸= ∅.
Let ⟨(𝑎ℓ, 𝑏ℓ, 𝑐ℓ) | ℓ < 𝜆⟩ enumerate all triples (𝑎, 𝑏, 𝑐) such that:

∙ (𝑎, 𝑏), (𝑎, 𝑐) ∈ dom(𝑓𝑝);
∙ 𝑓𝑝(𝑎, 𝑏) ∩ 𝑓𝑝(𝑎, 𝑐) ̸= ∅;
∙ 𝑐 ∈ (𝑡𝑝)𝜆𝛽 and there is 𝛼 ∈ 𝑥𝑝 ∩ (𝛽′, 𝛽) such that 𝑏 ∈ (𝑡𝑝)𝜆𝛼.

Moreover, assume that each such triple is enumerated as (𝑎ℓ, 𝑏ℓ, 𝑐ℓ) for 𝜆-many
ℓ < 𝜆. (If there are no such triples, then simply define pred1

𝑞(𝑣) arbitrarily for each

𝑣 ∈ (𝑡𝑝)𝛽 subject to the constraint pred1
𝑞(𝑣) ⊇ pred1

𝑝(𝑣).)

Now, by recursion on ℓ < 𝜆, we choose nodes 𝑣ℓ ∈ (𝑡𝑝)𝛽 and specify pred1
𝑞(𝑣ℓ).

Suppose that ℓ < 𝜆 and we have chosen 𝑣ℓ′ and pred1
𝑞(𝑣ℓ′) for all ℓ′ < ℓ. Consider

the triple (𝑎ℓ, 𝑏ℓ, 𝑐ℓ).
Suppose first that 𝑎ℓ ∈ (𝑡𝑝)𝛽′ . We have that, for all 𝑖 < 𝜆, 𝑎ℓ(𝑖) <1

𝑝 𝑏ℓ(𝑖), 𝑐ℓ(𝑖).

In particular, since 𝛽′ = max(pred0
𝑝(𝛽)), we have, for all 𝑖 < 𝜆, pred1

𝑞(𝑏ℓ(𝑖)) ⊇
pred1

𝑝(𝑏ℓ(𝑖)) ⊇ pred1
𝑝(𝑐ℓ(𝑖)). Choose 𝑖 < 𝜆 such that 𝑐ℓ(𝑖) /∈ {𝑣ℓ′ | ℓ′ < ℓ}, set

𝑣ℓ := 𝑐ℓ(𝑖), and let 𝐵 be a maximal branch through 𝑡<𝛽 with 𝑏ℓ(𝑖) ∈ 𝐵. As in the

case in which pred0
𝑝(𝛽) = ∅, extend 𝐵, by adding nodes if necessary, to a branch

𝐵* whose levels are unbounded in 𝑥𝑞 ∩ 𝛽, and set pred1
𝑞(𝑣ℓ) := 𝐵*.

Suppose next that 𝑎ℓ ∈ (𝑡𝑝)<𝛽′ . Let 𝑐′ ∈ (𝑡𝑝)𝜆𝛽′ be the unique level sequence

such that 𝑎ℓ <
1
𝑝 𝑐′ <1

𝑝 𝑐ℓ. Since 𝑝 ∈ P, we have (𝑎ℓ, 𝑐
′) ∈ dom(𝑓𝑝) and 𝑓𝑝(𝑎ℓ, 𝑐

′) ⊇
𝑓𝑝(𝑎ℓ, 𝑐ℓ). In particular, 𝑓𝑝(𝑎ℓ, 𝑐

′) ∩ 𝑓𝑝(𝑎ℓ, 𝑏ℓ) ̸= ∅, so, by our inductive hypothesis,
we know that, for 𝜆-many 𝑖 < 𝜆, we have 𝑐′(𝑖) <1

𝑞 𝑏ℓ(𝑖). Choose such an 𝑖 with
𝑐ℓ(𝑖) ̸∈ {𝑣ℓ′ | ℓ′ < ℓ} and let 𝑣ℓ := 𝑐ℓ(𝑖). As in the previous case, by adding nodes
if necessary, fix a branch 𝐵* whose levels are unbounded in 𝑥𝑞 ∩ 𝛽 with 𝑏ℓ(𝑖) ∈ 𝐵*,

and set pred1
𝑞(𝑣ℓ) := 𝐵*.

At the end of this process, if there are nodes in (𝑡𝑝)𝛽 ∖ {𝑣ℓ | ℓ < 𝜆}, then assign
their <1

𝑞-predecessors arbitrarily. We must verify that we have maintained the
inductive hypothesis. To this end, fix (𝑎, 𝑏, 𝑐) such that:

∙ (𝑎, 𝑏), (𝑎, 𝑐) ∈ dom(𝑓𝑝);
∙ 𝑓𝑝(𝑎, 𝑏) ∩ 𝑓𝑝(𝑎, 𝑐) ̸= ∅;
∙ 𝑐 ∈ (𝑡𝑝)𝜆𝛽 and there is 𝛼 ∈ 𝑥𝑝 ∩ 𝛽 such that 𝑏 ∈ (𝑡𝑝)𝜆𝛼.
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Suppose first that 𝛼 ≤ 𝛽′. This implies that 𝑎 ∈ (𝑡𝑝)𝜆<𝛽′ . Therefore, we can let

𝑐′ ∈ (𝑡𝑝)𝜆𝛽′ be the unique level sequence such that 𝑎 <1
𝑝 𝑐′ <1

𝑝 𝑐. Then 𝑓𝑝(𝑎, 𝑐′) ⊇
𝑓𝑝(𝑎, 𝑐), so, by the inductive hypothesis applied at 𝛽′, we have that, for 𝜆-many
𝑖 < 𝜆, 𝑏(𝑖) ≤1

𝑞 𝑐′(𝑖) ≤1
𝑞 𝑐(𝑖), so we are done.

Next, suppose 𝛽′ < 𝛼 < 𝛽. In this case, for 𝜆-many ℓ < 𝜆, we have (𝑎, 𝑏, 𝑐) =
(𝑎ℓ, 𝑏ℓ, 𝑐ℓ). For each such ℓ, at stage ℓ of the construction, we chose a distinct 𝑖 < 𝜆
and ensured that 𝑏ℓ(𝑖) <1

𝑞 𝑐ℓ(𝑖), so, for 𝜆-many 𝑖 < 𝜆, we have 𝑏(𝑖) <1
𝑞 𝑐(𝑖), as

desired. �

Lemma 4.18. Suppose that 𝜉 < 𝜆+ and ⟨𝑞𝜂 | 𝜂 < 𝜉⟩ is a decreasing sequence from
Q. Let 𝑥 :=

⋃︀
𝜂<𝜉 𝑥𝑞𝜂 . Suppose that 𝛼 < ssup(𝑥) and that 𝑟 ∈ Qssup(𝑥∩𝛼) is a lower

bound for ⟨𝑞𝜂 �� 𝛼 | 𝜂 < 𝜉⟩. Then there is 𝑞 ∈ Q such that:

∙ 𝑞 is a lower bound for ⟨𝑞𝜂 | 𝜂 < 𝜉⟩;
∙ 𝑞 �� ssup(𝑥 ∩ 𝛼) = 𝑟;
∙ 𝑥𝑞 = cl(𝑥𝑟 ∪ 𝑥).

Proof. 𝑥𝑞 and <0
𝑞 are determined by the requirements of the Lemma. We now

specify 𝑡𝑞, <
1
𝑞, and 𝑓𝑞. We must let 𝑞 �� ssup(𝑥 ∩ 𝛼) = 𝑟, so we only deal with the

parts of 𝑡𝑞, <1
𝑞, and 𝑓𝑞 related to levels at ssup(𝑥 ∩ 𝛼) or higher.

Fix 𝛽 ∈ 𝑥𝑞 ∖ ssup(𝑥 ∩ 𝛼). If 𝛽 ∈ 𝑥, then let (𝑡𝑞)𝛽 :=
⋃︀

𝜂<𝜉(𝑡𝑞𝜂 )𝛽 . If 𝛽 ̸∈ 𝑥, then

let 𝛾 := min(𝑥 ∖ 𝛽), and let (𝑡𝑞)𝛽 := {(𝛽, 𝜁) | (𝛾, 𝜁) ∈
⋃︀

𝜂<𝜉(𝑡𝑞𝜂 )𝛾}.

We define <1
𝑞 by specifying pred1

𝑞(𝑣) for all 𝑣 ∈ 𝑡𝑞. This is already done for
all 𝑣 ∈ (𝑡𝑞)<ssup(𝑥∩𝛼). We take care of the 𝑣 ∈ (𝑡𝑞)≥ssup(𝑥∩𝛼) by recursion on the
𝛽 ∈ 𝑥𝑞 such that 𝑣 ∈ (𝑡𝑞)𝛽 . Thus, suppose 𝛽 ∈ 𝑥𝑞 ∖ ssup(𝑥∩𝛼) and we have defined

pred1
𝑞(𝑢) for all 𝑢 ∈ (𝑡𝑞)<𝛽 .

Suppose first that 𝛽 ̸∈ 𝑥, and let 𝛾 := min(𝑥 ∖ 𝛽). If 𝑣 = (𝛽, 𝜁) ∈ (𝑡𝑞)𝛽 ,

then let 𝑣′ := (𝛾, 𝜁) ∈ (𝑡𝑞)𝛾 , and let pred1
𝑞(𝑣) be the <1

𝑞-downward closure of⋃︀
𝜂<𝜉 pred1

𝑞𝜂 (𝑣′).

Suppose next that 𝛽 ∈ 𝑥 and 𝛽′ := sup(𝑥𝑞 ∩ 𝛽) ̸∈ 𝑥. If 𝑣 = (𝛽, 𝜁) ∈ (𝑡𝑞)𝛽 , then

let 𝑣′ := (𝛽′, 𝜁) ∈ (𝑡𝑞)𝛽′ , and let pred1
𝑞(𝑣) := {𝑣′} ∪ pred1

𝑞(𝑣′).
Finally, suppose that 𝛽 ∈ 𝑥 and sup(𝑥𝑞 ∩ 𝛽) ∈ 𝑥. Then, for all 𝑣 ∈ (𝑡𝑞)𝛽 , let

pred1
𝑞(𝑣) be the <1

𝑞-downward closure of
⋃︀

𝜂<𝜉 pred1
𝑞𝜂 (𝑣).

To finish, we define 𝑓𝑞. Suppose that 𝛽 ∈ 𝑥𝑞 ∖ (ssup(𝑥 ∩ 𝛼) ∪ 𝑥) and 𝑏 ∈ (𝑡𝑞)𝜆𝛽 .

Let 𝛾𝛽 := min(𝑥 ∖ 𝛽), and let 𝑏′ ∈ (𝑡𝑞)𝜆𝛾𝛽
be given by letting 𝑏′(𝑖) be the unique

(𝛾𝛽 , 𝜁) such that 𝑏(𝑖) = (𝛽, 𝜁). Note that 𝑏 <1
𝑞 𝑏′. We set

dom(𝑓𝑞) := dom(𝑓𝑟) ∪
⋃︁
𝜂<𝜉

dom(𝑓𝑞𝜂 )∪⎧⎨⎩(𝑎, 𝑏)

⃒⃒⃒⃒
∃𝛽 ∈ 𝑥𝑞 ∖ (ssup(𝑥 ∩ 𝛼) ∪ 𝑥)

⎛⎝𝑏 ∈ (𝑡𝑞)𝜆𝛽 and (𝑎, 𝑏′) ∈
⋃︁
𝜂<𝜉

dom(𝑓𝑞𝜂 )

⎞⎠⎫⎬⎭ .

If (𝑎, 𝑏) ∈ dom(𝑓𝑟), then we set 𝑓𝑞(𝑎, 𝑏) := 𝑓𝑟(𝑎, 𝑏). If (𝑎, 𝑏) ∈
⋃︀

𝜂<𝜉 dom(𝑓𝑞𝜂 ) ∖
dom(𝑓𝑟), then we let 𝑓𝑞(𝑎, 𝑏) :=

⋃︀
𝜂<𝜉 𝑓𝑞𝜂 (𝑎, 𝑏). If (𝑎, 𝑏) is such that 𝑏 ∈ (𝑡𝑝)𝜆𝛽 for

some 𝛽 ∈ 𝑥𝑝 ∖ (ssup(𝑥 ∩ 𝛼) ∪ 𝑥) and (𝑎, 𝑏′) ∈
⋃︀

𝜂<𝜉 dom(𝑓𝑞𝜂 ), then let 𝑓𝑞(𝑎, 𝑏) =⋃︀
𝜂<𝜉 𝑓𝑞𝜂 (𝑎, 𝑏′) = 𝑓𝑞(𝑎, 𝑏′). It is easily verified that 𝑞 is as desired. �
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Lemma 4.19. Suppose 𝑝 ∈ Q, 𝛼 < ssup(𝑥𝑝), and 𝑞 ≤ 𝑝��𝛼 with 𝑞 ∈ P𝛼. Then there
is 𝑟 ∈ P that is a greatest lower bound for 𝑝 and 𝑞. Moreover, we have 𝑥𝑟 = 𝑥𝑝 ∪𝑥𝑞

and 𝑟 �� 𝛼 = 𝑞.

Proof. We construct such an 𝑟 by doing as little as possible while still satisfying
Definition 4.11 and extending both 𝑝 and 𝑞. Let 𝑥𝑟 := 𝑥𝑝 ∪ 𝑥𝑞, and require that 𝑟 ��
𝛼 = 𝑞. Suppose that 𝛽 ∈ 𝑥𝑝∖𝛼. Let pred0

𝑟(𝛽) := pred0
𝑝(𝛽)∪

⋃︀
𝛾∈pred0

𝑝(𝛽)∩𝛼 pred0
𝑞(𝛾).

Let 𝑡𝑟 := 𝑡𝑝∪𝑡𝑞. If 𝑣 ∈ 𝑡𝑝∖𝑡𝑞, then let pred1
𝑟(𝑣) := pred1

𝑝(𝑣)∪
⋃︀

𝑢∈pred1
𝑝(𝑣)∩𝑡𝑞

pred1
𝑞(𝑢).

Finally, let dom(𝑓𝑟) := dom(𝑓𝑝) ∪ dom(𝑓𝑞). If (𝑎, 𝑏) ∈ dom(𝑓𝑞), then let 𝑓𝑟(𝑎, 𝑏) :=
𝑓𝑞(𝑎, 𝑏). If (𝑎, 𝑏) ∈ dom(𝑓𝑝) ∖ dom(𝑓𝑞), then let 𝑓𝑟(𝑎, 𝑏) := 𝑓𝑝(𝑎, 𝑏).

The only clauses of Definition 4.11 that are non-trivial to check are (6) and
(7). Let us first deal with Clause (6). To this end, fix 𝑎, 𝑏, 𝑐 ∈ 𝑡𝜆𝑟 such that
(𝑎, 𝑏), (𝑎, 𝑐) ∈ dom(𝑓𝑟) and 𝑓𝑟(𝑎, 𝑏) ∩ 𝑓𝑟(𝑎, 𝑐) ̸= ∅. If we have either (𝑎, 𝑏), (𝑎, 𝑐) ∈
dom(𝑓𝑞) or (𝑎, 𝑏), (𝑎, 𝑐) ∈ dom(𝑓𝑝) ∖ dom(𝑓𝑞), then the conclusion of Clause (6)
follows from the fact that 𝑝, 𝑞 ∈ P. Thus, we may assume without loss of generality
that (𝑎, 𝑏) ∈ dom(𝑓𝑞) and (𝑎, 𝑐) ∈ dom(𝑓𝑝) ∖ dom(𝑓𝑞). Let 𝛽, 𝛾 ∈ 𝑥𝑟 be such that
𝑏 ∈ (𝑡𝑟)𝜆𝛽 and 𝑐 ∈ (𝑡𝑟)𝜆𝛾 . By assumption, we have 𝛽 < 𝛼 ≤ 𝛾.

If 𝛽 ̸≤0
𝑟 𝛾, then there is nothing to check. Thus, assume that 𝛽 ≤0

𝑟 𝛾. By the
definition of ≤0

𝑟, it follows that there is 𝛽′ ∈ (𝑥𝑝∩𝛼) such that 𝛽 ≤0
𝑞 𝛽′ and 𝛽′ ≤0

𝑝 𝛾.

Let 𝑐′ ∈ (𝑡𝑝)𝜆𝛽′ be the unique level sequence such that 𝑎 <1
𝑝 𝑐′ <1

𝑝 𝑐. Since 𝑝 ∈ P, it

follows that (𝑎, 𝑐′) ∈ dom(𝑓𝑝) and 𝑓𝑝(𝑎, 𝑐′) ⊇ 𝑓𝑝(𝑎, 𝑐). Since 𝑞 ≤ 𝑝��𝛼, we must have
(𝑎, 𝑐′) ∈ dom(𝑓𝑞) and 𝑓𝑞(𝑎, 𝑐′) ⊇ 𝑓𝑝(𝑎, 𝑐). Thus, we have 𝑓𝑞(𝑎, 𝑐′) ∩ 𝑓𝑞(𝑎, 𝑏) ̸= ∅.
Since 𝑞 ∈ P and 𝛽 ≤0

𝑞 𝛽′, we have that, for 𝜆-many 𝑖 < 𝜆, 𝑏(𝑖) ≤1
𝑞 𝑐′(𝑖). But then,

for all such 𝑖 < 𝜆, we also have 𝑏(𝑖) ≤1
𝑟 𝑐(𝑖), as required.

Finally, we check Clause (7). Suppose that (𝑎, 𝑐) ∈ dom(𝑓𝑟) and 𝑏 ∈ 𝑡𝜆𝑟 is such
that 𝑎 <1

𝑟 𝑏 <1
𝑟 𝑐. If (𝑎, 𝑐) ∈ dom(𝑓𝑞), then the conclusion follows from the fact

that 𝑞 ∈ P. Thus suppose that (𝑎, 𝑐) ∈ dom(𝑓𝑝) ∖dom(𝑓𝑞). Let 𝛽 ∈ 𝑥𝑟 be such that
𝑏 ∈ (𝑡𝑟)𝜆𝛽 , and let 𝛾 ∈ 𝑥𝑝 be such that 𝑐 ∈ (𝑡𝑝)𝜆𝛾 . If 𝛽 ∈ 𝑥𝑝, then we have 𝑎 <1

𝑝 𝑏 <1
𝑝 𝑐,

and the conclusion follows from the fact that 𝑝 ∈ P. Thus, assume that 𝛽 ∈ 𝑥𝑞 ∖𝑥𝑝.
Then there is 𝛽′ ∈ 𝑥𝑝 ∩ 𝛼 such that 𝛽 ≤0

𝑞 𝛽′ and 𝛽′ ≤0
𝑝 𝛾. Let 𝑐′ ∈ (𝑡𝑝)𝜆𝛽′ be the

unique level sequence such that 𝑎 <1
𝑝 𝑐′ <1

𝑝 𝑐. Since 𝑝 ∈ P, we have (𝑎, 𝑐′) ∈ dom(𝑓𝑝)
and 𝑓𝑝(𝑎, 𝑐′) ⊇ 𝑓𝑝(𝑎, 𝑐). Since 𝑞 ≤P 𝑝 �� 𝛼, we have 𝑓𝑞(𝑎, 𝑐′) ⊇ 𝑓𝑝(𝑎, 𝑐). Finally, since
𝑞 ∈ P and 𝑎 <1

𝑞 𝑏 <1
𝑞 𝑐′, we have (𝑎, 𝑏) ∈ dom(𝑓𝑞) and 𝑓𝑞(𝑎, 𝑏) ⊇ 𝑓𝑞(𝑎, 𝑐′). Thus,

(𝑎, 𝑏) ∈ dom(𝑓𝑟) and 𝑓𝑟(𝑎, 𝑏) ⊇ 𝑓𝑟(𝑎, 𝑐), as required. �

It now follows that (P,≤P,Q) is in 𝒫𝜆+ . We are thus left with isolating the
relevant sharply dense systems. The following are all straightforward.

Lemma 4.20 (Normal and splitting). Suppose 𝜂 < 𝜆+. For every 𝛼 < 𝛽 < 𝜆++,
let 𝐷𝑛𝑠

𝜂,{𝛼,𝛽} be the set of all conditions 𝑝 ∈ Q such that:

∙ {𝛼, 𝛽} ⊆ 𝑥𝑝;
∙ (𝛼, 𝜂), (𝛽, 𝜂) ∈ 𝑡𝑝;
∙ (𝛼, 𝜂) has at least two <1

𝑝-successors in (𝑡𝑝)𝛽.

Then 𝒟𝑛𝑠
𝜂 := {𝐷𝑛𝑠

𝜂,𝑥 | 𝑥 ∈
(︀
𝜆++

2

)︀
} is a sharply dense system. �

Lemma 4.21 (Complete). Suppose that 𝜇 < 𝜆+ is a regular cardinal and 𝑔 : 𝜇 →
𝜆+. For every 𝑥 ∈

(︀
𝜆++

𝜇+1

)︀
, let 𝐷com

𝑔,𝑥 be the set of all conditions 𝑝 ∈ Q such that:

∙ 𝑥 ⊆ 𝑥𝑝;
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∙ for all 𝑖 < 𝜇, we have (𝑥(𝑖), 𝑔(𝑖)) ∈ 𝑡𝑝;
∙ if {(𝑥(𝑖), 𝑔(𝑖)) | 𝑖 < 𝜇} forms a <1

𝑝-chain, then it has a <1
𝑝-upper bound in

(𝑡𝑝)𝑥(𝜇).

Then 𝒟com
𝑔 := {𝐷com

𝑔,𝑥 | 𝑥 ∈
(︀
𝜆++

𝜇+1

)︀
} is a sharply dense system. �

Lemma 4.22 (Super-Souslin). Suppose 𝛿, 𝜖 < 𝜆+. For all 𝛼 < 𝛽 < 𝜆++, let
𝐸𝛿,𝜖,{𝛼,𝛽} be the set of all conditions 𝑝 ∈ Q such that:

∙ {𝛼, 𝛽} ⊆ 𝑥𝑝;
∙ 𝑎𝛼,𝛿, 𝑎𝛽,𝜖 ∈ 𝑡𝜆𝑝 ;

∙ if 𝑎𝛼,𝛿 <1
𝑝 𝑎𝛽,𝜖, then (𝑎𝛼,𝛿, 𝑎𝛽,𝜖) ∈ dom(𝑓𝑝).

Then ℰ𝛿,𝜖 := {𝐸𝛿,𝜖,𝑥 | 𝑥 ∈
(︀
𝜆++

2

)︀
} is a sharply dense system. �

By SDFA(𝒫𝜆+), we can find a filter 𝐺 on P such that:

∙ for every 𝜂 < 𝜆+, 𝐺 meets 𝒟𝑛𝑠
𝜂 everywhere;

∙ for every regular cardinal 𝜇 < 𝜆+ and every function 𝑔 : 𝜇 → 𝜆+, 𝐺 meets
𝒟com

𝑔 everywhere;6

∙ for all 𝛿, 𝜖 < 𝜆+, 𝐺 meets ℰ𝛿,𝜖 everywhere.

Now define a tree (𝑇,<𝑇 ) as follows. Let 𝑇 := 𝜆++ × 𝜆+. Let (𝛼, 𝜂) <𝑇 (𝛽, 𝜉) iff
there is 𝑝 ∈ 𝐺 such that (𝛼, 𝜂), (𝛽, 𝜉) ∈ 𝑡𝑝 and (𝛼, 𝜂) <1

𝑝 (𝛽, 𝜉). The fact that 𝐺

meets 𝒟𝑛𝑠
𝜂 everywhere for all 𝜂 < 𝜆+ ensures that (𝑇,<𝑇 ) is a normal, splitting

tree and 𝑇𝛼 = {𝛼} × 𝜆+ for all 𝛼 < 𝜆++. The fact that 𝐺 meets 𝒟com
𝑔 everywhere

for all regular 𝜇 ≤ 𝜆 and 𝑔 : 𝜇 → 𝜆+ ensures that (𝑇,<𝑇 ) is 𝜆+-complete.
Finally, we define a function 𝐹 : [𝑇𝜆]2 → 𝜆+ witnessing that (𝑇,<𝑇 ) is a super-

Souslin tree. Fix 𝛼 < 𝛽 < 𝜆++ and 𝛿, 𝜖 < 𝜆+ such that 𝑎𝛼,𝛿 <𝑇 𝑎𝛽,𝜖. Find
𝑝 ∈ 𝐺 ∩ 𝐸𝛿,𝜖,{𝛼,𝛽}. Since 𝑝 ∈ Q and 𝑎𝛼,𝛿 <𝑇 𝑎𝛽,𝜖, it follows that 𝑎𝛼,𝛿 <1

𝑝 𝑎𝛽,𝜖.
Therefore, (𝑎𝛼,𝛿, 𝑎𝛽,𝜖) ∈ dom(𝑓𝑝). Let 𝐹 (𝑎𝛼,𝛿, 𝑎𝛽,𝜖) be an arbitrary element of
𝑓𝑝(𝑎𝛼,𝛿, 𝑎𝛽,𝜖).

To verify that 𝐹 is as sought, fix 𝑎, 𝑏, 𝑐 ∈ 𝑇𝜆 such that (𝑎, 𝑏), (𝑎, 𝑐) ∈ [𝑇𝜆]2 and
𝐹 (𝑎, 𝑏) = 𝐹 (𝑎, 𝑐). Without loss of generality, suppose there are 𝛽 ≤ 𝛾 < 𝜆++ such
that 𝑏 ∈ 𝑇𝜆

𝛽 , and 𝑐 ∈ 𝑇𝜆
𝛾 . Find 𝑝𝑏 ∈ 𝐺 such that (𝑎, 𝑏) ∈ dom(𝑓𝑝𝑏

) and 𝐹 (𝑎, 𝑏) ∈
𝑓𝑝𝑏

(𝑎, 𝑏). Similarly, find 𝑝𝑐 ∈ 𝐺 such that (𝑎, 𝑐) ∈ dom(𝑓𝑝𝑐
) and 𝐹 (𝑎, 𝑐) ∈ 𝑓𝑝𝑐

(𝑎, 𝑐).
Find 𝑞 ∈ 𝐺 ∩ Q with 𝑞 ≤P 𝑝𝑏, 𝑝𝑐. Then (𝑎, 𝑏), (𝑎, 𝑐) ∈ dom(𝑓𝑞), 𝐹 (𝑎, 𝑏) ∈ 𝑓𝑞(𝑎, 𝑏),
and 𝐹 (𝑎, 𝑐) ∈ 𝑓𝑞(𝑎, 𝑐). In particular, 𝑓𝑞(𝑎, 𝑏) ∩ 𝑓𝑞(𝑎, 𝑐) ̸= ∅. Since 𝑞 ∈ Q it follows
that there are 𝜆-many 𝑖 < 𝜆 such that 𝑏(𝑖) ≤1

𝑞 𝑐(𝑖). But then, for all such 𝑖 < 𝜆, we

have 𝑏(𝑖) ≤𝑇 𝑐(𝑖). Thus, 𝐹 witnesses that (𝑇,<𝑇 ) is a 𝜆++-super-Souslin tree, so
our proof of Theorem C is now complete.

5. Square and diamond

In this section, we use �𝐵
𝜅 and ♢(𝜅) to construct combinatorial objects that will

help us prove Theorem B in Section 6.

5.1. Enlarged direct limit. In this short subsection, we introduce an “enlarged
direct limit” operator. This operator motivates our application of �𝐵

𝜅 that will be
carried out in the next subsection.

6Recall that by Corollary 3.9, SDFA(𝒫𝜆+ ) implies |<𝜆+
𝜆+| = 𝜆+.



A FORCING AXIOM DECIDING THE GENERALIZED SOUSLIN HYPOTHESIS 21

Definition 5.1. For a linearly ordered set (𝑌,C) and a subset 𝑍 ⊆ 𝑌 , we define
double𝑍(𝑌,C) as a linearly ordered set whose underlying set is (𝑍×{0})⊎(𝑌 ×{1}),
ordered lexicographically by letting (𝑦, 𝑖)C𝑙 (𝑦′, 𝑖′) iff one of the following holds:

∙ 𝑦 C 𝑦′;
∙ 𝑦 = 𝑦′ and (𝑖, 𝑖′) = (0, 1).

The linearly ordered set (𝑌,C) we have in mind is a direct limit of a system
of well-ordered sets, and the choice of the subset 𝑍 ⊆ 𝑌 (to be doubled) will be
defined momentarily. The following is obvious.

Lemma 5.2. For all 𝑍 ⊆ 𝑌 , if 𝑌 is well-ordered by C, then, double𝑍(𝑌,C) is
well-ordered by C𝑙. �

We start with a system of well-ordered sets. Specifically, suppose that 𝜃 = ⟨𝜃𝜂 |
𝜂 < 𝜉⟩ and �⃗� = ⟨𝜋𝜂,𝜂′ | 𝜂 < 𝜂′ < 𝜉⟩ are such that:

∙ 𝜉 is a limit ordinal;

∙ 𝜃 is a non-decreasing sequence of ordinals;
∙ for all 𝜂 < 𝜂′ < 𝜉, 𝜋𝜂,𝜂′ : 𝜃𝜂 → 𝜃𝜂′ is a c.o.i.;
∙ for all 𝜂 < 𝜂′ < 𝜂′′ < 𝜉, we have 𝜋𝜂,𝜂′′ = 𝜋𝜂′,𝜂′′ ∘ 𝜋𝜂,𝜂′ .

As is well-known, the direct limit of the system (𝜃, �⃗�) is defined as follows:

∙ Put 𝑋 := {(𝜂, 𝛾) | 𝜂 < 𝜉, 𝛾 < 𝜃𝜂}.
∙ For (𝜂, 𝛾), (𝜂′, 𝛾′) ∈ 𝑋 with 𝜂 < 𝜂′, let (𝜂, 𝛾) ∼ (𝜂′, 𝛾′) iff 𝜋𝜂,𝜂′(𝛾) = 𝛾′.
∙ Let 𝑌 consists of all equivalence classes [(𝜂, 𝛾)] for (𝜂, 𝛾) ∈ 𝑋.
∙ Order 𝑌 by letting [(𝜂0, 𝛾0)]C[(𝜂1, 𝛾1)] iff there exists some 𝜂 ≥ max{𝜂0, 𝜂1}

and 𝛾′
0 < 𝛾′

1 such that (𝜂0, 𝛾0) ∼ (𝜂, 𝛾′
0) and (𝜂1, 𝛾1) ∼ (𝜂, 𝛾′

1).
∙ For each 𝜂 < 𝜉, define a map 𝜋𝜂 : 𝜃𝜂 → 𝑌 by stipulating 𝜋𝜂(𝛾) := [(𝜂, 𝛾)].

Definition 5.3 (Direct limit). lim(𝜃, �⃗�) stands for (𝑌,C, ⟨𝜋𝜂 | 𝜂 < 𝜉⟩).

Next, we let 𝑍 be the set of equivalence classes in 𝑌 such that, for every repre-
sentative (𝜂, 𝛾) from the equivalence class, 𝜋𝜂 � 𝛾 is bounded below 𝜋𝜂(𝛾), i.e.,

𝑍 := {𝑧 ∈ 𝑌 | ∀(𝜂, 𝛾) ∈ 𝑧∃𝑦 ∈ 𝑌 ∀𝛽 < 𝛾[𝜋𝜂(𝛽)C 𝑦 C 𝜋𝜂(𝛾)]}.
Let 𝑊 := double𝑍(𝑌,C), and let 𝜛 denote the map from 𝑌 to its canonical copy

inside 𝑊 , i.e., 𝜛(𝑦) = (𝑦, 1).

Definition 5.4 (Enlarged direct limit). lim*(𝜃, �⃗�) stands for (𝑊,C𝑙, ⟨𝜋*
𝜂 | 𝜂 < 𝜉⟩),

where 𝜋*
𝜂 := 𝜛 ∘ 𝜋𝜂 for each 𝜂 < 𝜉.

Finally, by Lemma 5.2, in the special case that (𝑌,C) is well-ordered, we know
that (𝑊,C𝑙) is well-ordered. In this case, we put 𝜃 := otp(𝑊,C𝑙), and let 𝜋* : 𝑊 →
𝜃 be the collapse map. Then, we define:

Definition 5.5 (Ordinal enlarged direct limit). lim+(𝜃, �⃗�) stands for (𝜃,∈, ⟨𝜋+
𝜂 |

𝜂 < 𝜉⟩), where 𝜋+
𝜂 := 𝜋* ∘ 𝜋*

𝜂 for all 𝜂 < 𝜉.

5.2. Square. Fix a �𝐵
𝜅 -sequence, ⟨𝐶𝛽 | 𝛽 ∈ Γ⟩. Enlarge the preceding to a se-

quence �⃗� = ⟨𝐶𝛽 | 𝛽 < 𝜅⟩ by letting, for all limit 𝛽 ∈ 𝜅 ∖Γ, 𝐶𝛽 be an arbitrary club
in 𝛽 of order type cf(𝛽), and letting 𝐶𝛽+1 := {0, 𝛽} for all 𝛽 < 𝜅. In particular, for
every 𝛽 ∈ 𝐸𝜅

𝜔 ∖ Γ, we have acc(𝐶𝛽) = ∅. Thus, without loss of generality, we may
assume that 𝐸𝜅

𝜔 ⊆ Γ. For convenience, assume also that 0 ∈ 𝐶𝛽 for all nonzero
𝛽 < 𝜅.
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We now turn to constructing a matrix �⃗� = ⟨𝐵𝛽
𝜂 | 𝛽 < 𝜅+, 𝜂 < 𝜅⟩ such that⋃︀

𝜂<𝜅 𝐵
𝛽
𝜂 = 𝛽 + 1 for all 𝛽 < 𝜅+. From this matrix, for each 𝛽 < 𝜅+, we shall

derive the following additional objects:

∘ we shall let 𝜂𝛽 denote the least 𝜂 < 𝜅 such that 𝐵𝛽
𝜂 ̸= ∅;

∘ for each 𝜉 ∈ acc(𝜅 ∖ 𝜂𝛽), we write 𝐵𝛽
<𝜉 :=

⋃︀
𝜂<𝜉 𝐵

𝛽
𝜂 ;

∘ for each 𝜂 < 𝜅, we shall set 𝜃𝛽𝜂 := otp(𝐵𝛽
𝜂 ) and let 𝜋𝛽

𝜂 : 𝐵𝛽
𝜂 → 𝜃𝛽𝜂 denote

the unique order-preserving bijection;

∘ for each 𝜂 < 𝜉 < 𝜅, 𝜋𝛽
𝜂,𝜉 : 𝜃𝛽𝜂 → 𝜃𝛽𝜉 will denote the order-preserving injection

indicating how 𝐵𝛽
𝜂 “sits inside” 𝐵𝛽

𝜉 , i.e., 𝜋𝛽
𝜂,𝜉 := 𝜋𝛽

𝜉 ∘ (𝜋𝛽
𝜂 )−1.

We shall also derive a “distance function” 𝑑 : [𝜅+]2 → 𝜅 by letting for all
𝛼 < 𝛽 < 𝜅+:

𝑑(𝛼, 𝛽) := min{𝜂 < 𝜅 | 𝛼 ∈ 𝐵𝛽
𝜂 }.

Lemma 5.6. There exists a matrix �⃗� = ⟨𝐵𝛽
𝜂 | 𝛽 < 𝜅+, 𝜂 < 𝜅⟩ such that, for each

𝛽 < 𝜅+, the following hold:

(1) ⟨𝐵𝛽
𝜂 | 𝜂 < 𝜅⟩ is a ⊆-increasing sequence of closed sets, each of size < 𝜅,

that converges to 𝛽 + 1, and 𝛽 ∈ 𝐵𝛽
𝜂𝛽
;

(2) for all 𝜂 < 𝜅 and 𝛼 ∈ 𝐵𝛽
𝜂 , we have 𝐵𝛼

𝜂 = 𝐵𝛽
𝜂 ∩(𝛼+1) and 𝜋𝛼

𝜂 = 𝜋𝛽
𝜂 �(𝛼+1);

(3) for all 𝜂 < 𝜅, if cf(𝛽) = 𝜅, then max(𝐵𝛽
𝜂 ∩ 𝛽) = 𝐶𝛽(𝜔𝜂);

(4) if 𝛽 ∈ Γ ∩ 𝐸𝜅+

<𝜅, then 𝜂𝛽 = otp(acc(𝐶𝛽)) and acc(𝐶𝛽) ⊆ 𝐵𝛽
𝜂𝛽
;

(5) for all 𝜉 ∈ acc(𝜅 ∖ 𝜂𝛽), all of the following hold:

(a) 𝐵𝛽
𝜉 is the ordinal closure of 𝐵𝛽

<𝜉;

(b) for every 𝛼 ∈ 𝐵𝛽
𝜉 ∖ 𝐵𝛽

<𝜉, letting 𝛾 := min(𝐵𝛽
𝜉 ∖ (𝛼 + 1)), we have

cf(𝛾) = 𝜅 and 𝛼 = 𝐶𝛾(𝜔𝜉);

(c) cf(𝛽) = 𝜅 iff ssup(𝜋𝛽
𝜂,𝜉“𝜋𝛽

𝜂 (𝛽)) < 𝜋𝛽
𝜉 (𝛽) for all 𝜂 ∈ [𝜂𝛽 , 𝜉).

Proof. The construction is by recursion on 𝛽 < 𝜅+.

Case 0: 𝛽 = 0. Set 𝐵𝛽
𝜂 := {0} for all 𝜂 < 𝜅. It is trivial to see that Clauses

(1)–(5) all hold.
Case 1: 𝛽 = 𝛼 + 1. For all 𝜂 < 𝜂𝛼, let 𝐵𝛽

𝜂 := ∅, and for all 𝜂 ∈ [𝜂𝛼, 𝜅), let

𝐵𝛽
𝜂 := {𝛽} ∪𝐵𝛼

𝜂 . It is trivial to see that Clauses (1)–(5) all hold.
Case 2: 𝛽 ∈ acc(𝜅) and sup(acc(𝐶𝛽)) < 𝛽. In particular, 𝑎 := 𝐶𝛽 ∖

sup(acc(𝐶𝛽)) is a cofinal subset of 𝛽 of order type 𝜔. Note that, since
cf(𝛽) = 𝜔, we have 𝛽 ∈ Γ. Put 𝜂𝛽 := otp(acc(𝐶𝛽)) and 𝜂* := max{𝜂𝛽 , sup(𝑑“[𝑎]2)}.
Now, for all 𝜂 < 𝜅, define 𝐵𝛽

𝜂 as follows:

I If 𝜂 < 𝜂𝛽 , then let 𝐵𝛽
𝜂 := ∅. Clauses (2)–(5) are trivially satisfied.

I If 𝜂𝛽 ≤ 𝜂 ≤ 𝜂*, then let 𝛼* := min(𝑎) and put 𝐵𝛽
𝜂 := {𝛽}∪𝐵𝛼*

𝜂 . Since
𝛼* ∈ acc(𝐶𝛽) ∪ {0} and 𝛽 ∈ Γ, we have 𝐶𝛼* ⊑ 𝐶𝛽 , which ensures
Clause (4). As for Clause (5c), for all 𝜂 < 𝜉 in [𝜂𝛽 , 𝜂

*], we have

ssup(𝜋𝛽
𝜂,𝜉“𝜋𝛽

𝜂 (𝛽)) = 𝜋𝛽
𝜂,𝜉(𝜋𝛽

𝜂 (𝛼*) + 1) = 𝜋𝛽
𝜉 (𝛼*) + 1 = 𝜋𝛽

𝜉 (𝛽).

The other clauses are easily seen to be satisfied.
I Otherwise, let 𝐵𝛽

𝜂 := {𝛽} ∪
⋃︀

𝛼∈𝑎 𝐵
𝛼
𝜂 . Since 𝜂 > 𝜂*, for every pair of

ordinals 𝛼 < 𝛼′ from 𝑎, we have 𝛼 ∈ 𝐵𝛼′

𝜂 , so that 𝐵𝛼
𝜂 = 𝐵𝛼′

𝜂 ∩ (𝛼+ 1).
It follows that ⟨𝐵𝛼

𝜂 | 𝛼 ∈ 𝑎⟩ is an ⊑-increasing sequence of closed sets.
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In particular, 𝐵𝛽
𝜂 ∩ 𝛽 is a club in 𝛽, which takes care of Clause (5c).

So, all clauses are satisfied.
Case 3: cf(𝛽) < 𝜅 and sup(acc(𝐶𝛽)) = 𝛽. Put 𝜂𝛽 := sup(𝑑“[acc(𝐶𝛽)]2),

and, for all 𝜂 < 𝜅, define 𝐵𝛽
𝜂 as follows:

I If 𝜂 < 𝜂𝛽 , then let 𝐵𝛽
𝜂 := ∅. Clauses (2)–(5) are trivially satisfied.

I If 𝜂 ≥ 𝜂𝛽 , then let 𝐵𝛽
𝜂 := {𝛽}∪

⋃︀
𝛼∈acc(𝐶𝛽)

𝐵𝛼
𝜂 . Since 𝜂 ≥ sup(𝑑“[acc(𝐶𝛽)]2),

we have that ⟨𝐵𝛼
𝜂 | 𝛼 ∈ acc(𝐶𝛽)⟩ is an ⊑-increasing sequence of closed

sets. So 𝐵𝛽
𝜂 ∩ 𝛽 is a club in 𝛽, and all clauses except Clause (4) are

easily seen to be satisfied. Now, if 𝛽 ∈ Γ, then, since Clause (4) holds
for all 𝛼 ∈ acc(𝐶𝛽), we have 𝜂𝛽 = otp(acc(𝐶𝛽)), so that Clause (4)
holds for 𝛽, as well.

Case 4: 𝛽 ∈ 𝐸𝜅+

𝜅 . For all 𝜂 < 𝜅, let 𝛼𝜂 := 𝐶𝛽(𝜔𝜂) and 𝐵𝛽
𝜂 := {𝛽} ∪𝐵

𝛼𝜂
𝜂 , so

that Clause (3) is satisfied.
Since cf(𝛽) = 𝜅, we have 𝛽 ∈ Γ. Hence, for all 𝜂 < 𝜉 < 𝜅, we have

𝛼𝜉 ∈ Γ, so that 𝛼𝜂 ∈ 𝐵
𝛼𝜉

𝜉 by Clause (4). It follows that ⟨𝐵𝛽
𝜂 ∩ 𝛽 | 𝜂 < 𝜅⟩ is

⊆-increasing. In particular, Clauses (1) and (2) are satisfied. It also follows

that, for all 𝜉 ∈ acc(𝜅) and 𝛼 ∈ 𝐵𝛽
𝜉 ∩ 𝛽, we have 𝐵𝛽

<𝜉 ∩ (𝛼 + 1) = 𝐵𝛼
<𝜉, so

that Clauses (5a) and (5b) are satisfied.
Finally, to verify Clause (5c), fix an arbitrary 𝜉 ∈ acc(𝜅) and 𝜂 < 𝜉. By

Clauses (2) and (3), we have 𝐵𝛽
𝜂 = {𝛽}∪𝐵

𝛼𝜂
𝜂 and 𝐵𝛽

𝜉 = {𝛽}∪𝐵
𝛼𝜉

𝜉 , so that

𝜋𝛽
𝜂 (𝛽) = 𝜋𝛽

𝜂 (𝛼𝜂) + 1 and 𝜋𝛽
𝜉 (𝛽) = 𝜋𝛽

𝜉 (𝛼𝜉) + 1. Therefore, we have

𝜋𝛽
𝜂,𝜉“𝜋𝛽

𝜂 (𝛽) ⊆ 𝜋𝛽
𝜂,𝜉(𝜋𝛽

𝜂 (𝛼𝜂)) + 1 = 𝜋𝛽
𝜉 (𝛼𝜂) + 1 < 𝜋𝛽

𝜉 (𝛼𝜉) < 𝜋𝛽
𝜉 (𝛽). �

The next lemma assumes familiarity with the previous subsection.

Lemma 5.7. Suppose 𝛽 < 𝜅+ and 𝜉 ∈ acc(𝜅 ∖ 𝜂𝛽). Write 𝜃 := ⟨𝜃𝛽𝜂 | 𝜂 < 𝜉⟩
and �⃗� := ⟨𝜋𝛽

𝜂,𝜂′ | 𝜂 < 𝜂′ < 𝜉⟩. Then lim+(𝜃, 𝛽) is defined and, letting (𝜃,∈, ⟨𝜋+
𝜂 |

𝜂 < 𝜉⟩) := lim+(𝜃, �⃗�), we have 𝜃 = 𝜃𝛽𝜉 and ⟨𝜋+
𝜂 | 𝜂 < 𝜉⟩ = ⟨𝜋𝛽

𝜂,𝜉 | 𝜂 < 𝜉⟩.

Proof. Let ⟨𝑌,C, ⟨𝜋𝜂 | 𝜂 < 𝜉⟩) := lim((𝜃, �⃗�)). For every class 𝑦 ∈ 𝑌 and represen-

tatives (𝜂, 𝛾), (𝜂′, 𝛾′) ∈ 𝑦 with 𝜂 < 𝜂′, we have 𝜋𝛽
𝜂,𝜂′(𝛾) = 𝛾′, i.e., (𝜋𝛽

𝜂′)−1(𝛾′) =

(𝜋𝛽
𝜂 )−1(𝛾). Therefore, for each 𝑦 ∈ 𝑌 , we may let 𝛼𝑦 := (𝜋𝛽

𝜂 )−1(𝛾) for an arbitrary
choice of (𝜂, 𝛾) ∈ 𝑦. Note that, for all 𝑦, 𝑦′ in 𝑌 , we have 𝑦 C 𝑦′ iff 𝛼𝑦 < 𝛼𝑦′ .

Therefore, the order type of (𝑌,C) is precisely otp(𝐵𝛽
<𝜉). In particular, lim(𝜃, �⃗�) is

well-ordered, so lim+(𝜃, �⃗�) is defined. Write (𝜃,∈, ⟨𝜋+
𝜂 | 𝜂 < 𝜉⟩) for lim+(𝜃, �⃗�).

Let 𝑍 be the set of equivalence classes in 𝑌 such that, for every representative
(𝜂, 𝛾) from the class, we have that 𝜋𝜂 � 𝛾 is bounded below 𝜋𝜂(𝛾). By Clause (5c)
of Lemma 5.6, we know that 𝑍 = {𝑧 ∈ 𝑌 | cf(𝛼𝑧) = 𝜅}.

For all 𝛼 ∈ 𝐵𝛽
<𝜉 ∩ 𝐸𝜅+

𝜅 , we have 𝐶𝛼(𝜔𝜉) ∈ 𝐵𝛽
𝜉 ∖ 𝐵𝛽

<𝜉 and, moreover, 𝛼 =

min(𝐵𝛽
𝜉 ∖ (𝐶𝛼(𝜔𝜉) + 1)). Also, by Clauses (5a) and (5b) of Lemma 5.6, we know

that 𝐵𝛽
𝜉 = 𝐵𝛽

<𝜉 ∪ {𝐶𝛼(𝜔𝜉) | 𝛼 ∈ 𝐵𝛽
<𝜉 ∩ 𝐸𝜅+

𝜅 }. Now, for all 𝑧 ∈ 𝑍, the addition

of (𝑧, 0) when passing from 𝑌 to 𝑊 := double𝑍(𝑌,C) corresponds precisely to the

addition of 𝐶𝛼𝑧 (𝜔𝜉) when passing from 𝐵𝛽
<𝜉 to 𝐵𝛽

𝜉 . It follows that otp(𝑊,C𝑙) =

otp(𝐵𝛽
𝜉 ) = 𝜃𝛽𝜉 . That is, 𝜃 = 𝜃𝛽𝜉 . Letting 𝜋* : 𝑊 → 𝜃 be the collapse map, we have
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that, for all 𝑧 ∈ 𝑌 , 𝜋*(𝑧, 1) = 𝜋𝛽
𝜉 (𝛼𝑧), so, for all 𝜂 < 𝜉 and 𝛾 < 𝜃𝛽𝜂 , we have

𝜋+
𝜂 (𝛾) = 𝜋*([(𝜂, 𝛾)], 1) = 𝜋𝛽

𝜉 ((𝜋𝛽
𝜂 )−1(𝛾)) = 𝜋𝛽

𝜂,𝜉(𝛾),

so ⟨𝜋+
𝜂 | 𝜂 < 𝜉⟩ = ⟨𝜋𝛽

𝜂,𝜉 | 𝜂 < 𝜉⟩. �

5.3. Diamond. Our next goal is to prove the following.

Lemma 5.8. Suppose that ♢(𝜅) holds and that (P,≤P,Q) ∈ 𝒫𝜅. Then there are

arrays ⟨𝜗𝜉
𝜂 | 𝜂 ≤ 𝜉 < 𝜅⟩, ⟨𝜛𝜉

𝜂,𝜂′ | 𝜂 < 𝜂′ ≤ 𝜉 < 𝜅⟩, and ⟨𝑞𝜉𝜂 | 𝜂 < 𝜉 < 𝜅⟩
satisfying the following: For every 𝛽 < 𝜅+ and every decreasing sequence ⟨𝑝𝜂 |
𝜂 < 𝜅⟩ ∈

∏︀
𝜂<𝜅 P𝐵𝛽

𝜂
, there are stationarily many 𝜉 < 𝜅 such that:

∙ ⟨𝜗𝜉
𝜂 | 𝜂 ≤ 𝜉⟩ = ⟨𝜃𝛽𝜂 | 𝜂 ≤ 𝜉⟩;

∙ ⟨𝜛𝜉
𝜂,𝜂′ | 𝜂 < 𝜂′ ≤ 𝜉⟩ = ⟨𝜋𝛽

𝜂,𝜂′ | 𝜂 < 𝜂′ ≤ 𝜉⟩;
∙ ⟨𝑞𝜉𝜂 | 𝜂 < 𝜉⟩ = ⟨𝜋𝛽

𝜂 .𝑝𝜂 | 𝜂 < 𝜉⟩.

The rest of this subsection will be devoted to proving Lemma 5.8. To avoid
the use of codings, we shall make use of the following equivalent version of ♢(𝜅)
(see [2]).

Definition 5.9. ♢−(𝐻𝜅) asserts the existence of a sequence ⟨𝐴𝜉 | 𝜉 < 𝜅⟩ such that,
for every 𝐴 ⊆ 𝐻𝜅 and 𝑝 ∈ 𝐻𝜅+ , there exists an elementary submodel ℳ ≺ 𝐻𝜅+ ,
with 𝑝 ∈ ℳ, such that 𝜅ℳ := ℳ∩ 𝜅 is an ordinal < 𝜅 and 𝐴 ∩ℳ = 𝐴𝜅ℳ .

Fix a ♢−(𝐻𝜅)-sequence, ⟨𝐴𝜉 | 𝜉 < 𝜅⟩.

Definition 5.10. We say that 𝜉 < 𝜅 is good if 𝜉 ∈ acc(𝜅) and

𝐴𝜉 = {(𝜗𝜉
𝜂, 𝑞

𝜉
𝜂, 𝜛

𝜉
𝜂,𝜂′ , 𝜂, 𝜂

′) | 𝜂 < 𝜂′ < 𝜉},

where, for all 𝜂 < 𝜂′ < 𝜂′′ < 𝜉, we have

∙ 𝜗𝜉
𝜂 ≤ 𝜗𝜉

𝜂′ < 𝜅;

∙ 𝑞𝜉𝜂 ∈ P𝜗𝜉
𝜂
;

∙ 𝜛𝜉
𝜂,𝜂′ : 𝜗𝜉

𝜂 → 𝜗𝜉
𝜂′ is a c.o.i., and 𝑞𝜉𝜂′ ≤P 𝜛𝜉

𝜂,𝜂′ .𝑞𝜉𝜂;

∙ 𝜛𝜉
𝜂,𝜂′′ = 𝜛𝜉

𝜂′,𝜂′′ ∘𝜛𝜉
𝜂,𝜂′ ;

∙ lim(⟨𝜗𝜉
𝜂 | 𝜂 < 𝜉⟩, ⟨𝜛𝜉

𝜂,𝜂′ | 𝜂 < 𝜂′ < 𝜉⟩) is well-ordered.

I If 𝜉 < 𝜅 is good, then ⟨𝜗𝜉
𝜂 | 𝜂 < 𝜉⟩, ⟨𝜛𝜉

𝜂,𝜂′ | 𝜂 < 𝜂′ < 𝜉⟩, and ⟨𝑞𝜉𝜂 | 𝜂 < 𝜉⟩ are
already defined, and we let:

(𝜗𝜉
𝜉,∈, ⟨𝜛

𝜉
𝜂,𝜉 | 𝜂 < 𝜉⟩) := lim +(⟨𝜗𝜉

𝜂 | 𝜂 < 𝜉⟩, ⟨𝜛𝜉
𝜂,𝜂′ | 𝜂 < 𝜂′ < 𝜉⟩).

I If 𝜉 < 𝜅 is not good, then let ⟨𝜗𝜉
𝜂 | 𝜂 ≤ 𝜉⟩, ⟨𝜛𝜉

𝜂,𝜂′ | 𝜂 < 𝜂′ ≤ 𝜉⟩, and ⟨𝑞𝜉𝜂 |
𝜂 < 𝜉⟩ be arbitrary.

We claim that the arrays thus defined satisfy the conclusion of Lemma 5.8. To
verify this, fix 𝛽 < 𝜅+, a decreasing sequence ⟨𝑝𝜂 | 𝜂 < 𝜅⟩ ∈

∏︀
𝜂<𝜅 P𝐵𝛽

𝜂
, and a club

𝐷 in 𝜅. Put

𝐴 := {(𝜃𝛽𝜂 , 𝜋
𝛽
𝜂 .𝑝𝜂, 𝜋

𝛽
𝜂,𝜂′ , 𝜂, 𝜂

′) | 𝜂 < 𝜂′ < 𝜅}.
Since 𝐴 ⊆ 𝐻𝜅 and 𝐷 ∈ 𝐻𝜅+ , we can let 𝑝 := {𝐴,𝐷} and fix an elementary submodel
ℳ ≺ 𝐻𝜅+ with 𝑝 ∈ ℳ such that 𝜉 := ℳ ∩ 𝜅 is in 𝜅 and 𝐴 ∩ ℳ = 𝐴𝜉. By the
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fact that 𝐷 ∈ ℳ and the elementarity of ℳ, we have 𝜉 ∈ 𝐷. Since ℳ∩𝜅 = 𝜉 and
𝐴 ∈ ℳ, and by the elementarity of ℳ, we have

𝐴𝜉 = {(𝜃𝛽𝜂 , 𝜋
𝛽
𝜂 .𝑝𝜂, 𝜋

𝛽
𝜂,𝜂′ , 𝜂, 𝜂

′) | 𝜂 < 𝜂′ < 𝜉}.

In particular, 𝜉 is good. By Lemma 5.7, we have 𝜗𝜉
𝜉 = 𝜃𝛽𝜉 and, for all 𝜂 < 𝜉,

𝜛𝜉
𝜂,𝜉 = 𝜋𝛽

𝜂,𝜉. Therefore, 𝜉 ∈ 𝐷 satisfies the three bullet points in the statement of
Lemma 5.8. Since 𝐷 was arbitrary, this completes the proof of the lemma.

6. Proof of Theorem B

This section is devoted to the proof of Theorem B, which forms the main result
of this paper.

Theorem B. Suppose that �𝐵
𝜅 and ♢(𝜅) both hold. Then so does SDFA(𝒫𝜅).

6.1. Setup. Fix an arbitrary (P,≤P,Q) ∈ 𝒫𝜅 along with a collection {𝒟𝑖 | 𝑖 < 𝜅}
of sharply dense systems. For each 𝑖 < 𝜅, write 𝒟𝑖 = {𝐷𝑖,𝑥 | 𝑥 ∈

(︀
𝜅+

𝜃𝒟𝑖

)︀
}.

Let �⃗� be given by Lemma 5.6, and let ⟨𝜗𝜉
𝜂 | 𝜂 ≤ 𝜉 < 𝜅⟩, ⟨𝜛𝜉

𝜂,𝜂′ | 𝜂 < 𝜂′ ≤ 𝜉 < 𝜅⟩,
and ⟨𝑞𝜉𝜂 | 𝜂 < 𝜉 < 𝜅⟩ be given by Lemma 5.8 applied to (P,≤P,Q).

Definition 6.1. Let 𝑋 denote the set of 𝜉 ∈ acc(𝜅) such that:

∙ 𝜉 is good, in the sense of Definition 5.10;

∙ ⟨𝜛𝜉
𝜂,𝜉.𝑞

𝜉
𝜂 | 𝜂 < 𝜉⟩ admits a lower bound in P𝜗𝜉

𝜉
.

Let C𝜅 be some well-ordering of 𝐻𝜅. Using 𝜅<𝜅 = 𝜅 (which follows from ♢(𝜅)),
enumerate all elements of

⋃︀
𝑖<𝜅{𝑖} × 𝜅×

(︀
𝜅

𝜃𝒟𝑖

)︀
as a sequence ⟨(𝑖𝜂, 𝑗𝜂, 𝑧𝜂) | 𝜂 < 𝜅⟩.

Lemma 6.2. There is a sequence of conditions ⟨𝑠𝜉 | 𝜉 ∈ 𝑋⟩ ∈
∏︀

𝜉∈𝑋 Q𝜗𝜉
𝜉
, such

that, for all 𝜉 ∈ 𝑋:

∙ 𝑠𝜉 is a lower bound for ⟨𝜛𝜉
𝜂,𝜉.𝑞

𝜉
𝜂 | 𝜂 < 𝜉⟩;

∙ for all 𝜂 < 𝜉, if 𝑗𝜂 < 𝜉 and 𝑧𝜂 ⊆ 𝜗𝜉
𝑗𝜂
, then there is 𝑞 ∈ 𝐷𝑖𝜂,𝜛

𝜉
𝑗𝜂,𝜉“𝑧𝜂

such

that 𝑠𝜉 ≤P 𝑞.

Proof. Let 𝜉 ∈ 𝑋 be arbitrary. We first define a sequence ⟨𝑠𝜂 | 𝜂 ≤ 𝜉⟩ ∈
∏︀

𝜂≤𝜉 Q𝜗𝜉
𝜉

by recursion on 𝜂:
I For 𝜂 = 0, use Clauses (1c) and (6) of Definition 2.1 and the fact that 𝜉 ∈ 𝑋

to find 𝑠0 ∈ Q such that 𝑥𝑠0 = 𝜗𝜉
𝜉 and 𝑠0 is a lower bound for ⟨𝜛𝜉

𝜂,𝜉.𝑞
𝜉
𝜂 | 𝜂 < 𝜉⟩.

I For 𝜂 < 𝜉, with 𝑗𝜂 < 𝜉 and 𝑧𝜂 ⊆ 𝜗𝜉
𝑗𝜂

, use the fact that 𝒟𝑖𝜂 is a sharply dense

system and that 𝜛𝜉
𝑗𝜂,𝜉

“𝑧𝜂 ⊆ 𝜗𝜉
𝜉 to find 𝑠𝜂,* ∈ 𝐷𝑖𝜂,𝜛

𝜉
𝑗𝜂,𝜉“𝑧𝜂

such that 𝑠𝜂,* ≤P 𝑠𝜂

and 𝑥𝑠𝜂,* = 𝜗𝜉
𝜉. Then, use Clause (6) of Definition 2.1 to find 𝑠𝜂+1 ∈ Q such that

𝑠𝜂+1 ≤P 𝑠𝜂,* and 𝑥𝑠𝜂+1 = 𝜗𝜉
𝜉.

I For 𝜂 < 𝜉 with 𝑗𝜂 ≥ 𝜉 or 𝑧𝜂 ̸⊆ 𝜗𝜉
𝑗𝜂

, simply let 𝑠𝜂+1 := 𝑠𝜂.

I For 𝜂 ∈ acc(𝜉 + 1), assuming that ⟨𝑠𝜁 | 𝜁 < 𝜂⟩ has already been defined, use
Clause (7) of Definition 2.1 to let 𝑠𝜂 be a lower bound for ⟨𝑠𝜁 | 𝜁 < 𝜂⟩ in Q with

𝑥𝑠𝜂 = 𝜗𝜉
𝜉.

Having constructed ⟨𝑠𝜂 | 𝜂 ≤ 𝜉⟩, it is clear that 𝑠𝜉 := 𝑠𝜉 is as sought. �
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Fix a sequence ⟨𝑠𝜉 | 𝜉 ∈ 𝑋⟩ as in the preceding lemma. We will construct a
matrix of conditions ⟨𝑝𝛽𝜂 | 𝛽 < 𝜅+, 𝜂 < 𝜅⟩ satisfying:

(i) for all 𝛽 < 𝜅+ and 𝜂 < 𝜅, we have 𝑝𝛽𝜂 ∈ P𝐵𝛽
𝜂
;

(ii) for all 𝛽 < 𝜅+, ⟨𝑝𝛽𝜂 | 𝜂 < 𝜅⟩ is ≤P-decreasing;

(iii) for all 𝛽 < 𝜅+, 𝜂 < 𝜅, and 𝛼 ∈ 𝐵𝛽
𝜂 , we have 𝑝𝛽𝜂 �� (𝛼 + 1) = 𝑝𝛼𝜂 ;

(iv) for all 𝛽 < 𝜅+, all 𝑖 < 𝜅, and all 𝑥 ∈
(︀
𝛽+1
𝜃𝒟𝑖

)︀
, there is 𝜉 < 𝜅 and 𝑞 ∈ 𝐷𝑖,𝑥 such

that 𝑝𝛽𝜉 ≤P 𝑞;

(v) for all 𝛽 ∈ 𝐸𝜅+

𝜅 and all 𝜉 ∈ acc(𝜅), the sequence ⟨𝜋𝛽
𝜉 .𝑝

𝛽
𝜂 | 𝜂 ≤ 𝜉⟩ depends only

on the value of 𝐶𝛽(𝜔𝜉).

Note that if we are successful, then, letting 𝐺 be the upward closure of {𝑝𝛽𝜂 |
𝛽 < 𝜅+, 𝜂 < 𝜅}, it follows from Clauses (i)–(iv) that 𝐺 is a filter on P that, for
each 𝜂 < 𝜅, meets 𝒟𝜂 everywhere. Of course, the sequence ⟨𝑠𝜉 | 𝜉 ∈ 𝑋⟩, which was
derived from ♢, will be a key to ensuring Clause (iv).

6.2. Hypotheses. The construction of ⟨𝑝𝛽𝜂 | 𝛽 < 𝜅+, 𝜂 < 𝜅⟩ will be by recursion

on 𝜂 < 𝜅 and, for fixed 𝜂, by recursion on 𝛽 < 𝜅+. We will maintain requirements
(i)–(iii) and (v) as recursion hypotheses. In order to ensure that the construction
will be successful, we need to carry along some further hypotheses. Suppose that
𝛽 < 𝜅+, 𝜉 ∈ acc(𝜅), and ⟨𝑝𝛼𝜂 | 𝛼 < 𝜅+, 𝜂 < 𝜉⟩ has been constructed.

Definition 6.3. We say that the pair (𝛽, 𝜉) is active if 𝜉 ∈ 𝑋, 𝜃𝛽𝜉 ≤ 𝜗𝜉
𝜉, and one of

the following holds:

∙ 𝜉 > 𝜂𝛽 and, for all 𝜂 < 𝜉, 𝑠𝜉 ≤P 𝜋𝛽
𝜉 .𝑝

𝛽
𝜂 ; or,

∙ 𝜉 = 𝜂𝛽 and there is 𝛾 ∈ 𝐸𝜅+

𝜅 such that 𝛽 ∈ acc(𝐶𝛾) and (𝛾, 𝜉) is active.

In our construction, we will require that, for all active (𝛽, 𝜉), we have 𝜋𝛽
𝜉 .𝑝

𝛽
𝜉 =

𝑠𝜉 �� 𝜃
𝛽
𝜉 . In particular, if (𝛽, 𝜉) is active, then 𝑝𝛽𝜉 ∈ Q and 𝑥𝑝𝛽

𝜉
= 𝐵𝛽

𝜉 . Moreover, for

all 𝛽 < 𝜅+, we will arrange that, if 𝜉 < 𝜅 is least such that 𝛽 ∈ 𝑥𝑝𝛽
𝜉
, then either

(𝛽, 𝜉) is active or (𝜉 = 𝜂𝛽 and 𝑝𝛽𝜉 ∈ Q).

Lemma 6.4. Suppose that 𝛽 < 𝜅+, 𝜉 ∈ 𝑋, and (𝛽, 𝜉) is active. Then (𝛼, 𝜉) is

active for all 𝛼 ∈ 𝐵𝛽
𝜉 .

Proof. Let 𝛼 ∈ 𝐵𝛽
𝜉 be arbitrary. As 𝐵𝛽

𝜉 ∩(𝛼+1) = 𝐵𝛼
𝜉 , we have 𝜃𝛼𝜉 < 𝜃𝛽𝜉 ≤ 𝜗𝜉

𝜉 = 𝑥𝑠𝜉 .

I If 𝜉 > 𝜂𝛽 and 𝛼 ∈ 𝐵𝛽
<𝜉, then 𝜉 > 𝜂𝛼 and, for all sufficiently large 𝜂 < 𝜉, we

have 𝑝𝛼𝜂 = 𝑝𝛽𝜂 �� (𝛼 + 1). By Clause (2) of Lemma 5.6, then, 𝑠𝜉 ≤P 𝜋𝛽
𝜂 .𝑝

𝛼
𝜂 = 𝜋𝛼

𝜂 .𝑝
𝛼
𝜂 ,

so (𝛼, 𝜉) is active.

I If 𝜉 > 𝜂𝛽 and 𝛼 ∈ 𝐵𝛽
𝜉 ∖𝐵𝛽

<𝜉, then let 𝛾 := min(𝐵𝛽
𝜉 ∖ (𝛼 + 1)). By Clause (5b)

of Lemma 5.6, we know that cf(𝛾) = 𝜅 and 𝛼 = 𝐶𝛾(𝜔𝜉). It follows that 𝛼 ∈ Γ

and hence, by Clause (4) of Lemma 5.6, we have 𝜉 = 𝜂𝛼. Since |𝐵𝛽
𝜉 | < 𝜅, and by

Clause (5a) of Lemma 5.6, we know that 𝛾 ∈ 𝐵𝛽
<𝜉, so, by the previous paragraph,

(𝛾, 𝜉) is active. Hence, by Definition 6.3, (𝛼, 𝜉) is active as well.

I If 𝜉 = 𝜂𝛽 and 𝛾 ∈ 𝐸𝜅+

𝜅 is such that 𝛽 ∈ acc(𝐶𝛾) and (𝛾, 𝜉) is active, then

by Clauses (2) and (3) of Lemma 5.6, 𝐵𝛾
𝜉 ∩ (𝛽 + 1) = 𝐵𝛽

𝜉 , so 𝛼 ∈ 𝐵𝛾
𝜉 . Moreover,

𝜉 > 𝜂𝛾 = 0, so, by the previous cases, we again conclude that (𝛼, 𝜉) is active. �



A FORCING AXIOM DECIDING THE GENERALIZED SOUSLIN HYPOTHESIS 27

Our final recursion hypotheses concern non-active pairs (𝛽, 𝜉).
First, suppose that (𝛽, 𝜉) is not active and 𝜉 = 𝜂𝛽 . If 𝜉 ∈ acc(𝜅) and there is

𝛾 ∈ 𝐸𝜅+

𝜅 such that 𝛽 ∈ acc(𝐶𝛾) and sup{𝜂 < 𝜉 | (𝛾, 𝜂) is active} = 𝜉, then we will

require that 𝑝𝛽𝜉 ∈ Q and 𝑥𝑝𝛽
𝜉

= 𝐵𝛽
𝜉 .

Next, suppose that (𝛽, 𝜉) is not active and 𝜉 > 𝜂𝛽 . Let

𝜂* := max{sup{𝜂 < 𝜉 | (𝛽, 𝜂) is active}, 𝜂𝛽}.

I If 𝜂* = 𝜉, then we will require that 𝑝𝛽𝜉 ∈ Q and 𝑥𝑝𝛽
𝜉

= 𝐵𝛽
𝜉 .

I If 𝜂* < 𝜉 and 𝛽 ∈ 𝑥𝑝𝛽
𝜂*

, then we will have 𝑝𝛽𝜂* ∈ Q and will require that

𝑝𝛽𝜉 is the ≤P-greatest condition 𝑞 such that 𝑞 ≤P 𝑝𝛽𝜂* and, for all 𝛼 ∈ 𝐵𝛽
𝜉 ∩ 𝛽,

𝑞 �� (𝛼 + 1) = 𝑝𝛼𝜉 .

6.3. The construction. We now turn to the actual construction. Suppose that
𝛽 < 𝜅+, 𝜉 < 𝜅, and we have already constructed ⟨𝑝𝛼𝜂 | 𝛼 < 𝜅+, 𝜂 < 𝜉⟩ and ⟨𝑝𝛼𝜉 |
𝛼 < 𝛽⟩. We now construct 𝑝𝛽𝜉 . There are a number of cases to consider. In all cases,
unless explicitly verified, it will be trivial to check that the recursion hypotheses
are maintained.

Case 0: 𝜉 < 𝜂𝛽. Let 𝑝𝛽𝜂 := 1P.
Case 1: 𝜉 = 𝜂𝛽. There are now a few subcases to consider.

Subcase 1a: (𝛽, 𝜉) is active. In particular, 𝑥𝑠𝜉 = 𝜗𝜉
𝜉 ≥ 𝜃𝛽𝜉 . Let 𝑝𝛽𝜉 be

the unique condition 𝑞 such that 𝑥𝑞 = 𝐵𝛽
𝜉 and 𝜋𝛽

𝜉 .𝑞 = 𝑠𝜉 �� 𝜃
𝛽
𝜉 , i.e.,

𝑝𝛽𝜉 = (𝜋𝛽
𝜉 )−1.(𝑠𝜉 �� 𝜃

𝛽
𝜉 ). Note that, for all 𝛼 ∈ 𝐵𝛽

𝜉 , Lemma 6.4 implies

that (𝛼, 𝜉) is active. We therefore have 𝜋𝛽
𝜉 .𝑝

𝛼
𝜉 = 𝜋𝛼

𝜉 .𝑝
𝛼
𝜉 = 𝑠𝜉 �� 𝜃

𝛽
𝜉 , so

𝑝𝛽𝜉 �� (𝛼 + 1) = 𝑝𝛼𝜉 and requirement (iii) is satisfied.

Subcase 1b: (𝛽, 𝜉) is not active and there is 𝛾 ∈ 𝐸𝜅+

𝜅 such that
𝛽 ∈ acc(𝐶𝛾) and sup{𝜂 < 𝜉 | (𝛾, 𝜂) is active} = 𝜉. Fix such a 𝛾.

Note that 𝐵𝛾
<𝜉 ∩ 𝛽 is unbounded in 𝐵𝛽

𝜉 ∩ 𝛽 and, for all 𝛼 ∈ 𝐵𝛾
<𝜉 ∩

𝛽, sup{𝜂 < 𝜉 | (𝛼, 𝜂) is active} = 𝜉. Therefore, by our recursion
hypotheses, for all 𝛼 ∈ 𝐵𝛾

<𝜉, we know that 𝑝𝛼𝜉 ∈ Q and 𝑥𝑝𝛼
𝜉

= 𝐵𝛼
𝜉 . By

Clause (5) of Definition 2.1, there is a unique condition 𝑞 ∈ Q such

that 𝑥𝑞 = 𝐵𝛽
𝜉 ∩ 𝛽 and, for all 𝛼 ∈ 𝐵𝛽

𝜉 , we have 𝑞 �� (𝛼 + 1) = 𝑝𝛼𝜉 . By

Clause (7) of Definition 2.1, there is a lower bound 𝑝 for ⟨𝑝𝛾𝜂 | 𝜂 < 𝜉⟩
such that:

∙ 𝑝 ∈ Q;

∙ 𝑥𝑝 = 𝐵𝛾
𝜉 = 𝐵𝛽

𝜉 ∪ {𝛾};
∙ 𝑝 �� 𝛽 = 𝑞.

Fix such a lower bound 𝑝 with a C𝜅-minimal possible value for 𝜋𝛾
𝜉 .𝑝,

and let 𝑝𝛽𝜉 := 𝑝��(𝛽+1). Note that, by requirement (v), the construction
in this Subcase is independent of our choice of 𝛾.

Subcase 1c: Otherwise. Let 𝑝𝛽𝜉 be the unique condition, given by

Clause (5) of Definition 2.1, such that 𝑥𝑝𝛽
𝜉

=
⋃︀
{𝑥𝑝𝛼

𝜉
| 𝛼 ∈ (𝐵𝛽

𝜉 ∩ 𝛽)}

and, for all 𝛼 ∈ (𝐵𝛽
𝜉 ∩ 𝛽), we have 𝑝𝛽𝜉 �� (𝛼 + 1) = 𝑝𝛼𝜉 .

Case 2: 𝜉 > 𝜂𝛽. There are again a few subcases to consider.
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Subcase 2a: (𝛽, 𝜉) is active. Let 𝑝𝛽𝜉 be the unique condition 𝑞 such

that 𝑥𝑞 = 𝐵𝛽
𝜉 and 𝜋𝛽

𝜉 .𝑞 = 𝑠𝜉 �� 𝜃
𝛽
𝜉 . By Definition 6.3, we have that

𝑠𝜉 ≤P 𝜋𝛽
𝜉 .𝑝

𝛽
𝜂 for all 𝜂 < 𝜉, which implies that 𝑝𝛽𝜉 ≤P 𝑝𝛽𝜂 for all 𝜂 < 𝜉,

so requirement (i) holds.
Subcase 2b: (𝛽, 𝜉) is not active, sup{𝜂 < 𝜉 | (𝛽, 𝜂) is active} = 𝜉,

and 𝛽 ̸∈ 𝐸𝜅+

𝜅 . In this Subcase, we have that 𝜉 ∈ acc(𝜅) and 𝐵𝛽
<𝜉∩𝛽 is

unbounded in 𝐵𝛽
𝜉 ∩𝛽. Since, for all 𝛼 ∈ 𝐵𝛽

<𝜉, we know that sup{𝜂 < 𝜉 |
(𝛼, 𝜂) is active} = 𝜉, it follows as in Subcase 1b that there is a unique

condition 𝑞 ∈ Q such that 𝑥𝑞 = 𝐵𝛽
𝜉 ∩ 𝛽 and, for all 𝛼 ∈ 𝐵𝛽

𝜉 , we have

𝑞 �� (𝛼 + 1) = 𝑝𝛼𝜉 . By Clause (7) of Definition 2.1, there is 𝑝 ∈ Q such
that:

∙ 𝑝 is a lower bound for ⟨𝑝𝛽𝜂 | 𝜂 < 𝜉⟩;
∙ 𝑝 ∈ Q;

∙ 𝑥𝑝 = 𝐵𝛽
𝜉 ;

∙ 𝑝 �� 𝛽 = 𝑞.

Let 𝑝𝛽𝜉 be such a 𝑝.

Subcase 2c: (𝛽, 𝜉) is not active, sup{𝜂 < 𝜉 | (𝛽, 𝜂) is active} = 𝜉,

and 𝛽 ∈ 𝐸𝜅+

𝜅 . Let 𝛼 := 𝐶𝛽(𝜔𝜉), so that 𝐵𝛽
𝜉 = 𝐵𝛼

𝜉 ∪ {𝛽}. When
defining 𝑝𝛼𝜉 , we were in Subcase 1b. In that Subcase, we considered a

𝛾 ∈ 𝐸𝜅+

𝜅 such that 𝛼 ∈ acc(𝐶𝛾), produced a condition 𝑝 with 𝑥𝑝 = 𝐵𝛾
𝜉 ,

and let 𝑝𝛼𝜉 := 𝑝 �� (𝛼 + 1). Let 𝜋 : 𝐵𝛾
𝜉 → 𝐵𝛽

𝜉 be the unique order-

preserving bijection, and let 𝑝𝛽𝜉 = 𝜋.𝑝. Since, by requirement (v), we

have ⟨𝜋𝛽
𝜉 .𝑝

𝛽
𝜂 | 𝜂 < 𝜉⟩ = ⟨𝜋𝛾

𝜉 .𝑝
𝛾
𝜂 | 𝜂 < 𝜉⟩, and since 𝜋 �𝐵𝛼

𝜉 is the identity,
the recursion hypotheses are all easily verified.

Subcase 2d: (𝛽, 𝜉) is not active and there is no 𝜂 < 𝜉 such that

𝛽 ∈ 𝑥𝑝𝛽
𝜂
. Let 𝑝𝛽𝜉 be the unique condition 𝑞 such that 𝑥𝑞 =

⋃︀
{𝑥𝑝𝛼

𝜉
|

𝛼 ∈ (𝐵𝛽
𝜉 ∩ 𝛽)} and, for all 𝛼 ∈ (𝐵𝛽

𝜉 ∩ 𝛽), we have 𝑞 �� (𝛼 + 1) = 𝑝𝛼𝜉 .
Subcase 2e: Otherwise. Let

𝜂* := max{sup{𝜂 < 𝜉 | (𝛽, 𝜂) is active}, 𝜂𝛽}.

Since we are not in any of the previous Subcases, it must be the case

that 𝜂* < 𝜂, 𝑝𝛽𝜂* ∈ Q, and 𝑥𝑝𝛽
𝜂*

= 𝐵𝛽
𝜂* . For all 𝜂 ∈ (𝜂*, 𝜉], let 𝑞𝜂 be the

unique condition, given by Clause (5) of Definition 2.1, such that 𝑥𝑞𝜂 =⋃︀
{𝑥𝑝𝛼

𝜂
| 𝛼 ∈ (𝐵𝛽

𝜂∩𝛽)} and, for all 𝛼 ∈ (𝐵𝛽
𝜂∩𝛽), we have 𝑞��(𝛼+1) = 𝑝𝛼𝜂 .

By the recursion hypotheses, we know that, for all 𝜂 ∈ (𝜂*, 𝜉), 𝑝𝛽𝜂 is

the ≤P-greatest lower bound of 𝑝𝛽𝜂* and 𝑞𝜂, as given by Clause (8) of

Definition 2.1. Therefore, if we let 𝑝𝛽𝜉 be the ≤P-greatest lower bound

of 𝑝𝛽𝜂* and 𝑞𝜉, which again exists by Clause (8) of Definition 2.1, it will

follow that 𝑝𝛽𝜉 ≤P 𝑝𝛽𝜂 for all 𝜂 < 𝜉, so requirement (i) holds. The other
requirements are easily verified.

This completes the construction. We have maintained requirements (i)–(iii) and
(v) throughout. We now verify requirement (iv). To this end, fix 𝛽 < 𝜅+, 𝑖 < 𝜅,

and 𝑥 ∈
(︀
𝛽+1
𝜃𝒟𝑖

)︀
. We will find 𝜉 < 𝜅 and 𝑞 ∈ 𝐷𝑖,𝑥 such that 𝑝𝛽𝜉 ≤P 𝑞.
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Fix 𝑗 < 𝜅 such that 𝑥 ⊆ 𝐵𝛽
𝑗 , and fix 𝜂* < 𝜅 such that (𝑖𝜂* , 𝑗𝜂* , 𝑧𝜂*) = (𝑖, 𝑗, 𝜋𝛽

𝑗 “𝑥).

Find 𝜉 ∈ acc(𝜅 ∖ (max{𝑗, 𝜂*, 𝜂𝛽} + 1)) such that:

∙ ⟨𝜗𝜉
𝜂 | 𝜂 ≤ 𝜉⟩ = ⟨𝜃𝛽𝜂 | 𝜂 ≤ 𝜉⟩;

∙ ⟨𝜛𝜉
𝜂,𝜂′ | 𝜂 < 𝜂′ ≤ 𝜉⟩ = ⟨𝜋𝛽

𝜂,𝜂′ | 𝜂 < 𝜂′ ≤ 𝜉⟩;
∙ ⟨𝑞𝜉𝜂 | 𝜂 < 𝜉⟩ = ⟨𝜋𝛽

𝜂 .𝑝
𝛽
𝜂 | 𝜂 < 𝜉⟩.

The following two claims now suffice for the verification of requirement (iv).

Claim 6.5. (𝛽, 𝜉) is active.

Proof. We verify the requirements in Definition 6.3. We clearly have 𝜃𝛽𝜉 ≤ 𝜗𝜉
𝜉 and

𝜉 > 𝜂𝛽 . Moreover, for all 𝜂 < 𝜉, we have

𝜛𝜉
𝜂,𝜉.𝑞

𝜉
𝜂 = 𝜋𝛽

𝜂,𝜉.𝜋
𝛽
𝜂 .𝑝

𝛽
𝜂 = 𝜋𝛽

𝜉 .𝑝
𝛽
𝜂 .

Since 𝑝𝛽𝜉 ∈ P𝐵𝛽
𝜉

is a lower bound for ⟨𝑝𝛽𝜂 | 𝜂 < 𝜉⟩, it follows that 𝜋𝛽
𝜉 .𝑝

𝛽
𝜉 ∈ P𝜗𝜉

𝜉
is a

lower bound for ⟨𝜛𝜉
𝜂,𝜉.𝑞

𝜉
𝜂 | 𝜂 < 𝜉⟩. In particular, 𝜉 ∈ 𝑋. It follows that 𝑠𝜉 is a lower

bound for ⟨𝜛𝜉
𝜂,𝜉.𝑞

𝜉
𝜂 | 𝜂 < 𝜉⟩ = ⟨𝜋𝛽

𝜉 .𝑝
𝛽
𝜂 | 𝜂 < 𝜉⟩, which completes the verification. �

Claim 6.6. There is 𝑞 ∈ 𝐷𝑖,𝑥 such that 𝑝𝛽𝜉 ≤P 𝑞.

Proof. Since (𝛽, 𝜉) is active and 𝜃𝛽𝜉 = 𝜗𝜉
𝜉, we have 𝜋𝛽

𝜉 .𝑝
𝛽
𝜉 = 𝑠𝜉. It thus suffices to

find 𝑞′ ∈ 𝐷𝑖,𝜋𝛽
𝜉 “𝑥

such that 𝑠𝜉 ≤P 𝑞′.

Note that 𝜂*, 𝑗 < 𝜉 and 𝜋𝛽
𝑗 “𝑥 ⊆ 𝜃𝛽𝑗 = 𝜗𝜉

𝑗 . Therefore, since (𝑖, 𝑗, 𝜋𝛽
𝑗 “𝑥) =

(𝑖𝜂* , 𝑗𝜂* , 𝑧𝜂*) and ⟨𝑠𝜉 | 𝜉 ∈ 𝑋⟩ satisfies the conclusion of Lemma 6.2, it follows
that there is 𝑞′ ∈ 𝐷𝑖,𝜛𝜉

𝑗,𝜉“𝜋
𝛽
𝑗 “𝑥

= 𝐷𝑖,𝜋𝛽
𝜉 “𝑥

such that 𝑠𝜉 ≤P 𝑞′, as desired. �
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Mathematics. Birkhäuser Verlag, Basel, 2007.
[28] Stevo Todorcevic and Victor Torres Perez. Conjectures of Rado and Chang and special Aron-

szajn trees. MLQ Math. Log. Q., 58(4-5):342–347, 2012.

[29] Dan Velleman. Souslin trees constructed from morasses. In Axiomatic set theory (Boulder,
Colo., 1983), volume 31 of Contemp. Math., pages 219–241. Amer. Math. Soc., Providence,
RI, 1984.

[30] Daniel J. Velleman. Morasses, diamond, and forcing. Ann. Math. Logic, 23(2-3):199–281
(1983), 1982.

[31] William S. Zwicker. 𝑃𝑘𝜆 combinatorics. I. Stationary coding sets rationalize the club filter. In

Axiomatic set theory (Boulder, Colo., 1983), volume 31 of Contemp. Math., pages 243–259.
Amer. Math. Soc., Providence, RI, 1984.

Department of Mathematics, Bar-Ilan University, Ramat-Gan 5290002, Israel.

URL: http://math.biu.ac.il/~lambiec

E-mail address: lambiec@macs.biu.ac.il

Department of Mathematics, Bar-Ilan University, Ramat-Gan 5290002, Israel.
URL: http://www.assafrinot.com
E-mail address: rinotas@math.biu.ac.il


