# EDGE-COLORINGS OF INFINITE COMPLETE GRAPHS 

CHRIS LAMBIE-HANSON

## 1. Introduction

This note stems from some thinking in my spare time about edge-colorings of infinite complete graphs. Some of the reults contained in this note are well-known; none is claimed to be original. The note is not necessarily in a final form and may be expanded in the future.

The note deals primarily with colorings of the form $F:[X]^{2} \rightarrow \omega$, where $X$ is a set and $[X]^{2}$ denotes the set of all 2 -element subsets of $X$. If $x_{0}, x_{1}$ are distinct elements of $X$, we will abuse notation and write $F\left(x_{0}, x_{1}\right)$ instead of $F\left(\left\{x_{0}, x_{1}\right\}\right)$. We will focus in particular on colorings which are triangle-free or, more generally, odd-cycle-free in the following sense.
Definition Let $F:[X]^{2} \rightarrow \omega$ be a coloring.
(1) If $k<\omega$, a mono-chromatic $k$-cycle with respect to $F$ is a set of distinct elements $\left\{x_{\ell} \mid \ell<k\right\} \subseteq X$ such that $F\left(x_{0}, x_{1}\right)=F\left(x_{1}, x_{2}\right)=\ldots=$ $F\left(x_{k-2}, x_{k-1}\right)=F\left(x_{k-1}, x_{0}\right)$.
(2) $F$ is triangle-free if there are no mono-chromatic 3-cycles with respect to $F$. If $k<\omega, F$ is $k$-cycle-free if there are no mono-chromatic $k$-cycles with respect to $F$.
(3) $F$ is odd-cycle-free if for all odd $k \geq 3$, there are no mono-chromatic $k$-cycles with respect to $F$. The notion of even-cycle-free is defined analogously.
Definition ${ }^{\omega} 2$ is the set of all functions $f: \omega \rightarrow 2$. If $f \neq g \in{ }^{\omega} 2$, then $\Delta(f, g)=$ $\min (\{n \mid f(n) \neq g(n)\})$. A coloring $F:\left[{ }^{\omega} 2\right]^{2} \rightarrow \omega$ is a $\delta$-coloring if, for all distinct $f, g \in{ }^{\omega} 2$,

$$
(F(f, g)=n) \Rightarrow(f(n) \neq g(n))
$$

Remark A $\delta$-coloring is easily seen to odd-cycle-free. An example of a $\delta$-coloring is given by $F(f, g)=\Delta(f, g)$.
Definition A coloring $F:[X]^{2} \rightarrow \omega$ is a maximal triangle-free coloring if it is triangle-free and, for every $Y \supsetneq X$ and every coloring $G:[Y]^{2} \rightarrow \omega$ extending $F$, $G$ is not triangle-free. Maximal odd-cycle-free colorings are defined analogously.

## 2. A maximal triangle-free coloring

Definition If $n<\omega$ and $\sigma \in{ }^{n} 2$, then $C_{\sigma}=\left\{f \in{ }^{\omega} 2 \mid f \upharpoonright n=\sigma\right\}$.
Theorem 1. Let $F:\left[{ }^{\omega} 2\right]^{2} \rightarrow \omega$ be given by $F(f, g)=\Delta(f, g)$. Then $F$ is a maximal triangle-free coloring.
Proof. Fix some $x \not{ }^{\omega} 2$, let $X={ }^{\omega} 2 \cup\{x\}$, and suppose for sake of contradiction that there is a triangle-free coloring $G:[X]^{2} \rightarrow \omega$ extending $F$. We will recursively construct a specific element $h \in{ }^{\omega} 2$ and use it to derive a contradiction.

We will define an increasing sequence of natural numbers $\left\{n_{k}|k<\omega\rangle\right\}$ and recursively define $h \upharpoonright n_{k}$. Let $n_{0}=0$. Suppose $k<\omega$ and $n_{k}, h \upharpoonright n_{k}$ have been defined. Let $m_{k}$ be the least $m \geq n_{k}$ such that, for some $f \in C_{h \upharpoonright n_{k}}, G(x, f)=m$. Let $f_{k}$ be such an $f$, and let $n_{k+1}=m_{k}+1$. Define $h \upharpoonright n_{k+1}$ by letting $h(i)=f_{k}(i)$ for all $n \leq i<m$ and $h(m)=1-f_{k}(m)$.

Let $n^{*}=G(x, h)$.
Claim 2. There is $0<k<\omega$ such that $n^{*}=n_{k}-1$.
Proof. Let $k<\omega$ be least such that $n^{*}<n_{k}$, and let $j=k-1$. We defined $m_{j}$ to be the least $m \geq n_{j}$ such that, for some $f \in C_{h \upharpoonright n_{j}}, G(x, f)=m$. Since $g \in C_{h \uparrow n_{j}}, n^{*} \geq n_{j}$, and $G(x, h)=n^{*}$, we must have $m_{j} \leq n^{*}$. But $n_{k}-1=m_{j}$, so $n_{k}-1 \leq n^{*}<n_{k}$ and thus $n^{*}=n_{k}$.

Let $k^{*}<\omega$ be such that $n^{*}=n_{k^{*}}-1$. Consider the function $f_{k^{*}}$ used in the definition of $h$. By construction, we have $f_{k^{*}} \upharpoonright n^{*}=h \upharpoonright n^{*}$ and $h\left(n^{*}\right)=1-f_{k^{*}}\left(n^{*}\right)$. Thus, $G\left(f_{k^{*}}, h\right)=\Delta\left(h, f_{k^{*}}\right)=n^{*}$. Moreover, we know that $G(x, h)=n^{*}=$ $G\left(x, f_{k^{*}}\right)$. Thus, $x, f_{k^{*}}$, and $h$ are distinct elements of $X$ such that $G\left(x, f_{k^{*}}\right)=$ $G\left(f_{k^{*}}, h\right)=G(x, h)$, contradicting the assumption that $G$ is triangle-free.

## 3. Maximal odd-cycle-free colorings

Definition Let $F:[X]^{2} \rightarrow \omega$ and $G:[Y]^{2} \rightarrow \omega$ be colorings. $F$ and $G$ are isomorphic if there is a bijection $\pi: F \rightarrow G$ such that, for all distinct $x_{0}, x_{1} \in X$, $F\left(x_{0}, x_{1}\right)=G\left(\pi\left(x_{0}\right), \pi\left(x_{1}\right)\right)$.
Theorem 3. Let $F:[X]^{2} \rightarrow \omega$ be an odd-cycle-free coloring. Then there is a $\delta$-coloring $G:\left[{ }^{\omega} 2\right]^{2} \rightarrow \omega$ and a set $Y \subseteq{ }^{\omega} 2$ such that $F$ is isomorphic to $G \upharpoonright[Y]^{2}$.
Proof. For each $n<\omega$, let $\Gamma_{n}=\left(V_{n}, E_{n}\right)$ be a graph with vertex set $X$ such that, for distinct $x_{0}, x_{1} \in X, x_{0} E_{n} x_{1}$ iff $F\left(x_{0}, x_{1}\right)=n$. Since $F$ is an odd-cycle-free coloring, $\Gamma_{n}$ is a bipartite graph. Thus, we can partition $X$ into disjoint pieces $X_{0}^{n}, X_{1}^{n}$ such that, for all $i \in\{0,1\}$ and distinct $x_{0}, x_{1} \in X_{i}^{n}, F\left(x_{0}, x_{1}\right) \neq n$. Define a function $\pi: X \rightarrow{ }^{\omega} 2$ by letting $\pi(x)$ be the unique $f \in{ }^{\omega} 2$ such that, for all $n<\omega, x \in X_{f(n)}^{n}$.
Claim 4. $\pi$ is injective.
Proof. Suppose for sake of contradiction that $x_{0} \neq x_{1}$ and $\pi\left(x_{0}\right)=\pi\left(x_{1}\right)=f$. Let $n=F\left(x_{0}, x_{1}\right)$. But then $x_{0}, x_{1} \in X_{f(n)}^{n}$, which is a contradiction to the definition of $X_{0}^{n}, X_{1}^{n}$.

Let $Y=\pi[X]$, and define $G^{*}:[Y]^{2} \rightarrow \omega$ by $G^{*}\left(\pi\left(x_{0}\right), \pi\left(x_{1}\right)\right)=F\left(x_{0}, x_{1}\right)$. By construction, $F$ is isomorphic to $G^{*}$.

Claim 5. If $f \neq g \in Y$ and $G^{*}(f, g)=n$, then $f(n) \neq g(n)$.
Proof. Let $f \neq g \in Y$, and let $f=\pi\left(x_{0}\right), g=\pi\left(x_{1}\right)$. If $G^{*}(f, g)=n$, then $F\left(x_{0}, x_{1}\right)=n$, so $\neg x_{0} E_{n} x_{1}$, so $\pi\left(x_{0}\right)(n) \neq \pi\left(x_{1}\right)(n)$, so $f(n) \neq g(n)$.

Now extend $G^{*}$ to a full coloring $G:[\omega 2]^{2} \rightarrow 2$ by letting $G(f, g)=\Delta(f, g)$ for all $\{f, g\} \in\left[{ }^{\omega} 2\right]^{2} \backslash[Y]^{2}$. It is clear that $G$ is a $\delta$-coloring and that $F$ is isomorphic to $G \upharpoonright[Y]^{2}$.
Corollary 6. If $F:[X]^{2} \rightarrow \omega$ is a maximal odd-cycle-free coloring, then $|X|=2^{\aleph_{0}}$.

Even-cycle-free colorings behave very differently. Every even-cycle-free coloring with countably many colors has cardinality at most $\aleph_{1}$. In fact, we have the following strong result.
Theorem 7. Suppose $c:\left[\omega_{2}\right]^{2} \rightarrow \omega$, and let $k<\omega$. Then there are $n^{*}<\omega$ and sets $X, Y \subseteq \omega_{2}$ such that $|X|=k,|Y|=\omega_{2}$, and, for every $\alpha \in X$ and $\beta \in Y, c(\alpha, \beta)=n^{*}$. In particular, there are mono-chromatic $2 k$-cycles for every $1<k<\omega$.

Proof. For $\beta \in\left[\omega_{1}, \omega_{2}\right)$, let $n_{\beta}<\omega$ be such that $\left|\left\{\alpha<\omega_{1} \mid c(\alpha, \beta)=n_{\beta}\right\}\right|=\aleph_{1}$. Find an unbounded $S \subseteq\left[\omega_{1}, \omega_{2}\right)$ and an $n^{*}<\omega$ such that, for all $\beta \in S, n_{\beta}=n^{*}$. For each $\beta \in S$, find $X_{\beta} \in\left[\omega_{1}\right]^{k}$ such that, for all $\alpha \in X_{\beta}, c(\alpha, \beta)=n^{*}$. Find an unbounded $Y \subseteq S$ and a fixed $X \in\left[\omega_{1}\right]^{k}$ such that, for all $\beta \in Y, X_{\beta}=X$. Then $X, Y$, and $n^{*}$ are as desired.

To show that there is a mono-chromatic $2 k$-cycle, take $X, Y$, and $n^{*}$ as above. Let $X=\left\{\alpha_{\ell} \mid \ell<k\right\}$. Let $Z \in[Y]^{k}, Z=\left\{\beta_{\ell} \mid \ell<k\right\}$. Then $c\left(\alpha_{0}, \beta_{0}\right)=$ $c\left(\beta_{0}, \alpha_{1}\right)=c\left(\alpha_{1}, \beta_{1}\right)=\ldots=c\left(\alpha_{k-1}, \beta_{k-1}\right)=c\left(\beta_{k-1}, \alpha_{1}\right)=n^{*}$, giving us a monochromatic $2 k$-cycle.

## 4. Coloring numbers

Definition Let $G=(V, E)$ be a graph. The coloring number of $G$, which we will denote $c(G)$ is the least cardinal $\kappa$ such that there is a well-ordering $\left\langle v_{\alpha} \mid \alpha<\eta\right\rangle$ of $V$ such that, for every $\beta<\eta$, the set $E_{\beta}:=\left\{\alpha<\beta \mid\left\{v_{\alpha}, v_{\beta}\right\} \in E\right\}$ has cardinality less than $\kappa$.
Definition Let $\kappa$ and $\lambda$ be cardinals. Then $K_{\kappa, \lambda}$ is the complete bipartite graph in which the two sides have cardinality $\kappa$ and $\lambda$, respectively.
Theorem 8. Suppose $G=(V, E)$ is a graph, $\kappa$ is an infinite cardinal, and $c(G) \geq$ $\kappa^{+}$. Then, for every $n<\omega, G$ contains a copy of $K_{n, \kappa^{+}}$.
Proof. We prove the contrapositive by induction on $|G|$. Thus, suppose $|G|=\lambda$, $n<\omega$, and $G$ contains no copy of $K_{n, \kappa^{+}}$. Suppose we have shown by induction that all subgraphs of $G$ of smaller cardinality have coloring number less than $\kappa^{+}$. We prove that $c(G)<\kappa^{+}$. If $\lambda \leq \kappa$, then $V$ can be well-ordered in order-type $\leq \kappa$, so $c(G) \leq \kappa<\kappa^{+}$, and we are done. Thus, suppose $\lambda>\kappa$.

If $X \in[V]^{n}$, let $f(X)=\{u \in V \mid$ for every $v \in X,\{u, v\} \in E\}$. By our assumption that $G$ contains no copy of $K_{n, \kappa^{+}},|f(X)| \leq \kappa$ for every $X \in[V]^{n}$. If $Y \subseteq V$, let $F(Y)=\bigcup\left\{f(X) \mid X \in[Y]^{n}\right\}$. Since $\left|[Y]^{n}\right|=|Y|$, we have $|F(Y)| \leq$ $\max (|Y|, \kappa)$. Given $Y \subseteq V$, we define $H(Y)$ as follows. Let $Y_{0}=Y$ and, for all $n<\omega$, let $Y_{n+1}=Y_{n} \cup F\left(Y_{n}\right)$. Let $H(Y)=\bigcup_{n<\omega} Y_{n}$. Then $|H(Y)| \leq \max (|Y|, \kappa)$, and $H(Y)$ has the property that $F(H(Y)) \subseteq H(Y)$.

Let $\mu=\operatorname{cf}(\lambda)$, and let $\left\langle V_{i} \mid i<\mu\right\rangle$ be an increasing, continuous sequence of subsets of $V$ such that $V=\bigcup_{i<\mu} V_{i}$. By recursion, we will define a well-ordering $\left\langle v_{\alpha} \mid \alpha<\lambda\right\rangle$ together with an increasing, continuous sequence of ordinals $\left\langle\lambda_{i}\right| i<$ $\mu\rangle$ such that, denoting $\left\{v_{\alpha} \mid \alpha<\lambda_{i}\right\}$ by $U_{i}$, we have:

- for all $\beta<\lambda, E_{\beta}:=\left\{\alpha<\beta \mid\left\{v_{\alpha}, v_{\beta}\right\} \in E\right\}$ has cardinality less than $\kappa$;
- for all $i<\mu, V_{i} \subseteq U_{i+1}$;
- for all $i<\mu, F\left(U_{i}\right) \subseteq U_{i}$.

Let $U_{0}=\emptyset . \quad \lambda_{0}=0$. Suppose $j<\mu$ is a limit ordinal and $U_{i}, \lambda_{i}$, and the relevant well-orderings have been defined for all $i<j$. Let $U_{j}=\bigcup_{i<j} U_{i}$ and
$\lambda_{j}=\sup \left(\left\{\lambda_{i} \mid i<j\right\}\right)$. The well-ordering $\left\{v_{\alpha} \mid \alpha<\lambda_{j}\right\}$ of $U_{j}$ has been defined in the previous steps. Finally, suppose $i<\lambda$ and $U_{i}, \lambda_{i}$, and $\left\{v_{\alpha} \mid \alpha<\lambda_{i}\right\}$ has been defined. Let $U_{i+1}=H\left(U_{i} \cup V_{i}\right)$. Let $W_{i+1}=U_{i+1} \backslash U_{i}$. Then $\left|W_{i+1}\right|<\lambda$ and, since $F\left(U_{i}\right) \subseteq U_{i}$, every element of $W_{i+1}$ is connected by an edge in $E$ to at most $n-1$ elements of $U_{i}$. By our inductive hypothesis, the subgraph of $G$ induced by $W_{i+1}$ has coloring number less than $\kappa^{+}$, so $W_{i+1}$ can be well-ordered as $\left\{w_{\gamma} \mid \gamma<\eta\right\}$ for some $\eta<\lambda$ such that, for all $\delta<\eta$, the set $\left\{\gamma<\delta \mid\left\{w_{\gamma}, w_{\delta}\right\} \in E\right\}$ has cardinality less than $\kappa$. Let $\lambda_{i+1}=\lambda_{i}+\eta$ (ordinal addition), and extend the well-ordering of $U_{i}$ to a well-ordering of $U_{i+1}$ by letting, for all $\gamma<\eta, v_{\lambda_{i}+\gamma}=w_{\gamma}$.

At the end of the construction, $\left\langle v_{\alpha} \mid \alpha<\lambda\right\rangle$ is a well-ordering of $V$ that is easily seen to witness $c(G)<\kappa^{+}$.

Lemma 9. Suppose $\kappa \leq \lambda$ are infinite cardinals and $G=(V, E)$ is a graph with $|G|=\lambda$ and $c(G)=\kappa$. Then there is a well-ordering of $G$ of order type $\lambda$ witnessing $c(G)=\kappa$.
Proof. If $\kappa=\lambda$, then any well-ordering of $G$ of order type $\lambda$ witnesses $c(G)=\kappa$. Thus, suppose $\kappa<\lambda$. Let $\mu=\operatorname{cf}(\lambda)$, and let $\left\langle V_{i} \mid i<\mu\right\rangle$ be an increasing, continuous sequence of subsets of $V$ such that:

- $\bigcup_{i<\mu} V_{i}=V$;
- for all $i<\mu,\left|V_{i}\right|<\lambda$.

Let $\triangleleft$ be a well-ordering of $V$ witnessing that $c(G)=\kappa$. For each $v \in V$, let $f(v)=\{u \in V \mid u \triangleleft v$ and $\{u, v\} \in E\}$. By our assumption, $|f(v)|<\kappa$. Given $X \subseteq V$, let $F(X)=\bigcup\{f(v) \mid v \in X\}$. Note that $|F(X)| \leq \max (\{\kappa,|X|\})$.

Given $X \subseteq V$, define $H(X)$ as follows. Let $X_{0}=X$. Given $X_{n}$, with $n<$ $\omega$, let $X_{n+1}=X_{n} \cup F\left(X_{n}\right)$. Finally, let $H(X)=\bigcup_{n<\omega} X_{n}$. Then $|H(X)| \leq$ $\max (\{\kappa,|X|\})$ and $H(X)$ has the property that, if $v \in H(X), u \triangleleft v$, and $\{u, v\} \in E$, then $u \in H(X)$.

For $i<\mu$, let $U_{i}=H\left(V_{i}\right)$. Since $\left|V_{i}\right|<\lambda$, we also get $\left|U_{i}\right|<\lambda$. Also note that, if $j<\mu$ is a limit ordinal, then $U_{j}=\bigcup_{i<j} U_{i}$. For $i<\mu$, let $W_{i}=U_{i+1} \backslash U_{i}$. For each $v \in V$, there is a unique $i<\mu$, which we denote $i(v)$, such that $v \in W_{i}$. Define a well-ordering $\prec$ on $V$ by letting $u \prec v$ iff one of the following two conditions holds:
(1) $i(u)<i(v)$;
(2) $i(u)=i(v)$ and $u \triangleleft v$.

It is easily verified that $\prec$ is a well-order. Every initial segment of $\prec$ is contained in $U_{i}$ for some $i<\mu$ and therefore has order type less than $\lambda$. Thus, the order type of $\prec$ is exactly $\lambda$. It remains to show that, for every $v \in V$, the set $\{u \in V \mid u \prec v$ and $\{u, v\} \in E\}$ has cardinality less than $\kappa$. This will follow from the following claim.
Claim 10. For all $u, v \in V$, if $u \prec v$ and $\{u, v\} \in E$, then $u \triangleleft v$.
Proof. Fix $u, v \in V$ such that $u \prec v$ and $\{u, v\} \in E$. If $i(u)=i(v)$, then $u \triangleleft v$ by definition of $\prec$. Thus, suppose $i(u)<i(v)$. $v \notin U_{i(u)}$. In particular, $v \notin f(u)$, which means it is not the case that $v \triangleleft u$ and $\{u, v\} \in E$. Since $\{u, v\} \in E$, this implies that $u \triangleleft v$.

Theorem 11. Let $\kappa<\lambda$ be infinite cardinals, with $\lambda$ regular. Suppose $c:\left[\lambda^{+}\right]^{2} \rightarrow \kappa$ is a coloring. For all $\eta<\kappa$, let $G_{\eta}=\left(\lambda^{+}, E_{\eta}\right)$ be a graph with vertex set $\lambda$ such that, for $\alpha<\beta<\lambda^{+},\{\alpha, \beta\} \in E_{\eta}$ if and only if $c(\alpha, \beta)=\eta$. Then there is $\eta<\kappa$ such that $c\left(G_{\eta}\right) \geq \lambda$.

Proof. Suppose not. For each $\eta<\kappa$, let $\left\langle\alpha_{\xi}^{\eta} \mid \xi<\lambda^{+}\right\rangle$be a well-ordering of $\lambda^{+}$ witnessing that $c\left(G_{\eta}\right)<\lambda$. For $\eta<\kappa$ and $\xi<\lambda^{+}$, let $V_{\xi}^{\eta}=\left\{\alpha_{\zeta}^{\eta} \mid \zeta<\xi\right\}$. Find $\xi^{*}$ large enough so that, for all $\eta<\kappa, \lambda \subseteq V_{\xi^{*}}^{\eta}$. Find $\beta^{*}<\lambda^{+}$such that, for all $\eta<\kappa, \beta^{*} \notin V_{\xi^{*}}^{\eta}$. Find $\eta^{*}<\kappa$ and an unbounded $A \subseteq \lambda$ such that, for all $\alpha<\lambda, c\left(\alpha, \beta^{*}\right)=\eta^{*}$. Then, for every $\alpha \in A$, we have that $\left\{\alpha, \beta^{*}\right\} \in E_{\eta^{*}}$ and $\alpha$ is enumerated before $\beta^{*}$ in the well-ordering $\left\langle\alpha_{\xi}^{\eta^{*}} \mid \xi<\lambda^{+}\right\rangle$. This contradicts the fact that $\left\langle\alpha_{\xi}^{\eta^{*}} \mid \xi<\lambda^{+}\right\rangle$witnesses $c\left(G_{\eta^{*}}\right)<\lambda$.

Einstein Institute of Mathematics, Hebrew University of Jerusalem, Jerusalem, 91904, Israel

E-mail address: clambiehanson@math.huji.ac.il

