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Abstract. We prove that a variety of generalized cardinal characteristics,

including meeting numbers, the reaping number, and the dominating number,
satisfy an analogue of the Galvin-Hajnal theorem, and hence also of Silver’s

theorem, at singular cardinals of uncountable cofinality.

1. Introduction

One of the seminal results in cardinal arithmetic, and one of the first indications
that there are nontrivial ZFC constraints on the behavior of the continuum function
at singular cardinals, is Silver’s theorem.

Theorem 1.1 (Silver [21]). Suppose that κ is a singular cardinal of uncountable
cofinality, η < cf(κ) is an ordinal, and the set of cardinals

{µ < κ | 2µ ≤ µ+η}

is stationary in κ. Then 2κ ≤ κ+η.

Silver’s original proof of this theorem involves a generic ultrapower argument; a
purely combinatorial argument for the theorem was soon provided by Baumgartner
and Prikry [1]. Around the same time, a generalization of Silver’s theorem was
proven by Galvin and Hajnal. The following statement of (a corollary of) their
theorem involves the notion of the Galvin-Hajnal rank ‖ϕ‖S of a function ϕ; see
Definition 2.1 below for its formal definition.

Theorem 1.2 (Galvin-Hajnal [4]). Suppose that κ is a singular cardinal of uncount-
able cofinality, 〈κi | i < cf(κ)〉 is an increasing, continuous sequence of cardinals
converging to κ, S ⊆ cf(κ) is stationary, and ϕ : S → On is a function such that,

for all i ∈ S, we have 2κi ≤ κ+ϕ(i)i . Then 2κ ≤ κ+‖ϕ‖S .

This theorem does indeed generalize Silver’s theorem, since, as we shall see, given
any stationary subset S of a regular uncountable cardinal θ, and given any ordinal
η < θ, if ϕ is the constant function on S taking value η, then ‖ϕ‖S = η.

One of the central aspects of research into cardinal arithmetic is the study of
certain methods of measuring the “size” of the power set of a cardinal κ that are
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in a sense finer than simply looking at the value of 2κ. At singular cardinals, these
methods come from two primary sources, with some overlap between the two:

• Shelah’s PCF theory;
• generalizations of cardinal characteristics of the continuum to singular car-

dinals.

Certain of these methods are known to satisfy versions of Silver’s theorem or the
Galvin-Hajnal theorem. For example, in [20, §2, Claim 2.4], Shelah proves a vari-
ation of Theorem 1.2 involving PCF-theoretic pseudopowers ppJ(κ) and ppJ(κi)
in place of the cardinals 2κ and 2κi ; in [18, Lemma 3.8], Rinot proves a version
of Silver’s theorem for covering numbers; and in [12], Kojman proves that certain
density numbers satisfy an analogue of Silver’s theorem (see Section 3 for details).

In this paper, we prove versions of the Galvin-Hajnal theorem for a variety of car-
dinal characteristics of the continuum generalized to singular cardinals of uncount-
able cofinality, focusing in particular on meeting numbers, the reaping number, and
the dominating number. Before proceeding to a summary of our results, let us say
a few words about our approach to cardinal characteristics at singular cardinals
in general. There are often multiple natural ways to generalize familiar cardinal
characteristics of the continuum to singular cardinals. For example, when defining
the dominating number dκ at a singular cardinal κ, any of the following possible
definitions of dκ seems potentially reasonable (see the end of this introduction for
any undefined notation):

• cf(κκ,<0), where, given f, g ∈ κκ, we let f <0 g if and only if |{i < κ |
g(i) ≤ f(i)}| < κ;
• cf(κκ,<1), where, given f, g ∈ κκ, we let f <1 g if and only if {i < κ |
g(i) ≤ f(i)} is bounded below κ;
• cf(cf(κ)κ,<2), where, given f, g ∈ cf(κ)κ, we let f <2 g if and only if |{i <

cf(κ) | g(i) ≤ f(i)}| < cf(κ).

In all such choices that we face here, we opt for the definition that emphasizes the
cardinality of κ over its cofinality, as, at least in this context, this seems to be what
gives rise to the most genuinely new behavior at the singular cardinal κ. So, for
instance, we will define dκ to be what is called cf(κκ,<0) above. (It is not difficult
to show that what is called cf(cf(κ)κ,<2) above is in fact nothing other than dcf(κ).)

We also note here that in this paper we are only considering cardinal characteris-
tics at a singular cardinal κ that are provably strictly greater than κ. In particular,
we are not considering the bounding number bκ, the splitting number sκ, or the
almost disjointness number aκ, since, at least when generalized in accordance with
the principles laid out in the previous paragraph, these cardinal characteristics are
provably at most bcf(κ), scf(κ), and acf(κ), respectively (though we will have more
to say about the almost disjointness number in Section 6).

A slightly suboptimal but succinct summary of our main results can be stated
as follows (we refer the reader to Section 2 for the definition of canonical function
and to Section 5 for the precise definition of the cardinal characteristics under
consideration):

Main Corollary. Suppose that

• κ is a singular cardinal with cf(κ) = θ > ω;
• 〈κi | i < θ〉 is an increasing, continuous sequence of cardinals converging to
κ;
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• β is an ordinal for which the canonical function on θ of rank β, ϕθβ, exists;

• µθ ≤ κ+β for all µ < κ;
• S ⊆ θ is stationary;
• cc is one of the cardinal characteristics m(θ, κ), d(θ, κ), rκ, or dκ, and,

for all i < θ, cci is the corresponding cardinal characteristic m(cf(κi), κi),
d(cf(κi), κi), rκi , or dκi ;

• for all i ∈ S, we have cci ≤ κ
+ϕθβ(i)

i .

Then cc ≤ κ+β.

The slight suboptimality in this statement comes from the assumption that µθ ≤
κ+β for all µ < κ. As we will see, a weaker hypothesis, in which µθ is replaced
by some cardinal characteristic that is provably at most µθ, is sufficient for our
results; the precise weakening depends on the specific cardinal characteristic under
consideration and will require some further notation to state, so we leave the exact
details for the statement of the Main Theorem at the end of Section 5.

The structure of the remainder of the paper is as follows. In Section 2, we
review the definitions and facts regarding canonical functions and the Galvin-Hajnal
rank that we will need for our results. In Section 3, we recall certain notions of
density. This is important for two reasons: first, because the analogue of Silver’s
theorem for density numbers proven in [12] was direct inspiration for this paper, and
secondly and more immediately, these density numbers will appear in the precise
formulations of our results. After this, we begin with the proof of our main theorem.
The proofs of our various analogues of the Galvin-Hajnal theorem all have the same
general shape, so in Section 4 we develop an abstract framework that will apply to
all of our specific instances. In Section 5, we apply this abstract framework to our
cardinal characteristics under consideration to obtain our Main Theorem, which is
precisely stated at the end of the section. Finally, in Section 6, we record some
questions that remain open and sketch a consistent negative answer to the question
about whether a version of Silver’s theorem holds for the existence of Aronszajn
trees at double successors of singular cardinals.

1.1. Notation and conventions: Unless otherwise noted, we believe our nota-
tion and terminology to be standard. We refer the reader to [11] for any undefined
notions or notations from set theory, and we refer the reader to [2] for an introduc-
tion to cardinal characteristics of the continuum, generalizations of which form the
subject of this paper.

If X is a set and is a binary relation on X, then cf(X, ) denotes the minimal
cardinality of a subset Y ⊆ X such that, for all x ∈ X, there is y ∈ Y for which
x y. If θ is a regular uncountable cardinal, then NSθ denotes the nonstationary
ideal on θ. If S ⊆ θ is a stationary set, then, formally, NSθ � S is the ideal on θ
generated by NSθ ∪ {θ \ S}; in practice, we will typically think of NSθ � S as the
ideal of nonstationary subsets of S, considered as an ideal on S. If X is a set and
κ is a cardinal, then [X]κ := {y ⊆ X | |y| = κ}. If X and Y are two sets, then YX
denotes the set of all functions with domain Y and codomain X.

To facilitate clean statements of hypotheses, we adopt the convention that 0 is
not a limit ordinal.
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2. Canonical functions and the Galvin-Hajnal rank

Suppose that S is an infinite set and I is a proper ideal on S. As usual, we
let I+ denote the set of I-positive subsets of S, i.e., I+ := P(S) \ I. Given two
functions ϕ,ψ ∈ SOn, we write ϕ <I ψ to denote the assertion that the set {i ∈
S | ψ(i) ≤ ϕ(i)} is in I. Define =I , ≤i, etc. in the obvious way. We will be
particularly interested in the case in which S is a stationary subset of a regular
uncountable cardinal θ and I = NSθ � S, i.e., I is the collection of nonstationary
subsets of S. In this context, given two functions ϕ,ψ ∈ SOn, we will write ϕ <S ψ
instead of ϕ <NSθ�S ψ (and similarly with ≤S , =S , etc.). In particular, for functions
ϕ,ψ ∈ θOn, ϕ <θ ψ will denote ϕ <NSθ ψ. Note that ϕ <S ψ if and only if there
is a club C ⊆ θ such that, for all i ∈ C ∩ S, we have ϕ(i) < ψ(i).

Fix for the remainder of this section a regular uncountable cardinal θ. Given a
stationary set S ⊆ θ, the corresponding relation <S is well-founded and therefore
has a rank function, which yields what is known as the Galvin-Hajnal rank.

Definition 2.1 ([4]). Suppose that θ is an uncountable regular cardinal and S ⊆ θ
is stationary. The Galvin-Hajnal rank of a function ϕ ∈ SOn, denoted ‖ϕ‖S , is
defined by recursion on <S by letting

‖ϕ‖S := sup{‖ψ‖S + 1 | ψ ∈ SOn and ψ <S ϕ}

for all ϕ ∈ SOn.

It is readily verified by recursion on ‖ϕ‖S that, for all stationary T ⊆ S ⊆ θ and
all ϕ ∈ SOn, we have ‖ϕ‖S ≤ ‖ϕ � T‖T . In general, it is quite possible to have
strict inequality here. However, if ϕ is what is known as a canonical function, this
inequality is in fact always an equality. With this in mind, let us now recall the
definition of and some basic facts about canonical functions.

By recursion on ordinals α, attempt to define the canonical function on θ of rank
α, ϕθα ∈ θOn, as follows. If β is an ordinal and ϕθα has been defined for all α < β,
then let ϕθβ be the least upper bound for 〈ϕθα | α < β〉 with respect to <θ, if such

a least upper bound exists. In other words, ϕθβ ∈ θOn is a function such that

• ϕθβ is a <θ-upper bound for 〈ϕθα | α < β〉;
• if ψ is another <θ-upper bound for 〈ϕθα | α < β〉, then ϕθβ ≤θ ψ.

If such a least upper bound does not exist, then ϕθβ is undefined (and therefore ϕθγ
is undefined for all γ > β as well).

Note that ϕθβ is not uniquely determined, but is unique up to =θ-equivalence.

We will let Φθβ denote the set of all canonical functions on θ of rank β. We will

slightly abuse notation and use ϕθβ to denote an arbitrary element of Φθβ . We will
always be working in contexts that are invariant under =θ-equivalence, so this will
not result in any loss of generality. The following well-known fact (see [14, §1] for
an introduction to canonical functions of rank less than θ+) shows that, for all
β < θ+, there are canonical functions on θ of rank β.

Fact 2.2. Let β < θ+, and let e : θ → β be a surjection. Then the function ϕ ∈ θθ
defined by letting f(i) = otp(e“i) for all i < θ is in Φθβ.

The following proposition follows almost immediately from the definition of
canonical function.
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Proposition 2.3. Suppose that β is an ordinal for which ϕθβ is defined, ψ ∈ θOn,

and the set S := {i < θ | ψ(i) < ϕθβ(i)} is stationary in θ. Then there is a stationary

S′ ⊆ S and an α < β such that ψ(i) ≤ ϕθα(i) for all i ∈ S′.

Proof. Suppose not. Then, for all α < β, there is a club Cα ⊆ θ such that ϕθα(i) <
ψ(i) for all i ∈ S ∩ Cα. Define a function τ ∈ θOn by letting

τ(i) =

{
ψ(i) if i ∈ S
ϕθβ(i) if i ∈ θ \ S.

Then, by our assumptions, τ is a <θ-upper bound for 〈ϕθα | α < β〉, so, by the
definition of canonical function we must have ϕθβ ≤θ τ , contradicting the fact that

S ⊆ θ is stationary and, for all i ∈ S, we have τ(i) = ψ(i) < ϕθβ(i). �

The following basic facts will be relevant to our arguments. Throughout the
remainder of the paper, given a function ϕ taking ordinal values, we let ϕ + 1
denote the function ψ defined by setting dom(ψ) = dom(ϕ) and ψ(i) = ϕ(i) + 1 for
all i ∈ dom(ϕ).

Proposition 2.4. Suppose that β > 0 is an ordinal such that ϕθβ is defined.

(1) ϕθβ+1 is defined and ϕθβ+1 =θ ϕ
θ
β + 1.

(2) If β is a limit ordinal, then there is a club C ⊆ θ such that ϕθβ(i) is a limit
ordinal for all i ∈ C.

Proof. (1) Clearly, ϕθβ + 1 is a <θ-upper bound for 〈ϕθα | α ≤ β〉. Moreover, if ψ is

any other <θ-upper bound, then there must be a club C ⊆ θ such that ϕθβ(i) + 1 ≤
ψ(i) for all i ∈ C, and therefore ϕθβ + 1 ≤θ ψ. It follows that ϕθβ+1 =θ ϕ

θ
β + 1.

(2) Suppose for sake of contradiction that β is a limit ordinal and yet there is a
stationary set S ⊆ θ such that ϕθβ(i) = γi + 1 is a successor ordinal for all i ∈ S.

Define a function ψ ∈ θOn by letting

ψ(i) =

{
γi if i ∈ S
ϕθβ(i) otherwise

for all i < θ. By Proposition 2.3, we can find a stationary S′ ⊆ S and an ordinal
α < β such that ψ(i) ≤ ϕθα(i) for all i ∈ S′, and hence, by removing a nonstationary
subset from S′ if necessary, we can assume that ψ(i) + 1 ≤ ϕθα+1(i) for all i ∈ S′.
But, by our definition of ψ, we have ψ(i) + 1 = ϕθβ(i) for all i ∈ S′, and hence

ϕθα+1 6<θ ϕθβ , contradicting the fact that α+ 1 < β. �

Proposition 2.5. Suppose that θ is a regular uncountable cardinal, β is an ordinal
such that ϕθβ is defined, and S ⊆ θ is stationary. Then ‖ϕθβ � S‖S = β.

Proof. The proof is by induction on β, so we assume that, for all α < β and all
stationary T ⊆ θ, we have ‖ϕθα � T‖T = α. Since ϕθα <θ ϕ

θ
β for all α < β, it follows

that ‖ϕθβ � S‖S ≥ β.

For the opposite inequality, fix a function ψ ∈ SOn with ψ <S ϕ
θ
β � S; it suffices

to show that ‖ψ‖S < β. An application of Proposition 2.3 yields a stationary T ⊆ S
and an α < β such that ψ(i) ≤ ϕθα(i) for all i ∈ T . By the induction hypothesis,
we have ‖ϕθα � T‖T = α, so it follows that ‖ψ � T‖T ≤ α. But then, since T ⊆ S,
this implies that ‖ψ‖S ≤ α < β, as desired. �
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We now recall two results from [10], the first of which is already implicit in [20].

Theorem 2.6. [10, Corollary 2.3] Suppose that A is an infinite set, I is an ideal
on A, and 〈µa | a ∈ A〉 is a sequence of regular cardinals such that µa > |A|+ for all
a ∈ A. Then there exist a set B ∈ I+, a regular cardinal λ > |A|+, and a sequence
~f = 〈fα | α < λ〉 such that ~f is <I�B-increasing and <I�B-cofinal in

∏
a∈B µa.

Our statement of the next theorem is less general than its statement in [10]; we
focus on ideals of the form NSθ � S rather than the arbitrary normal ideals of [10].

Theorem 2.7. [10, Main Theorem] Suppose that

(1) κ is a singular cardinal and cf(κ) = θ > ω;
(2) 〈κi | i < θ〉 is an increasing, continuous sequence of cardinals converging to

κ;
(3) 〈µi | i < θ〉 is an increasing sequence of regular cardinals such that, for

some function ϕ ∈ θOn, we have µi = κ
+ϕ(i)
i for all i < θ;

(4) S ⊆ θ is stationary;

(5) λ is a regular cardinal and ~f = 〈fα | α < λ〉 is a <S-increasing and <S-
cofinal sequence from

∏
i∈S µi.

Then λ ≤ κ+‖ϕ�S‖S .

Putting these two results together yields the following corollary.

Corollary 2.8. Suppose that θ is a regular uncountable cardinal, S ⊆ θ is station-
ary, and β is an ordinal such that ϕθβ is defined. Suppose also that κ is a singular

cardinal, cf(κ) = θ, and 〈κi | i < θ〉 is an increasing, continuous sequence of cardi-
nals converging to κ with κ0 > θ. Then there is a stationary S′ ⊆ S and a sequence

~f = 〈fα | α < λ〉 from
∏
i∈S′ κ

+ϕθβ(i)+1

i such that

(1) ~f is <S′-increasing and <S′-cofinal in
∏
i∈S′ κ

+ϕθβ(i)+1

i ;

(2) λ ≤ κ+β+1.

In particular, there exists a <S′-cofinal subset F ⊆
∏
i∈S′ κ

+ϕθβ(i)+1

i such that |F| ≤
κ+β+1.

Proof. By Proposition 2.4, we have ϕθβ+1 = ϕθβ + 1. For each i ∈ S, let µi :=

κ
+ϕθβ(i)+1

i . Then, applying Theorem 2.6 to the set S, the ideal NSθ � S, and the
sequence 〈µi | i ∈ S〉 of regular cardinals, we obtain a stationary S′ ⊆ S, a regular

cardinal λ > |A|+, and a sequence ~f = 〈fα | α < λ〉 such that ~f is <S′ -increasing

and <S′-cofinal in
∏
i∈S′ µi. Then Theorem 2.7 implies that λ ≤ κ+‖ϕ

θ
β+1�S

′‖S′ , so,

by Proposition 2.5, we have λ ≤ κ+β+1. �

3. Density

In this section, we recall some notions of density that will play a role throughout
the paper. The first of these notions was the subject of Kojman’s [12].

Definition 3.1. [12] Suppose that θ ≤ µ are infinite cardinals. The θ-density of
µ, denoted d(θ, µ), is the minimal cardinality of a set Y ⊆ [µ]θ that is dense in
([µ]θ,⊆), i.e., for all x ∈ [µ]θ, there is y ∈ Y such that y ⊆ x.
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If θ < µ, then [µ]θ denotes the set of x ∈ [µ]θ such that sup(x) < µ, and the

lower θ-density of µ, denoted d(θ, µ), is the minimal cardinality of a set Y ⊆ [µ]θ

that is dense in ([µ]θ,⊆).

Remark 3.2. In [12], the θ-density of µ is denoted by D(µ, θ). We have chosen the
notation d(θ, µ) to match the established notation m(θ, µ) for meeting numbers,
which are among the cardinal characteristics considered here. Our notation for
both density numbers and meeting numbers follows [17].

Note that, if θ < µ, then d(θ, µ) = µ ·
∑
ν<µ d(θ, ν). Therefore, if νθ ≤ µ for all

ν < µ, then d(θ, µ) = µ.

As remarked in [12], if cf(µ) 6= cf(θ), then

d(θ, µ) = d(θ, µ) = µ ·
∑
ν<µ

d(θ, ν).

In particular, if cf(µ) 6= cf(θ) and νθ ≤ µ for all ν < µ, then d(θ, µ) = µ.
If cf(µ) = cf(θ), then a routine diagonalization argument shows that d(θ, µ) ≥

µ+.

The main result of [12] is a version of Silver’s theorem for the density number
d(cf(κ), κ); this result served as direct motivation for the initial work that led to the
results of this paper. Our main result here, when applied to the density number,
will generalize and slightly improve upon the results of [12].

If I is an ideal over a set X, then the density of I, which we will denote d(I),
is the minimal cardinality of a set Y ⊆ I+ such that, for all S ∈ I+, there is
T ∈ Y such that T \ S ∈ I. We will particularly be interested in densities of the
form d(NSθ � S), where S is a stationary set of a regular uncountable cardinal θ.
Concretely, d(NSθ � S) is the minimal cardinality of a collection T of stationary
subsets of S such that, for every stationary S′ ⊆ S, there is T ∈ T such that T \S′
is nonstationary in θ.

Finally, we introduce a notion of density that, in a sense, combines the two
notions introduced in this section thus far.

Definition 3.3. Suppose that θ and κ are infinite cardinals, with θ regular, and
suppose that S ⊆ θ is stationary. Then the stationarity density of Sκ, which we
denote by dstat(

Sκ), is the minimal cardinality of a family F of functions such that

(1) every f ∈ F is a function from a stationary subset of S to κ;
(2) for every function g from a stationary subset of S to κ, there is f ∈ F such

that the set

{i ∈ dom(f) | i /∈ dom(g) or f(i) 6= g(i)}
is nonstationary. (Less precisely but more evocatively, f is contained in g
modulo a nonstationary set.)

In analogy with lower density, we define the lower stationary density of Sκ,
denoted dstat(

Sκ), in the same way as dstat(
Sκ), except that, in item (2), we only

consider functions whose ranges are bounded below κ (and hence we can require
that all of our functions in F also have ranges bounded below κ).

Remark 3.4. Note that d(NSθ � S) ≤ dstat(
Sκ). Also, whenever T ⊆ S are

stationary subsets of θ, we have

• d(NSθ � T ) ≤ d(NSθ � S);
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• dstat(Tκ) ≤ dstat(Sκ);
• dstat(Tκ) ≤ dstat(Sκ).

4. The general framework

The cardinal characteristics we consider in this paper all have the following
form: a set X and a binary relation  on X are fixed, and the relevant cardinal
characteristic is then cf(X , ), i.e., the minimal cardinality of a subset Y ⊆ X such
that, for all x ∈ X , there is y ∈ Y such that x y.

Because of the structural similarity of these cardinal characteristics, the inductive
steps in the proofs of our main results end up being essentially the same, so in this
section we prove a general lemma that we can directly apply to all of the specific
situations under consideration here, and that we expect will find application beyond
the scope of this paper, as well.

In order to state and prove our general lemma, let us fix some objects and
notation for the remainder of this section:

• κ is a singular cardinal and cf(κ) = θ > ω;
• 〈κi | i < θ〉 is an increasing, continuous sequence of cardinals converging to
κ, with κ0 > θ;
• X is a set and  is a binary relation on X ;
• for each i < θ, Xi is a set and  i is a binary relation on Xi;
• for each i < θ, πi : X → Xi is a function;
• e : NS+

θ → Card is a function such that, for all stationary T ⊆ S ⊆ θ, we
have e(T ) ≤ e(S).

Remark 4.1. To help orient the reader, let us preview here some of the eventual
interpretations of these objects. In a typical application, we might have X = P(κ),
Xi = P(κi), and πi(x) = x ∩ κi, or X = κκ, Xi = κiκi, and πi(x) is a modification
of x � κi to ensure that it takes values in κi. The function e will typically (though
not always) output one of the density numbers introduced in Section 3.

In this context, if S ⊆ θ is stationary and β is an ordinal for which the canon-
ical function ϕθβ is defined (recall the discussion of canonical functions following

Definition 2.1), then let Ψ(S, β) denote the following assertion:

If Z and 〈Yi | i ∈ S〉 are such that
(1) Z ⊆ X and Yi ⊆ Xi for all i ∈ S;

(2) |Yi| ≤ κ
+ϕθβ(i)

i for all i ∈ S;
(3) for all z ∈ Z, there is a club C ⊆ θ such that, for all i ∈ C ∩S,

there is y ∈ Yi for which πi(z) i y;
then there is Y ⊆ X such that |Y| ≤ κ+β + d(NSθ � S) + e(S) and,
for all z ∈ Z, there is y ∈ Y for which z  y.

Let Ψ∗(S, β) be defined in the same way, except, in the conclusion, we only
require |Y| ≤ κ+β + e(S).

Lemma 4.2. Suppose that S ⊆ θ is stationary and Ψ(T, 0) holds for all stationary
T ⊆ S. Then, for all ordinals β for which the canonical function ϕθβ is defined,

Ψ(S, β) holds.

Proof. The proof is by induction on β, simultaneously for all stationary S ⊆ θ.
Thus, fix an ordinal β for which ϕθβ is defined and a stationary set S ⊆ θ. By



A GALVIN-HAJNAL THEOREM FOR GENERALIZED CARDINAL CHARACTERISTICS 9

the hypothesis of the lemma, we can assume that β > 0, and by the inductive
hypothesis, we can assume that Ψ(T, α) holds for all α < β and all stationary
T ⊆ S. Fix Z and 〈Yi | i ∈ S〉 as in the hypothesis of Ψ(S, β); we will find Y ⊆ X
as in its conclusion. For each i ∈ S, enumerate Yi as 〈yi,ξ | ξ < κ

+ϕθβ(i)

i 〉 (with

repetitions if |Yi| < κ
+ϕθβ(i)

i ).
Suppose first that β = β′ + 1 is a successor ordinal. By Proposition 2.4, we

can assume that ϕθβ = ϕθβ′ + 1. Then, by Corollary 2.8, we can fix a stationary

S′ ⊆ S and a <S′ -cofinal family F ⊆
∏
i∈S′ κ

+ϕθβ(i)

i such that |F| ≤ κ+β . For each

f ∈ F , let Yi,f := {yi,ξ | ξ < f(i)}, and note that |Yi,f | ≤ κ
+ϕθ

β′ (i)

i . Let Zf be the
set of z ∈ Z for which there is a club C ⊆ θ such that, for all i ∈ C ∩ S′, there
is y ∈ Yi,f such that πi(z)  i y. Recalling that d(NSθ � S′) ≤ d(NSθ � S) and
e(S′) ≤ e(S), apply Ψ(S′, β′) to Zf and 〈Yi,f | i ∈ S′〉 to find Yf ⊆ X such that

|Yf | ≤ κ+β
′

+ d(NSθ � S) + e(S) and, for all z ∈ Zf , there is y ∈ Yf such that
z  y.

Let Y =
⋃
f∈F Yf ; we claim that Y is as desired. It is evident that Y ⊆ X and

|Y| ≤ κ+β + d(NSθ � S) + e(S), so it remains to verify that, for all z ∈ Z, there is
y ∈ Y such that z  y. For this, it suffices to show that Z ⊆

⋃
f∈F Zf . To this

end, fix z ∈ Z. By assumption, there is a club C ⊆ θ such that, for all i ∈ C ∩ S′,
there is ξi < κ

+ϕθβ(i)

i for which πi(z)  i yi,ξi . Define a function g ∈
∏
i∈S′ κ

+ϕθβ(i)

i

by letting

g(i) =

{
ξi if i ∈ C
0 otherwise

for all i ∈ S′. Since F is <S′ -cofinal in
∏
i∈S′ κ

+ϕθβ(i)

i , we can find f ∈ F such that
g <S′ f , i.e., there is a club D ⊆ θ such that, for all i ∈ D∩S′, we have g(i) < f(i).
But then, for all i ∈ D ∩ C ∩ S′, we have ξi < f(i) and πi(z)  i yi,ξi , so D ∩ C
witnesses that z is in Zf , and we are done.

Finally, suppose that β is a limit ordinal. By Proposition 2.4, we can assume that
ϕθβ(i) is a limit ordinal for all i ∈ S. Let T be a collection of stationary subsets of

S such that |T | = d(NSθ � S) and, for every stationary S′ ⊆ S, there is T ∈ T such

that T \ S′ ∈ NSθ. For each α < β and each i ∈ S, let Yαi := {yi,ξ | ξ < κ
+ϕθα(i)
i }.

For each α < β and each T ∈ T , let ZT,α be the set of all z ∈ Z for which
there is a club C ⊆ θ such that, for all i ∈ C ∩ T , there is y ∈ Yαi such that
πi(z)  i y. Apply Ψ(T, α) to ZT,α and 〈Yαi | i ∈ T 〉 to find YT,α ⊆ X such that
|YT,α| ≤ κ+α + d(NSθ � S) + e(S) and, for all z ∈ ZT,α, there is y ∈ YT,α such that
z  y.

Let Y =
⋃
{YT,α | T ∈ T , α < β}; we claim that Y is as desired. As in the

successor case, it suffices to verify that Z ⊆
⋃
{ZT,α | T ∈ T , α < β}. To this end,

fix z ∈ Z. By hypothesis, we can find a club C ⊆ θ such that, for all i ∈ C ∩ S,

there is ξi < κ
+ϕθβ(i)

i for which πi(z)  i yi,ξi . For each such i, use the fact that

ϕθβ(i) is a limit ordinal to find γi < ϕθβ(i) such that ξi < κ+γii . Define a function

ψ ∈ θOn by letting

ψ(i) =

{
γi if i ∈ C ∩ S
ϕθβ(i) otherwise
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for all i < θ. By Proposition 2.3, we can find a stationary S′ ⊆ C ∩S and an α < β
such that γi = ψ(i) ≤ ϕθα(i) for all i ∈ S′. We can subsequently find a T ∈ T and
a club D ⊆ θ such that D ∩ T ⊆ S′. Then, for all i ∈ D ∩ T , we have yi,ξi ∈ Yαi
and πi(z) i yi,ξi , so D witnesses that z is in ZT,α, and we are done. �

Notice that the only place in which the value of d(NSθ � S) plays a role in the
proof of Lemma 4.2 is in the case in which β is a limit ordinal (in the successor case
it only makes an appearance via the inductive hypothesis). Therefore, if β < ω
and Ψ∗(T, 0) holds for all stationary T ⊆ θ, then we can do away with d(NSθ � S)
in the conclusion of the lemma. More precisely, the proof of the successor case of
Lemma 4.2 yields the following corollary.

Corollary 4.3. Suppose that S ⊆ θ is stationary and Ψ∗(T, 0) holds for all sta-
tionary T ⊆ S. Then Ψ∗(S, n) holds for all n < ω.

The translation from Lemma 4.2 and Corollary 4.3 to our main results will
happen via the following corollary.

Corollary 4.4. Suppose that

(1) β is an ordinal for which ϕθβ is defined;

(2) S := {i < θ | cf(Xi, i) ≤ κ
+ϕθβ(i)

i } is stationary in θ;
(3) Ψ(T, 0) holds for all stationary T ⊆ S.

Then cf(X, ) ≤ κ+β +d(NSθ � S) + e(S). If, moreover, β < ω and Ψ∗(T, 0) holds
for every stationary T ⊆ S, then cf(X, ) ≤ κ+β + e(S).

Proof. By Lemma 4.2, we know that Ψ(S, β) holds. Let Z = X and, for each

i ∈ S, let Yi ⊆ Xi be such that |Yi| ≤ κ
+ϕθβ(i)

i and Yi is  i-cofinal in Xi. In
particular, for all z ∈ Z and all i ∈ S, there is y ∈ Yi such that πi(z)  i y.
Therefore, applying Ψ(S, β) to Z and 〈Yi | i ∈ S〉 yields a set Y ⊆ X such that
|Y| ≤ κ+β + d(NSθ � S) + e(S) and, for all z ∈ Z, there is y ∈ Y such that z  y,
i.e., Y is  -cofinal in X .

For the “moreover” clause, if β < ω and Ψ∗(T, 0) holds for every stationary
T ⊆ S, then Corollary 4.3 implies that Ψ∗(S, β) holds. Applying Ψ∗(S, β) to
the Z and 〈Yi | i ∈ S〉 of the previous paragraph then yields Y ⊆ X such that
|Y| ≤ κ+β + e(S) and Y is  -cofinal in X . �

5. Specific instances

We now turn to applications of the general framework introduced in the previous
section to particular cardinal characteristics at singular cardinals. Let us fix for
this entire section cardinals κ and θ such that ω < θ = cf(κ) < κ, as well as
an increasing, continuous sequence of cardinals 〈κi | i < θ〉 converging to κ, with
κ0 > θ.

Each cardinal characteristic ccκ we consider will entail a choice of a set X and
a binary relation  on X such that ccκ = cf(X , ). The sets 〈Xi | i < θ〉 and
relations 〈 i| i < θ〉 will be defined analogously, so that ccκi = cf(Xi, i) for
each i < θ. We will also have natural restriction operations πi : X → Xi for each
i < θ. Together with an appropriate choice of function e : NS+

θ → Card, these
assignments give rise to instances of the formulas Ψ(S, β) and Ψ∗(S, β) from the
previous section. The primary work of this section will consist of proving that all
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of these instances of Ψ∗(T, 0) hold; Corollary 4.4 will then directly yield our main
results.

We will begin by introducing each of the cardinal characteristics we will be
considering and specifying the appropriate assignments for X ,  , 〈(Xi, i, πi) |
i < θ〉, and e for each characteristic. We will then prove a lemma indicating that,
for all of these assignments, the corresponding instance of Ψ∗(T, 0) holds for every
stationary T ⊆ θ.

We note that for some of the cardinal characteristics, we will only define Xi,
 i, and πi for limit ordinals i < θ. Since the clubs C in the statement of Ψ(S, β)
can always be assumed to consist entirely of limit ordinals, this is sufficient for our
purposes.

5.1. Meeting numbers. The first cardinal characteristics we consider are the
meeting numbers.

Definition 5.1 ([17]). Suppose that σ ≤ λ are infinite cardinals. Then the meeting
number m(σ, λ) is the minimal cardinality of a collection Y ⊆ [λ]σ such that, for
all x ∈ [λ]σ, there is y ∈ Y such that |x ∩ y| = σ.

The meeting number m(σ, λ) is of special interest when cf(σ) = cf(λ), in which
case a routine diagonalization argument implies that m(σ, λ) > λ. A result of Matet
indicates that Shelah’s Strong Hypothesis, a statement in PCF theory, is equivalent
to the statement that all such meeting numbers take their minimal possible value:

Theorem 5.2 (Matet, [16, Theorem 1.1]). The following are equivalent:

(1) Shelah’s Strong Hypothesis;
(2) for every singular cardinal λ of countable cofinality, m(ℵ0, λ) = λ+;
(3) for all infinite cardinals σ < λ, we have m(σ, λ) = λ+ if cf(σ) = cf(λ) and

m(σ, λ) = λ if cf(σ) 6= cf(λ).

We now specify assignments to define a version of the formula Ψ∗(T, 0) appro-
priate for the meeting number. Let X = [κ]θ and, for each limit ordinal i < θ, let
Xi = [κi]

cf(i). Define relations on X and i on Xi by letting x y iff |x∩y| = θ
and x  i y iff |xi ∩ yi| = cf(i) for all limit ordinals i < θ. It is then evident that
m(θ, κ) = cf(X , ) and m(cf(i), κi) = m(cf(κi), κi) = cf(Xi, i) for all limit i < θ.

For each limit ordinal i < θ, define a map πi : X → Xi as follows. For any
i < θ and x ∈ X , if sup(x ∩ κi) = κi, then let πi(x) be an arbitrary unbounded
subset of x ∩ κi of order type cf(i). If sup(x ∩ κi) < κi, then simply let πi(x) be
an arbitrary element of Xi. Note that, for every x ∈ X that is unbounded in κ, the
set {i < θ | sup(x ∩ κi) = κi} is a club in θ.

Let e : NS+
θ → Card be the constant function taking value

∑
j<θm(θ, κj).

5.2. Density. As mentioned above, a version of Silver’s theorem for density is
proven in [12]. We include density here for completeness, since our results are
slightly more general than those of [12].

We are interested in particular in the number d(θ, κ). The setup for density will
be similar to that for the meeting number. Again let X = [κ]θ and, for each limit
ordinal i < θ, let Xi = [κi]

cf(i). Define relations  on X and  i on Xi by letting
x y or x i y iff x ⊇ y. Then d(θ, κ) = cf(X , ) and d(cf(κi), κi) = cf(Xi, i)
for all limit i < θ.
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Define maps πi : X → Xi for limit ordinals i < θ exactly as in the case of the
meeting number in the previous subsection. Let e : NS+

θ → Card be the constant
function taking value d(θ, κ) =

∑
j<θ d(θ, κj) (recall Definition 3.1).

5.3. The reaping number.

Definition 5.3. Let λ be an infinite cardinal.

(1) If x, y ∈ [λ]λ, then we say that x splits y if |y ∩ x| = |y \ x| = λ.
(2) A family Y ⊆ [λ]λ is unreaped if there is no single x ∈ [λ]λ that splits every

element of Y.
(3) The reaping number rλ is the minimum cardinality of an unreaped family

in [λ]λ.

A standard diagonalization argument shows that rλ > λ for every infinite cardi-
nal λ.

Let X = [κ]κ and, for each i < θ, let Xi = [κi]
κi . Define a relation  on X by

letting x y iff x does not split y, i.e., either |y ∩ x| < κ or |y \ x| < κ. Similarly,
for each i < θ, define  i on Xi by letting x i y iff x does not split y. Then it is
evident that rκ = cf(X , ) and rκi = cf(Xi, i) for all i < θ.

For each i < θ, define a map πi : X → Xi as follows. For all x ∈ X , if |x∩κi| = κi,
then let πi(x) = x ∩ κi. Otherwise, let πi(x) = κi. Note that, for all x ∈ [κ]κ, the
set of i < θ for which |x∩ κi| = κi, and hence for which πi(x) = x∩ κi, is a club in
θ. Finally, as in the case of density, let e : NS+

θ → Card be the constant function
taking value d(θ, κ).

5.4. The dominating number.

Definition 5.4. Suppose that λ is an infinite cardinal.

(1) If f, g ∈ λOn, then f <∗ g if and only if |{η < λ | g(η) ≤ f(η)}| < λ.
(2) The dominating number dλ is the minimal cardinality of a family F ⊆ λλ

such that for every g ∈ λλ, there is f ∈ F such that g <∗ f .
(3) More generally, for any limit ordinal σ, dλ,σ is the minimal cardinality of a

family F ⊆ λσ such that, for every g ∈ λσ, there is f ∈ F such that g <∗ f .

Proofs of the following basic facts can be found in [7].

Proposition 5.5 ([7, Claim 3.2 and Lemma 3.1]). Suppose that λ is an infintie
cardinal.

(1) dλ > λ and cf(dλ) > λ.
(2) dλ = dλ,cf(λ).

The proofs of [7, Claim 3.2 and Lemma 3.1] can be routinely adapted to yield
the following generalization of the preceding proposition.

Fact 5.6. Suppose that λ is an infinite cardinal and σ is a limit ordinal.

(1) dλ,σ > λ and cf(dλ,σ) > λ.
(2) dλ,σ = dλ,cf(σ).

Recently, Shelah proved that, if κ is a singular strong limit cardinal, then dκ
always attains its maximal possible value. More precisely, he proved the following
theorem:

Theorem 5.7 ([19, Claim 1.5(2)]). Suppose that κ is a singular cardinal and
µcf(κ) < κ for all µ < κ. Then dκ = 2κ.
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We now specify assignments to define a version of the formula Ψ∗(T, 0) appro-
priate for the dominating number. Let X = κθ and, for each limit ordinal i < θ,
let Xi = κii. Let  and  i be the relations <∗ on X and Xi, respectively. By
Proposition 5.5 and Fact 5.6, we have dκ = cf(X , ) and, for all limit i < θ, we
have dκi = cf(Xi, i).

For each limit ordinal i < θ, define a map πi : X → Xi as follows. For all x ∈ X
and all η < κi, let

πi(x)(η) =

{
x(η) if x(η) < i

0 otherwise.

Note that we do indeed have πi(x) ∈ κii = Xi, as desired. Finally, let e : NS+
θ →

Card be defined by letting e(S) = dstat(
Sκ) for all stationary S ⊆ θ (recall this

notation from Definition 3.3).

5.5. The general lemma. We now show that, in all of the cases introduced in
this section, the corresponding version of Ψ∗(T, 0) holds for all stationary T ⊆ θ.
Note that we may assume that ϕθ0(i) = 0 for all i < θ, so clause (2) in the definition
of ψ(T, 0) asserts that |Yi| ≤ κi for all i ∈ T .

Lemma 5.8. For any cardinal characteristic cc ∈ {m(θ, κ),D(κ, θ), rκ, dκ}, the
corresponding formula Ψ∗(T, 0) holds for every stationary T ⊆ θ.

Proof. We begin with some general preliminaries and then split into cases depending
on the cardinal characteristic under consideration.

Fix a stationary set T ⊆ θ; we may assume that every element of T is a limit
ordinal. Fix assignments for X ,  , 〈(Xi, i, πi) | i < θ〉, and e corresponding to
one of the cardinal characteristics introduced in this section. To verify Ψ∗(T, 0), fix
a set Z ⊆ X and, for each i ∈ T , a set Yi ⊆ Xi such that

• for all i ∈ T , |Yi| ≤ κi;
• for all z ∈ Z, there is a club C ⊆ θ such that, for all i ∈ C ∩ T , there is
y ∈ Yi for which πi(z) i y.

For each i ∈ T , enumerate Yi as 〈yi,ξ | ξ < κi〉 (with repetitions if |Yi| < κi).
We will find Y ⊆ X such that |Y| ≤ κ + e(T ) and, for all z ∈ Z, there is y ∈ Y
for which z  y. Our method for doing this will depend on the precise cardinal
characteristic.

Case 1: m(θ, κ). Recall that in this case e(T ) =
∑
j<θm(θ, κj). Therefore, for

each j < θ, we can fix a family Wj ⊆ [T × κj ]θ such that

• |Wj | ≤ e(T );
• for all u ∈ [T × κj ]θ, there is w ∈ Wj such that |w ∩ u| = θ.

Let W :=
⋃
j<θWj . For each w ∈ W, let y∗w =

⋃
{yi,ξ | (i, ξ) ∈ w}, and note that

y∗w ∈ [κ]≤θ.
Also, for each j < θ, let Y∗j ⊆ [κj ]

θ be such that |Y∗j | ≤ e(T ) and, for all x ∈ [κj ]
θ,

there is y ∈ Y∗j such that |y ∩ x| = θ. Finally, let

Y :=
⋃
j<θ

Y∗j ∪
(
{y∗w | w ∈ Wj} ∩ [κ]θ

)
.

We claim that Y is as desired. It is evident that Y ⊆ X and |Y| ≤ κ+ e(T ). It
remains to show that, for all z ∈ Z, there is y ∈ Y such that z  y, i.e., |y∩ z| = θ.
To this end, fix z ∈ Z. If there is j < θ such that z ⊆ κj , then there is y ∈ Y∗j such
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that |y ∩ z| = θ, and we are done. Therefore, we may assume that z is unbounded
in κ. By assumption, there is a club C ⊆ θ such that, for all i ∈ C ∩ T , we have

• sup(z ∩ κi) = κi, and hence πi(z) is an unbounded subset of z ∩ κi of order
type cf(i);
• there is ξi < κi for which πi(z) i yi,ξi , i.e., |yi,ξi ∩ πi(z)| = cf(i).

Since each i ∈ T is a limit ordinal, we can apply Fodor’s lemma to find a fixed j < θ
and a stationary T ′ ⊆ C ∩ T such that ξi < κj for all i ∈ T ′. Let u = {(i, ξi) | i ∈
T ′}. Then u ∈ [T × κj ]θ, so, by our choice of Wj , we can find w ∈ Wj such that
|w ∩ u| = θ. It follows that the set T ′′ := {i ∈ T ′ | (i, ξi) ∈ w} is unbounded in θ.

Consider the set y∗w :=
⋃
{yi,ξ | (i, ξ) ∈ w}. Note that, for all i ∈ T ′′, we know

that πi(z) is an unbounded subset of z ∩ κi of order type cf(i), and we know that
|yi,ξi ∩ πi(z)| = cf(i). It follows that yi,ξi ∩ πi(z) is an unbounded subset of z ∩ κi,
and therefore y∗w∩z is an unbounded subset of z. In particular, y∗w ∈ Y and z  y∗w,
as desired.

Case 2: d(θ, κ). The argument in this case is very similar to that in the
previous case, so we suppress some details. Since e(T ) = d(θ, κ) =

∑
j<θ d(θ, κj),

we can fix, for each j < θ, a family Wj ⊆ [T × κj ]θ that is dense in ([T × κj ]θ,⊆)
and has cardinality at most e(T ). Let W :=

⋃
j<θWj and, for each w ∈ W, let

y∗w :=
⋃
{yi,ξ | (i, ξ) ∈ w}.

Also, for each j < θ, fix Y∗j ⊆ [κj ]
θ that is dense in ([κj ]

θ,⊆) and has cardinality

at most e(T ). Let Y :=
⋃
j<θ Y∗j ∪

(
{y∗w | w ∈ Wj} ∩ [κ]θ

)
.

It is evident that Y ⊆ X and |Y| ≤ κ+ e(T ). To verify that Y is as desired, fix
z ∈ Z. We must find y ∈ Y such that y ⊆ z. If there is j < θ such that z ⊆ κj ,
then there is y ∈ Y∗j such that y ⊆ z, and we are done. Thus, suppose that z is
unbounded in κ. Then there is a club C ⊆ θ such that, for all i ∈ C ∩ T , we have

• sup(z ∩ κi) = κi;
• there is ξi < κi for which yi,ξi ⊆ πi(z).

We can again find a stationary T ′ ⊆ C ∩ T and a fixed j < θ such that ξi < κj for
all i ∈ T ′. Let u = {(i, ξi) | i ∈ T ′}, and find w ∈ Wj such that w ⊆ u. As before,
the set T ′′ := {i ∈ T ′ | (i, ξi) ∈ w} is unbounded in θ; moreover, w is precisely
{(i, ξi) | i ∈ T ′′}. Therefore, y∗w =

⋃
{yi,ξi | i ∈ T ′′} ⊆ z. It also follows exactly as

in the previous case that y∗w is unbounded in κ and is therefore an element of Y.
Case 3: rκ. In this case, e(T ) = d(θ, κ). Therefore, for each j < θ, we can fix as

in the previous case a setWj ⊆ [T ×κj ]θ such thatWj is dense in ([T ×κj ]θ,⊆) and
|Wj | ≤ d(T ). Let W =

⋃
j<θ Dj and, for each w ∈ D, let y∗w =

⋃
{yi,ξ | (i, ξ) ∈ w}.

Finally, let Y = {y∗w | w ∈ D} ∩ [κ]κ.
We claim that Y is as desired. It is evident that Y ⊆ [κ]κ and |Y| ≤ e(T ). It

remains to verify that no element of Z splits every element of Y. To this end, fix
z ∈ Z. By assumption, we can find a club C ⊆ θ such that, for all i ∈ C ∩ T , we
can find ξi < κi such that either |yi,ξi ∩ πi(z)| < κi or |yi,ξi \ πi(z)| < κi. We can
also assume that, for all i ∈ C, we have |z ∩ κi| = κi, and hence πi(z) = z ∩ κi.

Find a stationary S0 ⊆ C ∩ T such that either

(1) for all i ∈ S0, |yi,ξi ∩ πi(z)| < κi; or
(2) for all i ∈ S0, |yi,ξi \ πi(z)| < κi.

Without loss of generality, assume that (1) holds (the proof is symmetric if (2)
holds). For each limit ordinal i ∈ S0, we can find j(i) < i such that max{ξi, |yi,ξi ∩
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πi(z)|} < κj(i). Since S0 is a stationary subset of θ, we can therefore find a station-
ary S1 ⊆ S0 and a fixed j < θ such that j(i) = j for all i ∈ S1.

Let u = {(i, ξi) | i ∈ S1}. Then u ∈ [θ × κj ]θ, so we can find w ∈ Wj ⊆ W such
that w ⊆ u. Note that {i ∈ S1 | (i, ξi) ∈ w} must be unbounded in θ, so we have
|y∗w| = κ, and hence y∗w ∈ Y. Moreover,

y∗w ∩ z =
⋃

(i,ξ)∈w

(yi,ξ ∩ z) =
⋃

(i,ξ)∈w

(yi,ξ ∩ πi(z)) ⊆
⋃
i∈S1

(yi,ξi ∩ πi(z)).

Since |yi,ξi ∩ πi(z)| < κj for all i ∈ S1 and κj > θ = |S1|, it follows that |y∗w ∩ z| ≤
κj < κ, so z does not split y∗w, i.e., we have z  y∗w, as desired.

Case 4: dκ. In this case, e(T ) = dstat(
Tκ). Therefore, we can fix a family H

such that

• |H| = e(T );
• every element of H is a function from a stationary subset of T to κ whose

range is bounded below κ;
• for every function g from a stationary subset of T to κ such that the range

of g is bounded below κ, there is a function h ∈ H such that {i ∈ dom(h) |
i /∈ dom(g) or h(i) 6= g(i)} is nonstationary in θ.

Recall also that, for each i ∈ T and each ξ < κi, we have yi,ξ ∈ κii.
For each h ∈ H, define a function y∗h ∈ κθ as follows. Let T ′ = dom(h). Since

the range of h is bounded below κ, we know that, for all sufficiently large i ∈ T ′,
we have h(i) < κi, and hence yi,h(i) is defined. Therefore, for all sufficiently large
i ∈ T ′ and all η < κi, we have yi,h(i)(η) < i. Therefore, by Fodor’s Lemma, for
each η < κ, we can find a j < θ such that

{i ∈ T ′ | η < κi, h(i) < κi and yi,h(i)(η) = j}

is stationary in θ. Let y∗h(η) be the least such j.
Let Y = {y∗h | h ∈ H}. We claim that Y is as desired. It is evident that Y ⊆ κθ

and |Y| ≤ e(T ). It remains to verify that, for every z ∈ Z, there is y ∈ Y such that
z <∗ y. To this end, fix z ∈ Z. By assumption, we can find a club C ⊆ θ such that,
for all i ∈ C ∩ T , there is ξi < κi for which πi(z) <

∗ yi,ξi . For each i ∈ C ∩ T , let

Ei = {η < κi | yi,ξi(η) ≤ πi(z)(η)},

and note that |Ei| < κi. By two applications of Fodor’s lemma, we can find a j < θ
and a stationary T ′ ⊆ C ∩ T such that max{ξi, |Ei|} < κj for all i ∈ T ′. Then the
map from T ′ to κ defined by sending each i ∈ T ′ to ξi has range bounded below
κ, so we can find h ∈ H and a club D ⊆ θ such that, letting T ′′ = dom(h), the
following statement holds: for all i ∈ D ∩ T ′′, we have i ∈ T ′ and h(i) = ξi.

We claim that z <∗ y∗h. To see this, first let E :=
⋃
i∈D∩T ′′ Ei, and note that

|E| ≤ θ · κj < κ. It therefore suffices to show that z(η) < y∗h(η) for all η ∈ κ \ E.
To this end, fix η ∈ κ \ E. Fix ` < θ such that η < κ` and z(η) < `. Then,
for all i ∈ D ∩ T ′′ \ `, we have πi(z)(η) = z(η). Moreover, for all such i, we have
η /∈ Ei, and hence z(η) < yi,ξi(η) = yi,h(i)(η). Recall that y∗h(η) was defined in
such a way that there is a stationary set T ∗ ⊆ T ′′ such that y∗h(η) = yi,h(i)(η) for
all i ∈ T ∗. Since D is a club in θ, we can fix i∗ ∈ (D ∩ T ∗) \ `. But then we have
z(η) < yi∗,h(i∗)(η) = y∗h(η), as desired. �

Combining the results of this and the previous section, we obtain the precise
statement of our main result.
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Main Theorem. Suppose that

• κ is a singular cardinal and cf(κ) = θ > ω;
• 〈κi | i < θ〉 is an increasing, continuous sequence of cardinals converging to
κ;
• β is an ordinal for which ϕθβ exists;
• S ⊆ θ is stationary;
• cc is one of the cardinal characteristics m(θ, κ), d(θ, κ), rκ, or dκ, and, for

each i < θ, cci is the corresponding cardinal characteristic m(cf(κi), κi),
d(cf(κi), κi), rκi , or dκi ;

• for all i ∈ S, we have cci ≤ κ
+ϕθβ(i)

i .

Then:

(1) If cc = m(θ, κ), then cc ≤ κ+β +
∑
j<θm(θ, κj) + d(NSθ � S). Moreover, if

β < ω, then cc ≤ κ+β +
∑
j<θm(θ, κj).

(2) If cc = d(θ, κ) or cc = rκ, then cc ≤ κ+β + d(θ, κ) + d(NSθ � S). Moreover,

if β < ω, then cc ≤ κ+β + d(θ, κ).

(3) If cc = dκ, then cc ≤ κ+β + dstat(
Sκ).

Proof. This follows directly from Lemma 5.8 and Corollary 4.4. �

6. Open questions

Throughout this section, κ will denote an arbitrary infinite cardinal. We feel
that the most prominent cardinal characteristic at singular cardinals that is not
covered by our results here is the ultrafilter number, a close relative of the reaping
number.

Definition 6.1. The ultrafilter number uκ is the minimal size of a base for a
uniform ultrafilter over κ. In other words, it is the minimal cardinal λ for which
there exists a uniform ultrafilter U over κ and a family X ⊆ U such that |X | = λ
and, for all Y ∈ U , there is X ∈ X such that |X \ Y | < κ.

It is provable that uκ > κ, and the ultrafilter number at singular cardinals has
been extensively studied (cf. [5], [7], [9], among others).

Question 6.2. Does a version of our Main Theorem hold for the ultrafilter number?

We briefly mentioned the almost disjointness number in the Introduction; we
feel that some interesting questions can be formulated around it. We first recall
the relevant definitions.

Definition 6.3. An almost disjoint family over κ is a family A ⊆ [κ]κ such that,
for all distinct A,B ∈ A, we have |A ∩B| < κ. Such a family is a maximal almost
disjoint family (MAD family) over κ if, moreover, there is no almost disjoint family
B over κ with A ( B.

There are trivial ways to form MAD families over κ (as an extreme case, {κ}
is a MAD family over κ). The almost disjointness number aκ is defined to be
the minimal cardinality of a nontrivial MAD family over κ. It remains to specify
what nontriviality means. The most natural solution seems to be to say that a
MAD family is nontrivial if and only if its cardinality is greater than cf(κ) (this is
the approach taken, for instance, in [13]). Under this definition, it is not difficult
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to prove that aκ ≤ acf(κ). However, there always exist MAD families over κ of
cardinality strictly greater than κ, so one could also declare that a MAD family
over κ is nontrivial if and only if its cardinality is greater than κ. Let us denote the
version of the almost disjointness number arising from this more stringent definition
of nontriviality by a∗κ.

Question 6.4. Does a version of our Main Theorem hold for a∗κ?

The most immediate specific incarnation of this question would be the following:

Question 6.5. Suppose that κ is a singular strong limit cardinal of uncountable
cofinality and there is a stationary subset S ⊆ κ consisting of singular cardinals
such that, for all µ ∈ S, there is a MAD family over µ of cardinality µ+. Must
there be a MAD family over κ of cardinality κ+.

Definition 6.6. A graph G is universal for graphs of size κ if, for every graph H
with at most κ-many vertices, there is an induced subgraph of G that is isomorphic
to H. Let ugκ denote the minimal number of vertices in a graph G that is universal
for graphs of size κ.

Question 6.7. Does a version of our Main Theorem hold for ugκ?

We are also interested in whether analogues of Silver’s theorem hold for state-
ments that are not naturally formulated as statements about cardinal character-
istics but which are consequences of 2κ = κ+. We record here some particularly
prominent examples.

Definition 6.8. The polarized partition relation

(
κ+

κ

)
→
(
κ+

κ

)1,1

2

is the assertion

that, for every function c : κ+ × κ → 2, there are sets A ∈ [κ+]κ
+

and B ∈ [κ]κ

such that c � A × B is constant. The negation of this relation is denoted by(
κ+

κ

)
6→
(
κ+

κ

)1,1

2

.

Erdős, Hajnal, and Rado prove in [3] that, if 2κ = κ+, then

(
κ+

κ

)
6→
(
κ+

κ

)1,1

2

.

On the other hand, Garti and Shelah prove in [6] that, assuming the consistency of

a supercompact cardinal, the positive relation

(
κ+

κ

)
→
(
κ+

κ

)1,1

2

consistently holds

for a singular strong limit cardinal κ (in their result, κ can have either countable
or uncountable cofinality).

Question 6.9. Suppose that κ is a singular cardinal of uncountable cofinality and
there is a stationary set S ⊆ κ consisting of singular cardinals such that, for all

µ ∈ S, we have

(
µ+

µ

)
6→
(
µ+

µ

)1,1

2

. Must it be the case that

(
κ+

κ

)
6→
(
κ+

κ

)1,1

2

?

In an early draft of this paper, we included here a question about Aronszajn trees
at double successors of singular cardinals. We then realized that existing work of
Golshani and Mohammadpour [8] provides an answer to this question, so we give
a very brief account of this here.

Recall that, for a regular uncountable cardinal λ, a λ-Aronszajn tree is a tree of
height λ with no levels or branches of cardinality λ. If λ = µ+, then a λ-Aronszajn



18 CHRIS LAMBIE-HANSON

tree T is special if there is a function f : T → λ that is injective on chains. Note
that a special µ+-Aronszajn tree remains special in any outer model in which µ+ is
preserved. By a result of Specker [22], if µ is regular and µ<µ = µ, then there is a
special µ+-Aronszajn tree. In particular, if 2κ = κ+, then there is a κ++-Aronszajn
tree. Therefore, the nonexistence of Aronszajn trees at the double successor of a
singular strong limit cardinal requires a failure of the Singular Cardinals Hypothesis.
In an earlier draft of this paper, we asked whether the existence of κ++-Aronszajn
trees satisfies a version of Silver’s theorem. Here, we give a consistent negative
answer to this question that follows almost immediately from the work in [8].

Theorem 6.10. Suppose that κ is supercompact and λ > κ is measurable. Then
there is a forcing extension in which κ is a singular cardinal of uncountable cofinal-
ity, there are µ++-Aronszajn trees for all µ < κ, but there are no κ++-Aronszajn
trees.

Proof sketch. We can assume that GCH holds in V . Therefore, by the aforemen-
tioned result of Specker, there is a special µ++-Aronszajn tree for all µ. By the
techniques of [15], we can arrange so that the supercompactness of κ is preserved
after adding any number of Cohen subsets to κ by forcing with an Easton-support
iteration of length κ with the property that, for all α < κ, either the αth iterand
is forced to be trivial or α is inaccessible and the αth iterand is forced to be of the
form Add(α, β) for some β < κ. Moreover, this iteration can be defined so that it
preserves all cardinals. (More precisely, we can let f : κ→ Vκ be a Laver function
and, for all α < κ, let the αth iterand be forced to be trivial unless α is inaccessible,
f(α) is a cardinal, and f“α ⊆ Vα, in which case the αth iterand is forced to be
Add(α, f(α)).)

Let V1 be the extension of V by this forcing iteration. Since V and V1 have the
same cardinals, it remains true in V1 that there is a special µ++-Aronszajn tree for
all µ. Moreover, in V1 it is the case that the supercompactness of κ is preserved
after adding any number of Cohen subsets to κ.

Let δ < κ be a regular uncountable cardinal. By the results of [8] (in particular
the results of Sections 4 and 5 of that paper), there is in V1 a forcing notion R with
the following properties:

• R preserves all cardinals below κ+;
• V R

1 |= cf(κ) = δ;
• V R

1 |= 2κ = λ = κ++;
• V R

1 |= “there are no κ++-Aronszajn trees”.

Since R preserves all cardinals below κ+, it remains true in V R
1 that there is a

special µ++-Aronszajn tree for all µ < κ. Therefore, V R
1 is the desired forcing

extension. �
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Hechler: new methods in singular madness. Proc. Amer. Math. Soc., 132(11):3357–3365,

2004.

[14] John Krueger and Ernest Schimmerling. An equiconsistency result on partial squares. J.
Math. Log., 11(1):29–59, 2011.

[15] Richard Laver. Making the supercompactness of κ indestructible under κ-directed closed
forcing. Israel J. Math., 29(4):385–388, 1978.

[16] Pierre Matet. Meeting numbers and pseudopowers. MLQ Math. Log. Q., 67(1):59–76, 2021.

[17] Pierre Matet. Towers and clubs. Arch. Math. Logic, 60(6):683–719, 2021.
[18] Assaf Rinot. On the consistency strength of the Milner-Sauer conjecture. Ann. Pure Appl.

Logic, 140(1-3):110–119, 2006.

[19] S. Shelah. On dµ for µ singular. Acta Math. Hungar., 161(1):245–256, 2020.
[20] Saharon Shelah. Cardinal arithmetic, volume 29 of Oxford Logic Guides. The Clarendon

Press, Oxford University Press, New York, 1994. Oxford Science Publications.

[21] Jack Silver. On the singular cardinals problem. In Proceedings of the International Congress
of Mathematicians (Vancouver, B. C., 1974), Vol. 1, pages 265–268, 1975.

[22] E. Specker. Sur un problème de Sikorski. Colloq. Math., 2:9–12, 1949.

Institute of Mathematics of the Czech Academy of Sciences, Žitná 25, Praha 1,
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