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Abstract. A cardinal λ satisfies a property P robustly if, whenever Q is a

forcing poset and |Q|+ < λ, λ satisfies P in V Q. We study the extent to

which certain reflection properties of large cardinals can be satisfied robustly
by small cardinals. We focus in particular on stationary reflection and the

tree property, both of which can consistently hold but fail to be robust at

small cardinals. We introduce natural strengthenings of these principles which
are always robust and which hold at sufficiently large cardinals, consider the

extent to which these strengthenings are in fact stronger than the original

principles, and investigate the possibility of these strengthenings holding at
small cardinals, particularly at successors of singular cardinals.

1. Introduction

Large cardinal properties have, among others, the following two appealing at-
tributes: they imply certain strong reflection properties, and they are robust under
small forcing. The study of the extent to which reflection properties of large cardi-
nals can hold at small cardinals, and in particular at successors of singular cardinals,
has been a fruitful line of research in set theory. We continue this line here, adding
the requirement of robustness under small forcing to these reflection properties and
focusing in particular on stationary reflection and the tree property at successors
of singular cardinals.

Definition 1.1. Let P be a property that can hold of a cardinal λ. We say that λ
satisfies P robustly or that λ has the robust property P if, whenever Q is a forcing
poset and |Q|+ < λ, λ satisfies P in V Q.

Remark 1.2. The requirement |Q|+ < λ, rather than the seemingly more natural
|Q| < λ, is necessary for our purposes in order to obtain consistent principles. If
λ = µ+ and Q = Coll(ω, µ), then |Q| < λ and, in V Q, λ = ω1 and therefore cannot
satisfy, for example, stationary reflection or the tree property.

Most large cardinal properties are always robust. For example, if λ satisfies
the property “is inaccessible,” “is weakly compact,” “is measurable,” “is strongly
compact,” “is supercompact,” etc., then, by an argument of Levy and Solovay (see
[9]), λ satisfies the property robustly. Therefore, reflection principles, when they
hold due to large cardinal properties, are themselves robust. Of particular interest
to us are the following.

Fact 1.3. Suppose λ is weakly compact. Then λ satisfies robust stationary reflection
and the robust tree property.

This research was undertaken while the author was a Lady Davis Postdoctoral Fellow. The au-

thor would like to thank the Lady Davis Fellowship Trust and the Hebrew University of Jerusalem.
The author would also like to thank Menachem Magidor for many helpful discussions and the
anonymous referee for a number of excellent suggestions.

1



2 CHRIS LAMBIE-HANSON

Fact 1.4. Suppose µ is a singular limit of strongly compact cardinals and λ = µ+.
Then λ satisfies robust stationary reflection and the robust tree property.

As we will see, though, these reflection principles need not be robust when they
hold at small cardinals. We consider here natural strengthenings of reflection prin-
ciples, in particular stationary reflection and the tree property, that are always
robust, and investigate the extent to which they can hold at small cardinals and
the extent to which they are true strengthenings of the more classical principles.

The general outline of the paper is as follows. In Section 2, we consider robust
stationary reflection. We show that this is equivalent to a natural condition studied
by Cummings and the author in [3] and that it is not in general equivalent to
stationary reflection at inaccessible cardinals. The rest of the paper is devoted
to the tree property and the strong system property. In Section 3, we introduce
the strong system property, a robust strengthening of the tree property that is
equivalent to the tree property at inaccessible cardinals. In Section 4, we show that
fairly weak square principles imply the failure of the strong system property, and
we provide a characterization of the robustness of having no special µ+-Aronszajn
trees for infinite µ. In Section 5, we present some branch preservation lemmas for
systems and a technical lemma about systems in a generic extension by a product of
Levy collapses. In Section 6, we adapt arguments of Fontanella and Magidor from
[4] to show that we have some control over the extent of the failure of the strong
system property at ℵω2+1 and that the strong system property can consistently
hold at ℵω2+1. We conclude with some open questions.

Our notation is, for the most part, standard. Our reference for all undefined
terms and notations is [6]. If κ < λ are infinite cardinals, with κ regular, then
Sλκ = {α < λ | cf(α) = κ}. Sλ<κ, Sλ≤κ, etc. are given the natural meanings. By
‘inaccessible,’ we always mean ‘strongly inaccessible.’ If R is a binary relation on
a set X, we will often write x <R y in place of (x, y) ∈ R. If A is a set of ordinals,
then A′ denotes {α < sup(A) | α = sup(A ∩ α)}.

2. Stationary reflection

Recall the following definitions.

Definition 2.1. Let λ be a regular, uncountable cardinal, and let S ⊆ λ be sta-
tionary.

(1) If α < λ and cf(α) > ω, then S reflects at α if S ∩ α is stationary in α.
(2) S reflects if there is α < λ such that S reflects at α.
(3) S reflects at arbitrarily high cofinalities if, for every regular κ < λ, there is

α ∈ Sλ≥κ such that S reflects at α.

(4) Refl(λ) is the assertion that every stationary subset of λ reflects.

The following proposition is easily proven (see [3], for example).

Proposition 2.2. Suppose Refl(ℵω+1) holds. Then every stationary subset of ℵω+1

reflects at arbitrarily high cofinalities.

Also, standard arguments yield that, if λ is weakly compact, then every sta-
tionary subset of λ reflects at arbitrarily high cofinalities. However, the situation
is different in general. In [3], Cummings and the author show that, assuming the
existence of sufficiently large cardinals, it is consistent that there is a singular car-
dinal µ > ℵω such that Refl(µ+) holds and there is a stationary subset of µ+ that
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does not reflect at arbitrarily high cofinalities. In [7], the author extends this result
to show that, assuming the existence of a proper class of supercompact cardinals,
there is a class forcing extension in which, whenever µ > ℵω is a singular cardi-
nal, Refl(µ+) holds and there is a stationary subset of µ+ that does not reflect at
arbitrarily high cofinalities.

It turns out that this notion is closely related to robust stationary reflection and
that the models constructed in [3] and [7] provide instances in which stationary
reflection holds non-robustly at successors of singular cardinals.

Theorem 2.3. Suppose λ is a regular, uncountable cardinal. The following are
equivalent.

(1) λ satisfies robust stationary reflection.
(2) Every stationary subset of λ reflects at arbitrarily high cofinalities.

Proof. First note that, if λ = κ+ and κ is regular, then Sλκ is a non-reflecting
stationary subset of λ. Hence, both (1) and (2) imply that λ is either weakly
inaccessible or the successor of a singular cardinal. In particular, if κ < λ is
regular, then κ+ < λ.

(1) ⇒ (2): Assume (1) holds. Suppose for sake of contradiction that S ⊆ λ is
stationary, κ < λ is regular, and S does not reflect at any ordinal in Sλ≥κ. Let

P = Coll(ω, κ). |P| = κ, so |P|+ < λ. In particular, P has the λ-c.c., so S remains

stationary in V P. Also, if α < λ and cfV
P
(α) > ω, then cfV (α) > κ. Since S

does not reflect at any ordinal in Sλ≥κ in V , there is a club Cα in α such that

Cα ∩ S = ∅. Cα still witnesses that S does not reflect at α in V P, so S is a
non-reflecting stationary subset of λ in V P, contradicting (1).

(2) ⇒ (1): Assume (2) holds. Suppose for sake of contradiction that |P| is a

forcing poset, |P|+ < λ, p ∈ P, and Ṡ is a P-name such that p  “Ṡ is a non-

reflecting stationary subset of λ.” For all q ≤ p, let Sq = {η < λ | q  “η ∈ Ṡ”}.
Since p  “Ṡ ⊆

⋃
q≤p Sq” and |P| < λ, there must be q ≤ p such that Sq is

stationary in λ. Fix such a q. By (2), we may find α ∈ Sλ≥|P|+ such that Sq reflects

at α. Since P trivially has the |P|+-c.c., Sq ∩α remains stationary in V P. But then,

since q  “Sq ⊆ Ṡ”, we have q  “Ṡ reflects at α, ” which is a contradiction. �

The next result shows that robust stationary reflection is not necessarily equiv-
alent to stationary reflection, even for inaccessible cardinals.

Theorem 2.4. Suppose there is an inaccessible limit of supercompact cardinals.
Then there is a forcing extension with an inaccessible cardinal λ such that Refl(λ)
holds but there is a stationary S ⊆ Sλω that does not reflect at any ordinal in Sλ>ℵω .

Proof. The proof largely follows the proof of Theorem 3.1 in [3], so we omit many
of the details. Let λ be the least inaccessible limit of supercompact cardinals. In
particular, λ is not Mahlo. Let 〈κi | i < λ〉 be an increasing, continuous sequence
of cardinals such that:

• κ0 = ω;
• if i = 0 or i is a limit ordinal, κi+1 = κ+i ;
• if i is a successor ordinal, κi+1 is supercompact;
• sup({κi | i < λ}) = λ.

We first define a forcing iteration 〈Pi, Q̇j | i ≤ λ, j < λ〉, taken with full supports,

as follows. If i = 0 or i is a limit ordinal, then Pi “Q̇i is trivial.” If i is a successor



4 CHRIS LAMBIE-HANSON

ordinal, then Pi “Q̇i = Coll(κi, < κi+1).” Let P = Pλ. In V P, λ is the least
inaccessible cardinal and, for all i < λ, κi = ℵi. In V P, let ~a = 〈aα | α < λ〉 be an
enumeration of all bounded subsets of λ, and let A be the forcing to shoot a club
through the set of ordinals below λ that are approachable with respect to ~a. In

V P∗Ȧ, let S be the poset whose conditions are of the form s = (γs, xs) such that:

• γs < λ;
• xs ⊆ (γs + 1) ∩ cof(ω);
• for all β ∈ Sλ>ℵω , xs ∩ β is not stationary in β.

If s, t ∈ S, then t ≤ s iff γt ≥ γs and xt ∩ (γs + 1) = xs.

If G ∗ H ∗ I is generic for P ∗ Ȧ ∗ Ṡ, then V [G ∗ H ∗ I] is the desired model,
with S =

⋃
s∈I x

s being the witnessing stationary subset of Sλω not reflecting at any

ordinal in Sλ>ℵω . The verification is as in [3] and is thus omitted. �

3. Systems

Definition 3.1. Let R be a binary relation on a set X.

• If a, b ∈ X, then a and b are R-comparable if a = b, a <R b, or b <R a.
Otherwise, a and b are R-incomparable, which is denoted a ⊥R b.

• R is tree-like if, for all a, b, c ∈ X, if a <R c and b <R c, then a and b are
R-comparable.

Definition 3.2. Let λ be an infinite, regular cardinal. S = 〈{{α}×κα | α ∈ I},R〉
is a λ-system if:

(1) I ⊆ λ is unbounded and, for all α ∈ I, 0 < κα < λ. We sometimes identify
S with {{α} × κα | α ∈ I}. For each α ∈ I, we say that Sα := {α} × κα is
the αth level of S;

(2) R is a set of binary, transitive, tree-like relations on S and |R| < λ;
(3) for all R ∈ R, α0, α1 ∈ I, β0 < κα0

, and β1 < κα1
, if (α0, β0) <R (α1, β1),

then α0 < α1;
(4) for all α0 < α1, both in I, there are β0 < κα0 , β1 < κα1 , and R ∈ R such

that (α0, β0) <R (α1, β1).

If S = 〈{{α} × κα | α ∈ I},R〉 is a λ-system, then we define width(S) =
max(sup({κα | α ∈ I}), |R|) and height(S) = λ. S is a narrow λ-system if
width(S)+ < λ.
S is a strong λ-system if it satisfies the following strengthening of (4):

(4′) for all α0 < α1, both in I, and for every β1 < κα1
, there are β0 < κα0

and
R ∈ R such that (α0, β0) <R (α1, β1).

If R ∈ R, a branch of S through R is a set b ⊂ S such that for all a0, a1 ∈ b, a0
and a1 are R-comparable. b is a cofinal branch if, for unboundedly many α ∈ I,
b ∩ Sα 6= ∅.

Notation 3.3. If S is a λ system, we will sometimes write R(S) to denote the set
of relations of S.

Remark 3.4. In previous presentations of systems (e.g. [11] and [15]), λ-systems
were typically considered only for successor cardinals λ, and it was assumed that
all λ-systems were of the form 〈I × κ,R〉, i.e. that all levels of the system were of
the same width. If λ is a successor cardinal and S = 〈{{α} × κα | α ∈ I},R〉 is a
λ-system, or if λ is weakly inaccessible and S is a narrow λ-system, then there is
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an unbounded J ⊆ I and a κ < λ such that, for all α ∈ J , κα = κ. It will then
be sufficient for us to work with subsystems of the form 〈J × κ,R〉, so, in the case
that λ is a successor cardinal, we will assume our systems are of this form (and
typically, we will in fact have λ = κ+). If λ is weakly inaccessible and we do not
want to assume narrowness, though, our more general notion of system seems to
us to be the correct notion to work with.

Proposition 3.5. Suppose µ is an infinite cardinal. Then there is a strong µ+-
system S such that |R(S)| = µ and S has no cofinal branch.

We provide two simple and quite different proofs of this proposition.

Proof 1. We define a system S = 〈µ+ × 2,R〉, where R = {Riη | i < 2, η < µ}.
For each α < µ+, let fα : α → µ be injective. Fix i < 2 and η < µ, and suppose
α < β < µ+ and kα, kβ < 2. Then (α, kα) <Riη (β, kβ) if and only if:

• kβ = i;
• kα = 1− i;
• fβ(α) = η.

The statement that each Riη is transitive and tree-like is vacuously true, and it is
easily verified that this defines a strong system. S does not even have a branch of
length 3, so it certainly does not have a cofinal branch. �

Proof 2. If µ = ω, then there is a µ+-Aronszajn tree, which is a strong µ+-system
with 1 relation and no cofinal branch. If µ > ω, let P = Coll(ω, µ). In V P,

µ+ = ω1, so there is a µ+-Aronszajn tree. Let Ṫ be a P-name for a µ+-Aronszajn
tree. Without loss of generality, the underlying set of Ṫ is forced to be µ+ × ω.

In V , we define a system S = 〈µ+ × ω,R〉, where R = {Rp | p ∈ P}. If
p ∈ P, α < β < µ+, and nα, nβ < ω, then let (α, nα) <Rp (β, nβ) if and only if
p  “(α, nα) <Ṫ (β, nβ).” It is easily verified that S is a strong µ+-system. If S
had a cofinal branch, there would be an unbounded set I ⊆ µ+ and a condition
p ∈ P such that, for every α ∈ I, there is nα < ω such that, whenever α < β are
both in I, p  “(α, nα) <Ṫ (β, nβ).” But then p forces that the downward closure

of {(α, nα) | α ∈ I} is a cofinal branch in Ṫ , contradicting the fact that Ṫ is a name
for an Aronszajn tree. �

Definition 3.6. Let λ be a regular cardinal. λ satisfies the strong system property
if, whenever S is a strong λ-system and |R(S)|+ < λ, S has a cofinal branch.

Remark 3.7. Note that, if λ is a regular cardinal, then a λ-tree (T,<T ) can be
viewed as a strong λ-system with 1 relation. Thus, if λ satisfies the strong system
property, then λ also satisfies the tree property.

Proposition 3.8. The strong system property is robust.

Proof. Suppose λ is a regular, uncountable cardinal, λ satisfies the strong system
property, and P is a forcing poset such that |P|+ < λ. We must show that λ satisfies
the strong system property in V P. Suppose for sake of contradiction that there is
p ∈ P and a P-name Ṡ such that p forces Ṡ to be a strong λ-system with no cofinal
branch. Without loss of generality, by extending p if necessary, we may assume
that there is a cardinal ν such that ν+ < λ and p forces Ṡ to be of the form

〈{{α} × κ̇α | α ∈ İ}, {Ṙη | η < ν}〉.
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For all α < λ such that p 6 “α 6∈ I, ” find qα ≤ p and κ∗α < λ such that

qα  “α ∈ İ and κ̇α = κ∗α.” As |P| < λ, we can find an unbounded J ⊆ λ and a
q ≤ p such that, for all α ∈ J , qα = q. Define a system

T = 〈{{α} × κ∗α | α ∈ J}, {Rη,s | η < ν, s ≤ q}〉
in V as follows: for all α0 < α1, both in J , for all β0 < κ∗α0

and β1 < κ∗α1
, for all

η < ν, and for all s ≤ q, let (α0, β0) <Rη,s (α1, β1) iff s  “(α0, β0) <Ṙη (α1, β1).”

Since p forces Ṡ to be a strong λ-system, it is easily verified that T is a strong λ-
system with max(|P|, ν) relations. By the strong system property, there are b ⊆ T ,
η < ν, and s ≤ q such that b is a cofinal branch in T through Rη,s. But then s  “b

is a cofinal branch in Ṡ through Ṙη,” contradicting the assumption that p forces Ṡ
to have no cofinal branches. �

Remark 3.9. Note that, by the proof of Proposition 3.8, if λ is regular, κ and µ
are such that κ+, µ+ < λ, P is a forcing poset with |P| = κ, and, in V P, there is
a strong λ-system with µ relations and no cofinal branch, then, in V , there is a
strong λ-system with max(µ, κ) relations and no cofinal branch.

In Section 2, we saw that robust stationary reflection is equivalent to the property
that every stationary set reflects at arbitrarily high cofinalities. It is not clear that
we have an exactly analogous situation here with the robust tree property and the
strong system property. We do, however, have the following.

Proposition 3.10. Suppose λ is a regular, uncountable cardinal. The following
are equivalent.

(1) λ satisfies the strong system property.
(2) Every strong λ-system with only countably many relations has a cofinal

branch, and this property is robust under small forcing.

Proof. (1) ⇒ (2) follows immediately from Proposition 3.8. To prove (2) ⇒ (1),
suppose (2) holds, and let S be a strong λ-system with |R(S)|+ < λ. Let P =
Coll(ω, |R(S)|), and let G be P-generic. |P|+ < λ and, in V [G], S is a strong
λ-system with countably many relations. Thus, by (2), there is a cofinal branch

b ⊆ S in V [G]. Let ḃ ∈ V be a P-name for a cofinal branch through S. For p ∈ P,

let bp = {u ∈ S | p  “u ∈ ḃ”}. Each bp is a branch through S. Since |P| < λ, there
is p ∈ G such that bp is cofinal. �

We now show that the strong system property holds at large cardinals. Since the
strong system property is a robust generalization of the tree property and large car-
dinals are themselves robust, it is not surprising that the proofs are straightforward
generalizations of the proofs of the corresponding facts about the tree property. In
particular, the proof of Proposition 3.12 is extremely similar to the proof of Theo-
rem 3.1 from [11].

Proposition 3.11. Suppose λ is weakly compact. Then λ satisfies the strong sys-
tem property.

Proof. Let S = 〈{{α} × κα | α ∈ I},R〉 be a strong λ-system. S can be coded in a
natural way by a set A ⊆ Vλ. By the weak compactness of λ, find a transitive set
X 6= Vλ and B ⊆ X such that (Vλ,∈, A) ≺ (X,∈, B). By elementarity and the fact
that |R| < λ, B codes a strong system T = 〈{{α} × κα | α ∈ J},R〉 such that J
is unbounded in the ordinals of X and T extends S. Choose γ ∈ J \ κ and, for all
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α ∈ I, find βα < κα and Rα ∈ R such that (α, βα) <Rα (γ, 0) in T . Since |R| < λ,
there is an unbounded I∗ ⊆ I and a fixed R ∈ R such that, for all α ∈ I∗, Rα = R.
Then b = {(α, βα) | α ∈ I∗} is a cofinal branch in S through R. �

Since λ is weakly compact iff λ is inaccessible and has the tree property, Propo-
sition 3.11 implies that, for inaccessible λ, the tree property is equivalent to the
strong system property. As we will see later, this equivalence does not necessarily
hold for accessible cardinals. Also, note that this is in contrast to the situation
with stationary reflection, as we saw in the previous section that, for inaccessible
λ, stationary reflection is not necessarily equivalent to robust stationary reflection.

Proposition 3.12. Suppose µ is a singular limit of strongly compact cardinals and
λ > µ is a regular cardinal. If S = 〈I × κ,R〉 is a strong λ-system, κ ≤ µ, and
|R| < µ, then S has a cofinal branch. In particular, µ+ satisfies the strong system
property.

Proof. Fix a regular λ > µ, and let S = 〈I×κ,R〉 be a strong λ-system with κ ≤ µ
and |R| < µ. We assume for this proof that κ = µ, as the case κ < µ is easier. Let
〈µi | i < cf(µ)〉 be an increasing sequence of strongly compact cardinals, cofinal in
µ, such that cf(µ), |R| < µ0.

Let F be the filter of co-bounded subsets of S, i.e. the set of X ⊆ I × κ such
that |(I×κ)\X| < λ, and let U be a µ0-complete ultrafilter on S extending F . For
each α ∈ I and u ∈ S>α, pick (iαu , R

α
u), with iαu < cf(µ) and Rαu ∈ R, such that, for

some β < µiαu , (α, β) <Rαu u. Since S>α ∈ U and U is µ0-complete, there is (iα, Rα)
such that the set Xα := {u ∈ S>α | (iαu , R

α
u) = (iα, Rα)} ∈ U . There is then an

unbounded J ⊆ I and (i∗, R∗) such that, for all α ∈ J , (iα, Rα) = (i∗, R∗). Now, if
α0 < α1 are both in J , we can find u ∈ Xα0∩Xα1 . There are then β0, β1 < µi∗ such
that (α0, β0), (α1, β1) <R∗ u. Since R∗ is tree-like, we have (α0, β0) <R∗ (α1, β1).
This shows that S′ := 〈J × µi∗ , {R∗}〉 is a λ-system.

Next, fix k > i∗ with k < cf(µ), and let U ′ be a µk-complete ultrafilter over
λ extending the co-bounded filter and such that J ∈ U ′. Fix α ∈ J . For all
β ∈ J \(α+1), fix γαβ , δ

α
β < µi∗ such that (α, γαβ ) <R∗ (β, δαβ ). Since J \(α+1) ∈ U ′

and U ′ is µk-complete, we can fix γα, δα < µi∗ such that Yα := {β ∈ J \ (α + 1) |
(γαβ , δ

α
β ) = (γα, δα)} ∈ U ′. Next, fix an unbounded J ′ ⊆ J and γ∗, δ∗ < µi∗

such that, for all α ∈ J ′, (γα, δα) = (γ∗, δ∗). Suppose α0 < α1 are both in J ′.
Fix β ∈ Xα0

∩ Xα1
. Then (α0, γ

∗), (α1, γ
∗) <R∗ (β, δ∗), so, since R∗ is tree-like,

(α0, γ
∗) <R∗ (α1, γ

∗). Hence, 〈(α, γ∗) | α ∈ J ′〉 is a cofinal branch through R∗ in
S. �

A similar argument shows that all systems with finite width have a cofinal branch.

Proposition 3.13. Suppose λ is a regular cardinal and S = 〈I×n,R〉 is a λ-system
with n, |R| < ω. Then S has a cofinal branch.

Proof. Let U be an ultrafilter over λ, extending the co-bounded filter, such that
I ∈ U . Fix α ∈ I. For all β ∈ I \ (α+ 1), choose iαβ , j

α
β < n and Rαβ ∈ R such that

(α, iαβ) <Rαβ (β, jαβ ). Fix iα, jα < n and Rα ∈ R such that Xα := {β ∈ I \ (α+ 1) |
(iαβ , j

α
β , R

α
β ) = (iα, jα, Rα)} ∈ U . Fix an unbounded J ⊆ I and (i∗, j∗, R∗) such

that, for all α ∈ J , (iα, jα, Rα) = (i∗, j∗, R∗). Now, suppose α0 < α1 are both in
J , and find β ∈ Xα0

∩ Xα1
. (α0, i

∗), (α1, i
∗) <R∗ (β, j∗), so (α0, i

∗) <R∗ (α1, j
∗).

Thus, {(α, i∗) | α ∈ J} is a cofinal branch through R∗ in S. �
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However, the existence of certain subadditive, unbounded functions implies the
existence of strong systems of possibly small width with no cofinal branch.

Definition 3.14. Suppose κ < λ are infinite, regular cardinals and d : [λ]2 → κ.

(1) d is subadditive if, for all α < β < γ < λ:
(a) d(α, γ) ≤ max({d(α, β), d(β, γ)});
(b) d(α, β) ≤ max({d(α, γ), d(β, γ)}).

(2) d is unbounded if, whenever I ⊆ λ is unbounded, d“[I]2 is unbounded in κ.

Remark 3.15. Note that there are different definitions of subadditivity in the
literature. In particular, functions are sometimes (e.g., in [14]) called subadditive if
they simply satisfy the inequality in (1a) of Definition 3.14. The stronger definition
we give here is more appropriate for the study of systems and matches that in, e.g.,
Section 9 of [16]. For more on the consistency of subadditive, unbounded functions,
see [8].

Proposition 3.16. Suppose κ < λ are infinite, regular cardinals and d : [λ]2 → κ
is subadditive and unbounded. Then there is a strong λ-system S = 〈λ× 1,R〉 such
that |R| = κ and S has no cofinal branch.

Proof. We define S = 〈λ × 1,R〉, with R = {Rη | η < κ}. Given α < β < λ and
η < κ, let (α, 0) <Rη (β, 0) if and only if η ≥ d(α, β). The fact that each Rη is
transitive and tree-like follows from (a) and (b) of the definition of subadditivity,
respectively. It is then easy to verify that S is a strong λ-system. Suppose for
sake of contradiction that S has a cofinal branch. Then there is an unbounded
I ⊆ λ and an η < κ such that, for all α < β, both in I, we have (α, 0) <Rη (β, 0).
Since d is unbounded, we can find α < β in I such that d(α, β) > η. But then
(α, 0) 6<Rη (β, 0). Contradiction. �

4. Weak squares

Recall the following definition.

Definition 4.1. Let λ and µ be cardinals, with µ infinite and λ > 1. A �µ,<λ-

sequence is a sequence ~C = 〈Cα | α < µ+〉 such that:

(1) for all limit α < µ+, if C ∈ Cα, then C is a club in α and otp(C) ≤ µ;
(2) for all limit α < µ+, 1 ≤ |Cα| < λ;
(3) for all limit α < β < µ+ and all C ∈ Cβ , if α ∈ C ′, then C ∩ α ∈ Cα.

�µ,<λ holds if there is a �µ,<λ-sequence.

Remark 4.2. �µ,<λ+ is usually denoted �µ,λ. It is immediate that, if λ0 < λ1,
then �µ,<λ0 implies �µ,<λ1 . �µ,1 is Jensen’s classical principle �µ. �µ,µ is also
called weak square and denoted �∗µ. �∗µ is equivalent to the existence of a special

µ+-Aronszajn tree. �µ,µ+ is also called silly square and holds in all models of ZFC.

We will be interested in the following variation on the classical square principles.

Definition 4.3. Let κ, λ, and µ be cardinals, with κ ≤ µ, κ regular, and λ > 1.

A �≥κµ,<λ-sequence is a sequence ~C = 〈Cα | α ∈ S〉 such that:

(1) Sµ
+

≥κ ⊆ S ⊆ lim(µ+);

(2) for all α ∈ S and all C ∈ Cα, C is a club in α and otp(C) ≤ µ;
(3) for all α ∈ S, 1 ≤ |Cα| < λ;
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(4) for all β ∈ S, for all C ∈ Cβ , and for all α ∈ C ′, we have α ∈ S and
C ∩ α ∈ Cα.

�≥κµ,<λ holds if there is a �≥κµ,<λ-sequence. As usual, we shall write �≥κµ,λ instead of

�≥κµ,<λ+ and �≥κµ instead of �≥κµ,1.

Baumgartner, in unpublished work, was the first to study such square sequences,
particularly square sequences, using our notation, of the form �≥κµ . For more on
this, see, e.g. Section 2.2 of [1] or Section 8 of [2].

For later use, we introduce a forcing poset designed to add such a square se-
quence. Given κ, λ, and µ as in the above definition, define a poset B(κ, λ, µ) as
follows. Conditions are of the form p = 〈Cpα | α ∈ sp〉 such that:

• sp is a bounded subset of µ+ with a maximal element, which we denote γp;
• (γp + 1) ∩ cof(≥ κ) ⊆ sp;
• for all α ∈ sp and all C ∈ Cpα, C is a club in α and otp(C) ≤ µ;
• for all α ∈ sp, 1 ≤ |Cpα| < λ;
• for all β ∈ sp, for all C ∈ Cpβ , and for all α ∈ C ′, we have α ∈ sp and
C ∩ α ∈ Cα.

If p, q ∈ B(κ, λ, µ), then q ≤ p iff sq end-extends sp and, for all α ∈ sp, Cqα = Cpα.
The following is easily verified. See, for example, [1] for the details in the case

λ = 2. The proof is essentially the same for other values of λ.

Proposition 4.4. Let κ, λ, and µ be cardinals as above.

(1) B(κ, λ, µ) is κ-directed closed.
(2) B(κ, λ, µ) is µ+ 1-strategically closed.

(3) B(κ,λ,µ) “�≥κµ,<λ holds.”

Proposition 4.5. Suppose κ < µ are infinite cardinals. Then the following are
equivalent.

(1) �≥κ
+

µ,µ holds.
(2) There is a poset P such that |P| ≤ κ and P “�∗µ holds.”

Proof. (1) ⇒ (2): Suppose ~C = 〈Cα | α ∈ S〉 is a �≥κ
+

µ,µ -sequence. Let P =

Coll(ω, κ). Then |P| = κ and, in V P, κ+ = ω1. Define a �∗µ-sequence D = 〈Dα |
α < µ+〉 in V P as follows. If α ∈ S, then let Dα = Cα. If α ∈ lim(µ+) \ S, then

(cf(α))V
P

= ω. Let D be an arbitrary ω-sequence cofinal in α, and let Dα = {D}.
It is easily verified that this defines a �∗µ-sequence.

(2) ⇒ (1): Suppose P is a forcing poset such that |P| ≤ κ and P “�∗µ holds.”

Let ~̇C = 〈Ċα | α < µ+〉 be a P-name for a �∗µ-sequence. For each P-name Ẋ for a

subset of µ+ and each p ∈ P, let Ẋp = {α < µ+ | p  “α ∈ Ẋ}. For each β < µ+,
let

Aβ = {p ∈ P | for some P-name Ċ, p  “Ċ ∈ Ċβ” and Ċp is club in β}.

Let S = {β < µ+ | Aβ 6= ∅}. Easily, as |P| = κ, Sµ
+

≥κ+ ⊆ S. Define a �≥κ
+

µ,µ sequence

~D = 〈Dα | α ∈ S〉 by letting

Dα = {Ċp | p ∈ Aα, p  “Ċ ∈ Ċα, ” and Ċp is club in α}.

It is easily verified that this defines a �≥κ
+

µ,µ -sequence. �
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Since �∗µ is equivalent to the existence of a special µ+-Aronszajn tree, if �≥κ
+

µ,µ

holds, then there is a strong µ+-system with κ relations and no cofinal branch. We
also get the following characterization for robustness of having no special trees.

Corollary 4.6. Let µ be an infinite cardinal. The following are equivalent.

(1) There are no special µ+-Aronszajn trees, and this property holds robustly.

(2) �≥κ
+

µ,µ fails for all κ < µ.

Remark 4.7. In Section 8 of [2], Cummings, Foreman, and Magidor use similar
ideas to show that, consistently, square sequences can be added by small forcing. In

particular, they construct a model in which �∗ℵω fails but in which �≥ℵ2ℵω holds and,

therefore, �ℵω holds after forcing with Coll(ω, ω1). Proposition 4.5 shows that this
is, in essence, the only scenario in which square sequences can be added by small
forcing.

We would like to bring the reader’s attention here to a related matter. In situ-
ations in which a special µ+-Aronszajn tree can be added by small forcing, it can
always be added by Coll(ω, κ) for a suitable κ < µ. The question remains, though,
whether it can be the case that there is no special µ+-Aronszajn tree in V but there
is one in an extension by a small forcing poset that preserves all cofinalities. Rinot,
in [13], addresses this question in the case in which µ has uncountable cofinality,
proving the following theorem.

Theorem 4.8 (Rinot, [13]). It is consistent relative to the existence of two super-
compact cardinals that there is no special ℵω1+1-Aronszajn tree but there is a special
ℵω1+1-Aronszajn tree in a forcing extension by a forcing of size ℵ3 that preserves
all cofinalities.

As far as we are aware, the analogous question for successors of singular cardinals
of countable cofinality remains open.

5. Preservation lemmas and the narrow system property

In this section, we present some results that will be useful in Section 6. We first
make the following definition.

Definition 5.1. Let λ be an uncountable regular cardinal, and let S = 〈I × κ,R〉
be a narrow λ-system. b̄ = {bγ,R | γ < κ,R ∈ R} is a full set of branches through
S if:

(1) for all γ < κ and R ∈ R, bγ,R is a branch of S through R;
(2) for all α ∈ I, there are γ < κ and R ∈ R such that bγ,R ∩ Sα 6= ∅.

Remark 5.2. Note that, since λ is regular and width(S) < λ, condition (2) in
Definition 5.1 implies that, for some γ < κ and R ∈ R, bγ,R is a cofinal branch.

The following result is due to Neeman and improves a similar result of Sinapova
from [15].

Lemma 5.3 (Neeman, [12]). Suppose that λ is a regular, uncountable cardinal, S =
〈I × κ,R〉 is a narrow λ-system, and width(S) = θ. Suppose P is a forcing poset,

and let Pθ+ denote the full-support product of θ+ copies of P. Suppose moreover

that Pθ+ is θ++-distributive, G is P-generic over V , and, in V [G], there is a full
set of branches through S. Then there is a cofinal branch through S in V .
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Next, we show that cofinal branches cannot be added to systems by forcing
posets satisfying appropriate approximation properties.

Definition 5.4. Let λ be a regular cardinal, and let P be a forcing poset. P has
the λ-approximation property if, for every y ∈ V and every P-name ẋ for a subset
of y such that, for all z ∈ (Pλ(y))V , P “ẋ ∩ z ∈ V ”, we have P ẋ ∈ V .

Lemma 5.5. Suppose λ is a regular cardinal, S = 〈{{α} × κα | α ∈ I},R〉 is a
λ-system, and P has the λ-approximation property. If G is P-generic over V and
S has a cofinal branch in V [G], then S has a cofinal branch in V .

Proof. In V [G], suppose b ⊆ S is a cofinal branch through R ∈ R. By closing b
downward, we may assume that b is a maximal branch, i.e., if α ∈ I and v ∈ b∩Sα,
then b ∩ S<α = {u ∈ S | u <R v}. It suffices to show that b ∩ z ∈ V for all
z ∈ (Pλ(S))V , as then the λ-approximation property will imply that b ∈ V .

To this end, let z ∈ (Pλ(S))V . As λ is regular, there is α < λ such that z ⊆ S<α.
Find v ∈ b ∩ S≥α. Then b ∩ z = {u ∈ S | u <R v} ∩ z ∈ V . �

The following lemma is due to Unger.

Lemma 5.6 (Unger, [17]). Suppose λ is a regular cardinal, P is a forcing poset,
and P× P has the λ-c.c. Then P has the λ-approximation property.

Definition 5.7. Suppose λ is a regular cardinal. λ has the narrow system property
if every narrow λ-system has a cofinal branch.

The narrow system property is a useful tool for analyzing trees and strong sys-
tems. It was implicitly introduced by Magidor and Shelah in [11] in order to es-
tablish the consistency of the tree property at the successor of a singular cardinal.
Their general framework for establishing the tree property at the successor of a
singular cardinal µ consists of two main steps. First, given a µ+-tree, one argues
that it must have a narrow subsystem, S. Second, one argues that µ+ has the
narrow system property. This yields a cofinal branch through S and, in turn, a
cofinal branch through T . For more on the narrow system property, see [8].

The following lemma is essentially due to Neeman (see the proof of Lemma 3.6
in [12]). For that reason, and because it will also follow from Lemma 6.7, which we
prove in Section 6, we omit the proof here.

Lemma 5.8. Suppose 〈κn | n < ω〉 is an increasing sequence of indestructibly
supercompact cardinals. Let µ = sup({κn | n < ω}), and let λ = µ+. For m < ω,
let Sm be the full-support product

∏
n≥m Coll(κ+2

n , < κn+1). Then, in V Sm , λ has
the narrow system property.

Corollary 5.9. Assume the same hypotheses as in Lemma 5.8. In V Sm , suppose
S = 〈λ× µ,R〉 is a strong λ-system and |R| < κm. Then S has a cofinal branch.

Proof. Let G be Sm-generic over V . In V [G], κm remains supercompact. Let j :
V [G]→M witness that κm is λ-supercompact. In M , j(S) = 〈j(λ)× j(µ), {j(R) |
R ∈ R}〉 is a strong j(λ)-system. Let δ = sup(j“λ). For α < λ, find βα < j(µ) and
Rα ∈ R such that (j(α), βα) <j(Rα) (δ, 0). Let nα < ω be such that βα < j(κnα).
Since λ is regular, we can find R∗ ∈ R, n∗ < ω, and an unbounded I ⊆ λ such
that, for all α ∈ I, Rα = R∗ and nα = n∗. Now, if α0 < α1 are both in I, then
(j(α0), βα0), (j(α1), βα1) <j(R∗) (δ, 0), so (j(α0), βα0) <j(R∗) (j(α1), βα1). Thus,
M |= “there are β0, β1 < j(κn∗) such that (j(α0), β0) <j(R∗) (j(α1), β1), ” so, by
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elementarity, V [G] |= “there are β0, β1 < κn∗ such that (α0, β0) <R∗ (α1, β1).”
Therefore, in V [G], S′ = 〈I × κn∗ , {R∗}〉 is a narrow system. By Lemma 5.8, S′

has a cofinal branch, b, which is then also a cofinal branch of S. �

6. Strong systems at ℵω2+1

In this section, we will prove the following two results.

Theorem 6.1. Suppose there are infinitely many supercompact cardinals, and fix
α < ω2. Then there is a forcing extension in which every strong ℵω2+1-system with
ℵα relations has a cofinal branch but in which ℵω2+1 fails to have the robust tree
property.

Theorem 6.2. Suppose there are infinitely many supercompact cardinals. Then
there is a forcing extension in which ℵω2+1 satisfies the strong system property.

The proofs of these theorems are modifications of the proof of Theorem 1.2 in
[4]. We will provide the details for the proof of Theorem 6.1. Because the proof of
Theorem 6.2 is very similar to that of Theorem 1.2 in [4] and because it also follows
from a straightforward modification of the proof of Theorem 6.1, we will include
only a brief paragraph indicating how Theorem 6.2 can be obtained from the proof
of Theorem 6.1.

Remark 6.3. Similar results, due to Hayut and Magidor, appear in [5]. In par-
ticular, they construct a model in which ℵω+1 has the tree property but an ℵω+1-
Aronszajn tree is added by forcing with Coll(ω, ω1). This is close to our Theorem
6.1 with ℵω2+1 replaced by ℵω+1 and ℵα replaced by 1 and, as in the proof of
Theorem 6.1, the non-robustness of the tree property in the final model in their
proof is witnessed by the existence of a partial square sequence of the type consid-
ered in Section 4. It is not clear whether their result can be strengthened to be a
true analogue of our Theorem 6.1 at ℵω+1. Also in [5], Hayut and Magidor, using
an argument different from our proof of Theorem 6.2, show the consistency of the
robust tree property at ℵω2+1 by showing that it holds in Sinapova’s model from
[15] for the tree property at ℵω2+1.

The results will be obtained by using a version of diagonal Prikry forcing with
interleaved collapses introduced in [10]. The reason that ℵω2+1 is being considered
rather than smaller cardinals is that, for technical reasons that will become clear
in the proof of Lemma 6.12, it is necessary for our methods to preserve the first
ω + 1 cardinal successors of each of the Prikry points. It is an open question of
much interest whether these and similar results can be pushed down to smaller
cardinals, and in particular to ℵω+1. We note that the original application of
the diagonal Prikry forcing in [10] provides an instance in which this cannot be
done: the forcing is used there to produce a model in which the reflection principle
∆ℵω2 ,ℵω2+1

holds. In particular, this principle implies that every almost free Abelian

group of cardinality ℵω2+1 is free. On the other hand, in the same paper, it is shown
that, for every regular, uncountable κ < ℵω2 , there is an almost free Abelian group
of cardinality κ that is not free.

We now begin working towards Theorem 6.1, first reviewing some facts about
forcing and square sequences.
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Recall that, if κ, λ, and µ are cardinals, with κ ≤ µ, κ regular, and λ > 1, then
B(κ, λ, µ) is the forcing to add a �≥κµ,<λ-sequence. Temporarily fix values for κ, λ,

and µ, and let B = B(κ, λ, µ).

In V B, let ~C = 〈Cα | α ∈ S〉 be the �≥κµ,<λ-sequence added by B. Let ν < µ
be regular, and let Tν be the forcing poset whose conditions are closed, bounded
subsets t of µ+ such that:

• |t| < ν;
• for all α ∈ t′, we have α ∈ S and t ∩ α ∈ Cα.

If s, t ∈ Tν , then t ≤ s iff t end-extends s. For a cardinal ε, let Tεν denote the

full-support product of ε copies of Tν . Let Ṫν be a B-name for Tν .

Proposition 6.4. In V , for every ε < λ, B ∗ Ṫεν has a dense ν-directed closed
subset.

Proof. Fix ε < λ. Let U be the set of (p, 〈ṫη | η < ε〉) ∈ B ∗ Ṫ such that, for all
η < ε:

• there is tη ∈ V such that p  “ṫη = tη”;
• γp = max(tη).

The verification that U is dense and ν-directed closed is straightforward. See, for
example, [2] for similar arguments. �

Corollary 6.5. Forcing with Tν over V B adds a club D in µ+ such that:

• otp(D) = ν;
• for all α ∈ D′, we have α ∈ S and D ∩ α ∈ Cα.

Let 〈κn | n < ω〉 be an increasing sequence of indestructibly supercompact
cardinals such that, for all n < ω, 2κn = κ+n . Let µ = sup({κn | n < ω}), and let
λ = µ+. For m < k < ω, let Sm be the full-support product

∏
m≤n<ω Coll(κ+2

n , <

κn+1), and let Sm,k =
∏
m≤n<k Coll(κ+2

n , < κn+1). Note that Sm = Sm,k × Sk. For

notational ease, let Sm,m = {∅}. Introduce an equivalence relation on S0 as follows.
Given s = 〈sn | n < ω〉 and t = 〈tn | n < ω〉 in S0, let s ∼ t iff there is m < ω
such that, for all m ≤ n < ω, sn = tn. Given s ∈ S0, let [s] denote the equivalence
class of s. If m > 0 and s ∈ Sm, we abuse notation and let [s] denote [s∗], where
s∗ ∈ S0 is such that s∗(n) = ∅ if n < m and s∗(n) = s(n) if n ≥ m. Let S∗ be the
poset whose conditions are equivalence classes [s], where s ∈ S0. If [s], [t] ∈ S∗, we
let [t] ≤ [s] iff there is m < ω such that, for all m ≤ n < ω, tn ≤ sn. It is clear that
this is well-defined. It is also easily verified that, if m < ω, the map πm : Sm → S∗
defined by πm(s) = [s] is a projection.

Fix an m < ω, and, in V S∗ , let B = B(κm, µ, µ). Let Ḃ be an S∗-name for B, and

note that Sm ∗ Ḃ is κm-directed closed.

Lemma 6.6. In V Sm , B is λ-distributive.

Proof. Since λ = µ+ and µ is singular, it suffices to show that B is ν-distributive
for all regular ν < µ. In particular, it suffices to show that B is κk-distributive for

all k < ω. To this end, fix k < ω. Without loss of generality, m ≤ k. In V S∗∗Ḃ,
let T = Tκk , as defined above. Recall that, in V S∗ , B ∗ Ṫ has a κk-directed closed
dense subset. Note that, in V , Sm,k =

∏
m≤n<k Coll(κ+2

n , < κn+1) has the κk-c.c.

Since Sk is κ+2
k -directed closed, we still have that, in V Sk , Sm,k has the κk-c.c. and
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B ∗ Ṫ has a κk-directed closed dense subset. Thus, by Easton’s Lemma, B ∗ Ṫ is
κk-distributive in V Sk×Sm,k = V Sm . In particular, B is κk-distributive in V Sm . �

Lemma 6.7. In V Sm∗Ḃ, λ satisfies the narrow system property.

Proof. First note that, by Lemma 6.6, λ = κ+ω+1
m in V Sm∗Ḃ. Let Ṡ be an Sm ∗ Ḃ-

name for a narrow λ-system. Without loss of generality, we may assume there
are κ, ν < µ such that Ṡ is forced to be of the form 〈λ × κ, {Ṙη | η < ν}〉. Fix

m < n∗ < ω such that κ, ν < κn∗ . In V S∗∗Ḃ, let T = Tκn∗+1
. Let Gn∗+1 be Sn∗+1-

generic over V and let H ∗I be B∗Ṫ-generic over V [Gn∗+1]. Since Sn∗+1∗Ḃ∗Ṫ has a
κn∗+1-directed closed dense subset, κn∗+1 remains supercompact in V [Gn∗+1∗H∗I].

Move to V [Gn∗+1∗H∗I], which we denote V1, reinterpreting Ṡ as an Sm,n∗+1-name.
Let j : V1 → M witness that κn∗+1 is λ-supercompact. Note that j(Sm,n∗) =

Sm,n∗ and

j(Sn∗,n∗+1) = Coll(κ+2
n∗ , < j(κn∗+1)) ∼= Sn∗,n∗+1 ∗ Ṙ,

where Ṙ is κ+2
n∗ -closed in V

Sn∗,n∗+1

1 . Let Gn∗,n∗+1 be Sn∗,n∗+1-generic over V1, and

let R be the interpretation of Ṙ in V1[Gn∗,n∗+1]. Then, letting Gm,n∗ be Sm,n∗ over
V1[Gn∗,n∗+1] and J be R-generic over V1[Gn∗,n∗+1][Gm∗,n], we can lift j to

j : V1[Gn∗,n∗+1][Gm,n∗ ]→M [Gn∗,n∗+1][Gm,n∗ ][J ].

Let S = 〈λ× κ, {Rη | η < ν}〉 be the realization of Ṡ in V1[Gn∗,n∗+1][Gm,n∗ ]. In
M [Gn∗,n∗+1][Gm,n∗ ][J ],

j(S) = 〈j(λ)× κ, {j(Rη) | η < ν}〉

is a j(λ)-system. Let δ = sup(j“λ). For all γ < κ and η < ν, let

bγ,Rη = {(α, β) ∈ λ× κ | (j(α), β) <j(Rη) (δ, γ)}.

b̄ := {bγ,Rη | γ < κ, η < ν} is easily seen to be a full set of branches through S, and

b̄ ∈ V [Gn∗+1 ∗H ∗ I][Gn∗,n∗+1][Gm,n∗ ][J ].

In V [Gn∗+1], B ∗ Ṫκn∗ has a dense κn∗+1-closed subset. Moreover, Sn∗,n∗+1 is

κ+2
n∗ -closed in V [Gn∗+1] and, in V [Gn∗+1 ∗H ∗ I][Gn∗,n∗+1], R is κ+2

n∗ -closed. Thus,

in V [Gn∗+1][Gn∗,n∗+1], B ∗ Ṫκn∗ ∗ Ṙκn∗ ∼= B ∗ (Ṫ ∗ Ṙ)κn∗ has a dense κ+2
n∗ -closed

subset. Sm,n∗ has the κn∗ -c.c. in V [Gn∗+1][Gn∗,n∗+1], so, by Easton’s Lemma,

B ∗ (Ṫ ∗ Ṙ)κn∗ is κ+2
n∗ -distributive in V [Gn∗+1][Gn∗,n∗+1][Gm,n∗ ], so (T ∗ Ṙ)κn∗ is

κ+2
n∗ -distributive in V [Gn∗+1][Gn∗,n∗+1][Gm,n∗ ][H]. Thus, since width(S) < κn∗ , we

can apply Lemma 5.3 in V [Gn∗+1][Gn∗,n∗+1][Gm,n∗ ][H] to T ∗ Ṙ to conclude that
S has a cofinal branch in V [Gn∗+1][Gn∗,n∗+1][Gm,n∗ ][H], thereby completing the
proof. �

For k < ω, let Uk be a normal ultrafilter on κk. For k 6= m, the choice is

arbitrary. For k = m, note that κm remains supercompact in V Sm∗Ḃ, so we may

fix, in V Sm∗Ḃ, a normal, fine ultrafilter Fm on Pκm(λ). Let Um be the projection of
Fm on κm, i.e., if X ⊆ κm, then X ∈ Um iff {y ∈ Pκm(λ) | y ∩ κm ∈ X} ∈ Fm. By

the distributivity of Sm ∗ Ḃ and the fact that 2κm = κ+m, we have Um ∈ V . Choose

a condition (s∗, ṫ∗) ∈ Sm ∗ Ḃ such that (s∗, ṫ∗) forces Um to be the projection of a

normal ultrafilter on Pκm(λ) in V Sm∗Ḃ.
For k < ω, let Mk denote the transitive collapse of Ult(V,Uk), and let jk : V →

Mk be the associated embedding. Let Ck denote Coll(κ+ω+2
k , < jk(κk)) as defined
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in Mk. Mk |= “there are jk(κk) maximal antichains of Ck, ” |jk(κk)| = κ+k , and Ck
is κ+k -closed, so we can build in V a filter Gk that is Ck-generic over Mk.

We now recall the diagonal Prikry forcing, which we denote P, from [10]. For con-
venience, we let κ−1 = ω. Conditions of P are of the form p = 〈αp0, . . . , α

p
n−1, 〈A

p
k |

n ≤ k < ω〉, gp0 , . . . , gpn, f
p
0 , . . . , f

p
n−1, 〈F

p
k | n ≤ k < ω〉, 〈gpk | n < k < ω〉〉 such that:

• for all i < n, αpi is inaccessible and κi−1 < αpi < κi;
• for all n ≤ k < ω, Apk ∈ Uk and, for all α ∈ Apk, α is inaccessible;

• for all i < n, gpi ∈ Coll(κ+2
i−1, < αpi ) and fpi ∈ Coll((αpi )

+ω+2, < κi);

• for all n ≤ k < ω, gpk ∈ Coll(κ+2
k−1, < κk) and, for all α ∈ Apk, gpk ∈

Coll(κ+2
k+1, < α);

• for all n ≤ k < ω, F pk is a function with domain Apk such that, for all
α ∈ Apk, F pk (α) ∈ Coll(α+ω+2, < κk) and jk(F pk )(κk) ∈ Gk.

The number n as above is referred to as the length of p, denoted `(p). If q, p ∈ P,
then q ≤ p iff:

• `(q) ≥ `(p);
• for all i < `(p), αqi = αpi and fqi ≤ f

p
i ;

• for all i < ω, gqi ≤ g
p
i ;

• for all `(q) ≤ k < ω, Aqk ⊆ A
p
k and, for all α ∈ Aqk, F qk (α) ≤ F pk (α);

• for all `(p) ≤ k < `(q), αqk ∈ A
p
k and fqk ≤ F

p
k (αqk).

Following [10], given p ∈ P as above, we call 〈αpk | k < `(p)〉 its α-part, 〈Apk |
`(p) ≤ k < ω〉 its A-part, 〈fpk | k < `(p)〉 its f -part, 〈gpk | k ≤ `(p)〉 its g-part,
〈F pk | `(p) ≤ k < ω〉 its F -part, and 〈gpk | `(p) < k < ω〉 its S-part. The α-
part, g-part, and f -part together comprise the lower part of p, denoted a(p). If
k ≤ `(p), let p � k denote 〈〈αpi | i < k〉, 〈gpi | i ≤ k〉, 〈fpi | i < k〉〉. If k > `(p), let
p � k = a(p)_〈Api , F

p
i , g

p
i+1 | `(p) ≤ i < k〉. Note that p � `(p) = a(p). We say that

q is a length-preserving extension of p if q ≤ p and `(q) = `(p). If k ≤ `(p), we say
q is a k-length-preserving extension of p if q is a length-preserving extension of p
and q � k = p � k. Finally, we say q is a trivial extension of p if it is an `(p)-length
preserving extension of p.

The following facts hold about P. Proofs can be found in [10].

• (Prikry property) If p ∈ P, k ≤ `(p), and D is a dense open subset of P,
then there is a k-length preserving extension q of p such that, if q∗ ≤ q and
q∗ ∈ D, then, if q∗∗ ≤ q, `(q∗∗) = `(q∗), and q∗∗ � k = q∗ � k, then q∗∗ ∈ D.

• P preserves all cardinals ≥ µ.
• The only cardinals below µ that are collapsed by forcing with P are those

explicitly in the scope of the interleaved Levy collapses. In particular, if, in
V P, 〈αn | n < ω〉 is the generic Prikry sequence, then the infinite cardinals
below µ in V P are precisely those in the intervals {[κn−1, κ+2

n−1], [αn, α
+ω+2
n ] |

n < ω}. It follows that, in V P, µ = ℵω2 , λ = ℵω2+1, and, for all n < ω,
κn = ℵω·(n+1)+3.

• The map π : P→ S∗ defined by π(p) = [S(p)] is a projection.

The models witnessing Theorem 6.1 will be of the form V P∗Ḃ. The result will
follow easily from the following theorem.

Theorem 6.8. There is a generic extension by P∗Ḃ in which every strong λ-system
with κ+2

m−1 relations has a cofinal branch.
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Proof. The proof is similar to the arguments of Section 5 in [4]. The main differences
are that we must deal with the forcing B, that we are working with strong systems
instead of just trees and therefore potentially have more relations (this will only
come up in the proof of Lemma 6.12), and that our use of the narrow system
property will simplify certain arguments.

Suppose the theorem fails, and let ν = κ+2
m−1. Then there is a P ∗ Ḃ-name

Ṡ = 〈λ × µ, {Ṙη | η < ν}〉 such that P∗Ḃ “Ṡ is a strong λ-system with no cofinal
branch.”

Let G ∗ B be Sm ∗ Ḃ-generic over V with (s∗, ṫ∗) ∈ G ∗ B. Let p ∈ P be such
that `(p) = m and S(p) = s∗. Let G∗ be the S∗-generic filter induced by G, and
let P∗ = {q ≤ p | [S(q)] ∈ G∗}.

Lemma 6.9. In V [G∗ ∗B], P∗ × Sm/G∗ × Sm/G∗ has the λ-c.c.

Proof. The proof is essentially the same as the proof of Proposition 4.5 from [4].
The difference is that we must deal with the forcing B in addition to S∗. We provide
the argument for completeness.

For all m ≤ k < ω and all q ∈ P∗ such that n := lh(q) ≤ k, let

hk(q) = 〈〈αqi | i < n〉, 〈gqi | i < k〉, 〈fqi | i < n〉〉,

and let Hk = {hk(q) | q ∈ P∗ and lh(q) ≤ k}. Note that |Hk| = κk. Enumerate
Hm×Sm,m×Sm,m as 〈(hβ , s0β , s1β) | β < κm〉. For k ≥ m, enumerate Hk+1×Sm,k×
Sm,k as 〈(hβ , s0β , s1β) | κk ≤ β < κk+1〉.

Work in V . Suppose that Ȧ is an S∗ ∗ Ḃ-name, (r, ḃ) ∈ S0 ∗ Ḃ, and ([r], ḃ)

forces that Ȧ is a maximal antichain in P∗ × Sm/G∗ × Sm/G∗. We will recursively

construct a decreasing sequence 〈(rβ , ḃβ) | β < µ〉 of conditions in S0 ∗ Ḃ such that,
for all β < γ < µ, if k is the least element of the interval [m,ω) such that β < κk,
then rβ � k = rγ � k. This will ensure that there is a lower bound for the sequence
〈rβ | β < µ〉. Recall that B is µ + 1-strategically closed, so, by playing according
to a name σ̇ for our winning strategy in Gµ+1(B) at limit stages and in between

ḃβ and ḃβ+1 for all β < µ, we will also ensure that 〈(rβ , ḃβ) | β < µ〉 has a lower
bound.

The construction is as follows. Let (r0, ḃ0) = (r, ḃ). For limit β < µ, rβ is

defined by letting rβ(i) =
⋃
α<β rα(i) for all i < ω, and ḃβ is determined according

to σ̇. Suppose β < µ and (rβ , ḃβ) has been defined. First, find ḃ∗β such that

[rβ ]  “ḃ∗β ≤ ḃβ” by appealing to σ̇. Let k ∈ [m,ω) be least such that β < κk.

Let Φβ be the statement in the forcing language for S∗ ∗ Ḃ asserting that there

is (q, t0, t1) ∈ Ȧ such that:

(1) lh(q) ≤ k and hk(q) = hβ ;
(2) t0 � [m, k) = s0β and t1 � [m, k) = s1β ;

(3) for all i ≥ k, the conditions gqj , t
0(j), t1(j), and rβ(j) are pairwise compat-

ible.

Find rβ+1 ≤ rβ and ḃβ+1 such that [rβ+1]  “ḃβ+1 ≤ ḃ∗β” and ([rβ+1], ḃβ+1)

decides Φβ . Since [rβ+1] is unchanged by finite modifications to rβ+1, we may
assume that rβ+1 � k = rβ � k.

If ([rβ+1], ḃβ+1)  ¬Φβ , then move on to the next step in the construction. If

([rβ+1], ḃβ+1)  Φβ , then fix a witness, (qβ , t
0
β , t

1
β). Since [rβ+1] forces that [S(qβ)],
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[t0β ], and [t1β ] are in G∗, [rβ+1] must extend all three. Therefore, by this fact and

clause (3) in Φβ , by adjusting rβ+1 on finitely many coordinates if necessary, we
may assume that, for all k ≤ i < ω, rβ+1(i) extends g

qβ
i ∪ t0β(i) ∪ t1β(i).

At the end of the construction, let (r∞, ḃ∞) be a lower bound for 〈(rβ , ḃβ) | β <
µ〉. Let E = {(qβ , t0β , t1β) | β < µ and (rβ+1, ḃβ+1)  Φβ}.

Claim 6.10. ([r∞], ḃ∞)  “Ȧ = E.”

Proof. Clearly, ([r∞], ḃ∞)  “E ⊆ Ȧ.” We show the reverse inclusion. Thus, sup-

pose (r∗, ḃ∗) ≤ (r∞, ḃ∞) and, for some (q, t0, t1), ([r∗], ḃ∗)  “(q, t0, t1) ∈ Ȧ.” As
before, [r∗] must extend [S(q)], [t0], and [t1], so there is m ≤ k < ω such that,
for all k ≤ i < ω, gqi , t

0(i), and t1(i) are pairwise compatible and r∗(i) extends
gqi ∪ t0(i)∪ t1(i). Fix β < κk such that (hk(q), t0 � [m, k), t1 � [m, k)) = (hβ , s

0
β , s

1
β).

(q, t0, t1) is a witness to Φβ , so we must have ([rβ+1], ḃβ+1)  Φβ . We claim
that (q, t0, t1) is compatible with (qβ , t

0
β , t

1
β). To see this, first note that, as hk(q) =

hk(qβ) = hβ , we know that 〈(αqi , f
q
i ) | i < lh(q)〉 = 〈(αqβi , f

qβ
i )〉 and 〈gqi | i <

k〉 = 〈gqβi | i < k〉. Moreover, for all k ≤ i < ω, we have s∗(i) ≤ gqi , g
qβ
i , so, in

particular, gqi and g
qβ
i are compatible. Therefore, it is easily verified that q and qβ

are compatible. The argument that (t0, t1) and (t0β , t
1
β) are compatible is similar.

Therefore, since Ȧ is forced to be an antichain, we must have (q, t0, t1) =
(qβ , t

0
β , t

1
β), and the claim is proved. �

Since |E| ≤ µ, this finishes the proof of the lemma. �

Let P′ = {q ≤ p | S(q) ∈ G}. We are abusing notation here in the sense that, if
q ∈ P and `(q) > m, then S(q) is not in Sm. However, in this situation, G naturally
projects to a generic filter G`(q) for S`(q), so S(q) ∈ G should be interpreted as
S(q) ∈ G`(q). The following is proven in [10]

Lemma 6.11. Forcing with P′ over V [G] adds a P-generic filter over V .

Note also that, if q0, q1 ∈ P′ and a(q0) = a(q1), then q0 and q1 are compatible.
In particular, P′ has the λ-c.c. in V [G ∗B]. We now work in V [G ∗B] and use the

name Ṡ, reinterpreted as a P′-name, to extract a narrow system.

Lemma 6.12. There are n, k < ω, η < ν, and a cofinal set I ⊆ λ such that, for
all β0 < β1, both in I, there are γ0, γ1 < κn and a condition q ∈ P′ with `(q) = k
such that q  “(β0, γ0) <Ṙη (β1, γ1).”

Proof. This Lemma is analogous to Lemma 5.1 in [4]. Recall that, in V [G∗B], since
(s∗, ṫ∗) ∈ G ∗B, there is a normal measure, Fm, on Pκm(λ) such that Fm projects
to Um. Let M ∼= Ult(V [G ∗ B], Fm) be the transitive collapse of the ultrapower,
and let j : V [G∗B]→M be the associated embedding. Find r ≤ j(p) in j(P′) such
that αrm = κm. This is possible because, since Apm ∈ Um, we have κm ∈ j(Apm).
Let H be j(P′)-generic with r ∈ H. Note that, in M [H], all cardinals in the
interval [κm, κ

+ω+2
m ]V [G∗B] are preserved. In particular, since λ = (κ+ω+1

m )V [G∗B],

λ is preserved in M [H]. Let S∗ be the realization of j(Ṡ) in M [H]. S∗ is of the

form 〈j(λ)× j(µ), {R∗η | η < ν}〉, where R∗η denotes the realization of j(Ṙη) for all
η < ν, and S∗ is a strong j(λ)-system in M [H].

Let δ = sup(j“λ). For each β < λ, find qβ ∈ H, γ∗β < j(µ), and ηβ < ν such

that qβ  “(j(β), γ∗β) <j(Ṙηβ )
(δ, 0).” Without loss of generality, assume that, for



18 CHRIS LAMBIE-HANSON

all β < λ, qβ ≤ r. There is then an unbounded I∗ ⊆ λ together with n, k < ω and
η < ν such that, for all β ∈ I∗, we have `(qβ) = k, γ∗β < j(κn), and ηβ = η.

For β ∈ I∗, let qβ = 〈αβ0 , . . . , α
β
k−1, 〈A

β
i | k ≤ i < ω〉, gβ0 , . . . , g

β
k , f

β
0 , . . . , f

β
k−1, 〈F

β
i |

k ≤ i < ω〉, 〈gβi | k < i < ω〉〉. Since the qβ ’s are pairwise compatible, there

is a sequence 〈αi | i < k〉 such that, for all β ∈ I∗ and all i < k, αβi = αi.
Moreover, we know that k > m, αi = αpi for all i < m, and αm = κm. There

are thus fewer than λ choices for the sequence 〈gβ0 , . . . , gβm, f
β
0 , . . . , f

β
m−1〉, so we

can find a cofinal I ⊆ I∗ and a sequence 〈g0, . . . , gm, f0, . . . , fm−1〉 such that,

for all β ∈ I, 〈gβ0 , . . . , gβm, f
β
0 , . . . , f

β
m−1〉 = 〈g0, . . . , gm, f0, . . . , fm−1〉. Finally, if

m < i ≤ k and β ∈ I, then gβi comes from a forcing that is λ+-directed closed.

Similarly, if m ≤ i < k and β ∈ I, then fβi comes from a forcing that is λ+-
directed closed. Thus, since M is closed under λ-sequences, we may assume,
by taking lower bounds on the relevant coordinates, that there is a lower part
a∗ = 〈α0, . . . , αk−1, g0, . . . , gk, f0, . . . , fk−1〉 such that, for all β ∈ I, a(qβ) = a∗.

We claim that I, n, k, and η are as desired. Work in V [G∗B]. Fix β0 < β1, both
in I. In M , we have qβ0

, qβ1
∈ j(P′) with a(qβ0

) = a(qβ1
) = a∗ and γ∗β0

, γ∗β1
< j(κn)

such that, for ε < 2, qε  “(j(βε), γ
∗
βε

) <j(Ṙη) (δ, 0).” Since a(qβ0
) = a(qβ1

) = a∗, we

can find q∗ ≤ qβ0
, qβ1

with a(q∗) = a∗. Then, since j(Ṙη) is forced to be tree-like,
we have q∗  “(j(β0), γ∗β0

) <j(Ṙη) (j(β1), γ∗β1
).” By elementarity, there are q ∈ P′

with `(q) = k and γ0, γ1 < κn such that q  “(β0, γ0) <Ṙη (β1, γ1).” �

Fix n, k, η, and I as in Lemma 6.12. Define a system

S0 = 〈I × κn, {Ra | a is a lower part of length k}〉
by letting (β0, γ0) <Ra (β1, γ1) if and only if there is q ∈ P′ such that a(q) = a and
q  “(β0, γ0) <Ṙη (β1, γ1).” By Lemma 6.12, S0 is a narrow λ-system. By Lemma

6.7, λ satisfies the narrow system property in V [G ∗B], so there is a cofinal branch
through S0. Namely, there is a cofinal J ⊆ I and a lower part a of length k such
that, for every β ∈ J , there is γβ < κn such that, whenever β0 < β1 are both in J ,
there is q ∈ P′ with a(q) = a such that q  “(β0, γβ0

) <Ṙη (β1, γβ1
)”. Fix such a J

and a and an assignment β 7→ γβ for β ∈ J .
For k ≤ i < ω, let Hi be the set of (A,F, g) such that A ∈ Ui, F is a function with

domain A such that, for all α ∈ A, F (α) ∈ Coll(α+ω+2, < κi) and ji(F )(κi) ∈ Gi,
and g ∈ Coll(κ+2

i , < κi+1) is in the generic filter induced by G. Suppose that,
for ε < 2, (Aεi , F

ε
i , g

ε
i+1) ∈ Hi. Then we define (A0

i , F
0
i , g

0
i+1) ∧ (A1

i , F
1
i , g

1
i+1) =

(Ai, Fi, gi+1) by letting

Ai = {α ∈ A0
i ∩A1

i | F 0
i (α) and F 1

i (α) are compatible},
defining Fi on Ai by Fi(α) = F 0

i (α)∪F 1
i (α), and letting gi+1 = g0i+1∪g1i+1. Suppose

that, for ε < 2, qε ∈ P′ and a(qε) = a, where qε = a_〈Aεi , F εi , gεi+1 | k ≤ i < ω〉.
Then the greatest lower bound for q0 and q1 is q = a_〈Ai, Fi, gi+1 | k ≤ i < ω〉
where, for all k ≤ i < ω, (Ai, Fi, gi+1) = (A0

i , F
0
i , g

0
i+1) ∧ (A1

i , F
1
i , g

1
i+1).

By recursion on i, we now define 〈(Aβi , F
β
i , g

β
i+1) | β ∈ J, k ≤ i < ω〉, maintaining

the inductive hypothesis that, for all β0 < β1, both in J , and all ` with k ≤ ` < ω,
there is q ∈ P′ such that

q � ` = a_〈(Aβ0

i , F
β0

i , gβ0

i+1) ∧ (Aβ1

i , F
β1

i , gβ1

i+1) | k ≤ i < `〉
and q  “(β0, γβ0

) <Ṙη (β1, γβ1
).”
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Suppose k ≤ ` < ω and (Aβi , F
β
i , g

β
i+1) has been defined for all β ∈ J and all

k ≤ i < `. Define a system

S` = 〈J × {0}, {RA,F,g | (A,F, g) ∈ H`}〉
by letting (β0, 0) <RA,F,g (β1, 0) iff there is q ∈ P′ such that

q � (`+ 1) = a_〈(Aβ0

i , F
β0

i , gβ0

i+1) ∧ (Aβ1

i , F
β1

i , gβ1

i+1) | k ≤ i < `〉_〈(A,F, g)〉
and q  “(β0, γβ0

) <Ṙη (β1, γβ1
).” By the inductive hypothesis, this defines a

narrow λ-system, so, again by Lemma 6.7, it has a cofinal branch, namely a cofinal
set J` ⊆ J and a fixed (A,F, g) ∈ Hj such that, for all β0 < β1, both in J`,

(β0, 0) <RA,F,g (β1, 0). We now define (Aβ` , F
β
` , g

β
`+1) for β ∈ J as follows. If

β ∈ J`, then (Aβ` , F
β
` , g

β
`+1) = (A,F, g). If β 6∈ J`, let β∗ = min(J` \β). Find q ∈ P′

such that

q � ` = a_〈(Aβi , F
β
i , g

β
i+1) ∧ (Aβ

∗

i , F β
∗

i , gβ
∗

i+1) | k ≤ i < `〉

and q  “(β, γβ) <Ṙη (β∗, γβ∗)”, and let (Aβ` , F
β
` , g

β
`+1) = (Aq` , F

q
` , g

q
`+1)∧ (A,F, g).

It is tedious but straightforward to verify that this definition maintains the inductive
hypothesis.

For β ∈ J , let qβ = a_〈(Aβi , F
β
i , g

β
i+1) | k ≤ i < ω〉 and note that qβ ∈ P′. For

β0 < β1, both in J , let qβ0,β1 := qβ0 ∧ qβ1 denote the greatest lower bound of qβ0

and qβ1 .

Claim 6.13. Suppose β0 < β1, both in J . Then qβ0,β1
 “(β0, γβ0

) <Ṙη (β1, γβ1
).”

Proof. Suppose not, and let r ∈ P′, r ≤ qβ0,β1
be such that r  “(β0, γβ0

) 6<Ṙη
(β1, γβ1

).” Let i = `(r). By the inductive hypothesis in the previous construction,
we can find q ∈ P′ such that q � i = qβ0,β1

� i and q  “(β0, γβ0
) <Ṙη (β1, γβ1

)”.

But it is easily seen that r and q are compatible in P′, which is a contradiction. �

Since P′ has the λ-c.c., we may find q ∈ P′ such that q  “for unboundedly many
β ∈ J, qβ ∈ Ḣ”, where Ḣ is the canonical name for the generic filter. Let H be

P′-generic with q ∈ H. Let S be the realization of Ṡ in V [G ∗ B ∗ H]. Then, in
V [G ∗ B ∗H], {(β, γβ) | β ∈ J and qβ ∈ H} is a cofinal branch of S through Rη.
Thus, S has a cofinal branch in V [G ∗ B ∗H]. Note that, as H is P′-generic over
V [G∗B], it is also P∗-generic over V [G∗∗B], so V [G∗B∗H] = V [G∗∗B∗H][G/G∗] =
V [H ∗B][G/G∗], where G/G∗ is Sm/G∗-generic over V [G∗ ∗B ∗H] = V [H ∗B]. By
Lemma 6.9, Sm/G∗×Sm/G∗ has the λ-c.c. in V [H ∗B], so, by Lemma 5.6, Sm/G∗
has the λ-approximation property in V [H ∗B]. Therefore, by Lemma 5.5, S has a

cofinal branch in V [H ∗B]. But p ∈ H and p forces that Ṡ had no cofinal branch.
This is a contradiction. �

It is clear that, in any extension by P ∗ Ḃ, �≥κmµ,<µ holds. In particular, there is a
strong λ-system with ℵω·(m+1)+2 relations that has no cofinal branch, so λ fails to

satisfy the robust tree property. By Theorem 6.8, there is an extension by P ∗ Ḃ in
which every strong ℵω2+1-system with ℵω·m+5 relations has a cofinal branch. Since
our choice of m < ω was arbitrary, this completes the proof of Theorem 6.1.

We now indicate how to obtain Theorem 6.2. In V , by the homogeneity of the
forcings Sk for k < ω, we may find ultrafilters Uk on κk for k < ω such that Uk is
forced by the empty condition to be the projection in V Sk of a normal, fine ultrafilter
Fk on Pκk(λ). If we then use these ultrafilters to define the diagonal Prikry forcing
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P as above, then there is a forcing extension by P in which the strong system
property holds at ℵω2+1. To see this, suppose for sake of contradiction that Ṡ is a
P-name forced to be a strong λ-system with no cofinal branch. Find p ∈ P deciding
the number of relations in Ṡ to be equal to some ν < µ. We may assume without
loss of generality that ν < κ`(p). Now, letting `(p) play the role that m plays in
the proof of Theorem 6.8 and working below p, the proof proceeds as in the proof
of Theorem 6.8 but without the poset B. As this argument is very similar to that
of the proof of Theorem 1.2 of [4] and because all differences from that proof are
exhibited in the proof of Theorem 6.8 of this paper, we omit the details.

We end with three open questions.

Question 6.14. Can ℵω+1 consistently satisfy the strong system property?

Question 6.15. Suppose λ is a regular uncountable cardinal and λ satisfies the
robust tree property. Must λ satisfy the strong system property?

Question 6.16. Suppose λ is a regular uncountable cardinal and λ satisfies the
tree property. Must it be the case that every strong λ-system with only countably
many relations has a cofinal branch?

Note that a ‘Yes’ answer to Question 6.16 would also entail a ‘Yes’ answer to
Question 6.15.
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