DISJOINT TYPE GRAPHS WITH NO SHORT ODD CYCLES

CHRIS LAMBIE-HANSON

Abstract

In this note, we provide a proof of a technical result of Erdős and Hajnal about the existence of disjoint type graphs with no odd cycles. We also prove that this result is sharp in a certain sense.

The purpose of this note is to provide a proof of a result of Erdös and Hajnal about the existence of disjoint type graphs with no short odd cycles. As far as we know, a proof of this result has never been published, though forms of it are stated in a number of publications (cf. [2, Theorem 7.4] and [3, Lemma 1.1(d)]). If κ is an uncountable cardinal, then graphs of this form provide, again as far as we know, the only known ZFC examples of graphs with size and chromatic number κ and arbitrarily high odd girth.

Before we state and prove the main result, we need some definitions and conventions. First, if n is a positive integer, we will sometimes think of elements of [Ord] ${ }^{n}$ as strictly increasing sequences of length n. So, for instance, if $a \in[\mathrm{Ord}]^{n}$ and $i<n$, then $a(i)$ is the unique element $\alpha \in a$ such that $|a \cap \alpha|=i$. All graphs considered here will be simple undirected graphs. If G is a graph, then $V(G)$ denotes its vertex set and $E(G)$ denotes its edge set.

Definition 1. Let n be a positive integer. A disjoint type of width n is a function $t: 2 n \rightarrow 2$ such that

$$
\left|t^{-1}(0)\right|=\left|t^{-1}(1)\right|=n
$$

If $a, b \in[\mathrm{Ord}]^{n}$ are disjoint and $a \cup b$ is enumerated in increasing order as $\left\{\alpha_{i} \mid i<\right.$ $2 n\}$, then we say that the type of a and b is t, denoted $\operatorname{tp}(a, b)=t$, if

$$
a=\left\{\alpha_{i} \mid i \in t^{-1}(0)\right\}
$$

and

$$
b=\left\{\alpha_{i} \mid i \in t^{-1}(1)\right\} .
$$

Let \hat{t} denote the disjoint type of width n denoted by letting $\hat{t}(i)=1-t(i)$ for all $i<2 n$. It is evident that, if $a, b \in[\mathrm{Ord}]^{n}$ are disjoint and $\operatorname{tp}(a, b)=t$, then $\operatorname{tp}(b, a)=\hat{t}$.

A type t of width n will sometimes be represented by a binary string of length $2 n$ in the obvious way. We will particularly be interested in the following family of types.

Definition 2. Let $1 \leq s<n<\omega$. Then t_{s}^{n} is the disjoint type of width n whose binary sequence representation consists of s copies of ' 0 ', followed by $n-s$ copies of ' 01 ', followed by s copies of ' 1 '. More formally, t_{s}^{n} is defined by letting, for all

[^0]$i<2 n$,
\[

t_{s}^{n}(i)= $$
\begin{cases}0 & \text { if } i<s \\ 0 & \text { if } s \leq i<2 n-s \text { and } i-s \text { is even } \\ 1 & \text { if } s \leq i<2 n-s \text { and } i-s \text { is odd } \\ 1 & \text { if } i \geq 2 n-s\end{cases}
$$
\]

For example, $t_{2}^{5}=0001010111$.
Definition 3. Suppose that n is a positive integer, β is an ordinal, and t is a disjoint type of width n. The graph $G(\beta, t)$ is defined as follows. Its vertex set is $V(G(\beta, t))=[\beta]^{n}$. Given $a, b \in[\beta]^{n}$, we put the edge $\{a, b\}$ into $E(G(\beta, t))$ if and only if a and b are disjoint and $\operatorname{tp}(a, b) \in\{t, \hat{t}\}$.

Before we get to our main result, we need a basic lemma. Given a function f from a natural number to \mathbb{Z}, let $\max (f)$ and $\min (f)$ denote the maximum and minimum values attained by f, respectively.

Lemma 4. Suppose that k is a positive integer and $f: k \rightarrow \mathbb{Z}$ is a function such that

- $f(0)=0$ and
- $|f(i+1)-f(i)|=1$ for all $i<k$.

Then $\max (f)-\min (f)<k$.
Proof. The proof is by induction on k. If $k=1$, then $\max (f)=\min (f)=f(0)=0$. Suppose that $k>0$ and we have proven the lemma for $k-1$. Fix $f: k \rightarrow \mathbb{Z}$, and let $f^{-}=f \upharpoonright(k-1)$. If $f(k)-f(k-1)=1$, then we have $\max (f) \leq \max \left(f^{-}\right)+1$ and $\min (f)=\min \left(f^{-}\right)$, so, applying the induction hypothesis to f^{-}, we obtain

$$
\max (f)-\min (f) \leq 1+\left(\max \left(f^{-}\right)-\min \left(f^{-}\right)\right)<1+(k-1)=k
$$

If $f(k)-f(k-1)=-1$, then we have $\max (f)=\max \left(f^{-}\right)$and $\min (f) \geq \min \left(f^{-}\right)-1$, so

$$
\max (f)-\min (f) \leq\left(\max (f)-\min \left(f^{-}\right)\right)+1<(k-1)+1=k
$$

We are now ready for the main result of this note. The proof is rather technical; we recommend that the reader first draw some pictures to convince themselves of the truth of the theorem in the special case $s=1, n=3$ (this pair does not satisfy $n>2 s^{2}+3 s+1$, but the conclusion of the theorem still holds). This will help the reader to get a feel for the problem and motivate the calculations in the proof. We also note that the lower bound of $2 s^{2}+3 s+1$ is probably not optimal and can likely be improved with a more careful analysis. Since a precise lower bound for n is not necessary for our desired applications (cf. [5]), the primary interest of the result for us is the fact that such a lower bound exists at all.

Theorem 5. Suppose that s and n are positive integers with $n>2 s^{2}+3 s+1$, and suppose that β is an ordinal. Then the graph $G\left(\beta, t_{s}^{n}\right)$ has no odd cycles of length $2 s+1$ or shorter.

Proof. Let $t=t_{s}^{n}, V=[\beta]^{n}, E=E(G(\beta, t))$, and $G=G(\beta, t)=(V, E)$. We begin by making some preliminary observations. If $\{a, b\} \in E$, then either $\operatorname{tp}(a, b)=t$ or $\operatorname{tp}(a, b)=\hat{t}$. If $\operatorname{tp}(a, b)=t$, then, for all i with $s<i<n$, we have

$$
b(i-s-1)<a(i)<b(i-s)
$$

If $\operatorname{tp}(a, b)=\hat{t}$, then, for all $i<n-s-1$, we have

$$
b(i+s)<a(i)<b(i+s+1)
$$

Suppose that k is a positive integer and $P=\left\langle a_{0}, \ldots, a_{k}\right\rangle$ is a path of length k in G. For $j \leq k$, let

$$
U_{j}(P)=\left\{i<j \mid \operatorname{tp}\left(a_{i}, a_{i+1}\right)=t\right\}
$$

and

$$
D_{j}(P)=\left\{i<j \mid \operatorname{tp}\left(a_{i}, a_{i+1}\right)=\hat{t}\right\}
$$

Intuitively, $U_{j}(P)$ is the set of steps "up" in the path among the first j steps, and $D(P)$ is the set of steps "down" among the first j steps. Then set $u_{j}(P)=\left|U_{j}(P)\right|$ and $d_{j}(p)=\left|D_{j}(P)\right|$; note that $u_{j}(P)+d_{j}(P)=j$ for all $j \leq k$.
Claim 6. Suppose that $1 \leq k \leq 2 s+1$ and $P=\left\langle a_{0}, \ldots, a_{k}\right\rangle$ is a path in G. Let $u=u_{k}(P)$ and $d=d_{k}(P)$. Then there is $i<n$ such that

$$
a_{k}(i-u(s+1)+d s)<a_{0}(i)<a_{k}(i-u s+d(s+1))
$$

Remark 7. Implicit in the statement of the claim is the assertion that

$$
0 \leq i-u(s+1)+d s<i-u s+d(s+1)<n
$$

the truth of which will follow readily from the proof.
Proof of Claim 6. Define a function $f: k+1 \rightarrow \mathbb{Z}$ by letting $f(j)=u_{j}(P)-d_{j}(P)$ for every $j \leq k$. Then f satisfies the hypotheses of Lemma 4, so, letting $M=$ $\max (f)$ and $m=\min (f)$, we have $M-m \leq k \leq 2 s+1$.

Let $i=M(s+1)$. Note that

$$
M(s+1) \leq(2 s+1)(s+1)=2 s^{2}+3 s+1
$$

so we certainly have $i<n$.
Subclaim 8. For every $0<j \leq k$, we have

$$
a_{j}\left(i-s f(j)-u_{j}(P)\right)<a_{0}(i)<a_{j}\left(i-s f(j)+d_{j}(P)\right)
$$

Remark 9. Implicit in the statement of this subclaim is the assertion that, for each $0<j \leq k$, we have

$$
0 \leq i-s f(j)-u_{j}(P)<i-s f(j)+d_{j}(P)<n
$$

This will follow readily from the proof.
Proof of Subclaim 8. We proceed by induction on j. We begin by proving the subclaim for $j=1$. Suppose first that $\operatorname{tp}\left(a_{0}, a_{1}\right)=t$, so $f(1)=1, u_{1}(P)=1$, and $d_{1}(P)=0$. Then $M \geq 1$, so $i \geq s+1$. Therefore, since $\operatorname{tp}\left(a_{0}, a_{1}\right)=t$, the preliminary observations at the beginning of the proof of the theorem imply that

$$
a_{1}(i-s-1)<a_{0}(i)<a_{1}(i-s)
$$

as desired.
If, on the other hand, $\operatorname{tp}\left(a_{0}, a_{1}\right)=\hat{t}$, and hence $f(1)=-1, u_{1}(P)=0$, and $d_{1}(P)=1$, then $m \leq-1$. Therefore, we have $M \leq 2 s$, so $i=M(s+1) \leq$ $2 s^{2}+2 s<n-s-1$. Therefore, since $\operatorname{tp}\left(a_{0}, a_{1}\right)=\hat{t}$, the preliminary observations at the beginning of the proof imply that

$$
a_{1}(i+s)<a_{0}(i)<a_{1}(i+s+1)
$$

as desired.

Now suppose that $0<j<k$ and we have established that

$$
a_{j}\left(i-s f(j)-u_{j}(P)\right)<a_{0}(i)<a_{j}\left(i-s f(j)+d_{j}(P)\right)
$$

We will prove the corresponding statement for $j+1$. Suppose to begin that $\operatorname{tp}\left(a_{j}, a_{j+1}\right)=t$, so $f(j+1)=f(j)+1, u_{j+1}(P)=u_{j}(P)+1$, and $d_{j+1}(P)=d_{j}(P)$. In this case, it follows that $f(j) \leq(M-1)$ and $u_{j}(P) \leq(M-1)$. In particular, we have

$$
i-s f(j)-u_{j}(P) \geq M(s+1)-s(M-1)-(M-1)=s+1>s
$$

Therefore, by the preliminary observations, we have

$$
\begin{aligned}
a_{j+1}\left(i-s f(j)-u_{j}(P)-s-1\right) & <a_{j}\left(i-s f(j)-u_{j}(P)\right) \\
a_{j+1}\left(i-s f(j+1)-u_{j+1}(P)\right) & <a_{j}\left(i-s f(j)-u_{j}(P)\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& a_{j}\left(i-s f(j)+d_{j}(P)\right)<a_{j+1}\left(i-s f(j)+d_{j}(P)-s\right) \\
& a_{j}\left(i-s f(j)+d_{j}(P)\right)<a_{j+1}\left(i-s f(j+1)+d_{j+1}(P)\right)
\end{aligned}
$$

Combining these inequalities with the inductive hypothesis yields

$$
a_{j+1}\left(i-s f(j+1)-u_{j+1}(P)\right)<a_{0}(i)<a_{j+1}\left(i-s f(j+1)+d_{j+1}(P)\right),
$$

as desired.
On the other hand, suppose that $\operatorname{tp}\left(a_{j}, a_{j+1}\right)=\hat{t}$, so $f(j+1)=f(j)-1$, $u_{j+1}(P)=u_{j}(P)$, and $d_{j+1}(P)=d_{j}(P)+1$. In this case, it follows that $f(j) \geq$ $(m+1)$ and $d_{j}(P) \leq-(m+1)$. In particular, we have

$$
i-s f(j)+d_{j}(P) \leq i-s(m+1)-(m+1)=i-(m+1)(s+1)
$$

We know that $M-m \leq 2 s+1$, so $m+1 \geq M-2 s$. As a result, the above inequality becomes

$$
i-s f(j)+d_{j}(P) \leq M(s+1)-(M-2 s)(s+1)=2 s^{2}+2 s<n-s-1
$$

Therefore, by the preliminary observations, we have

$$
\begin{aligned}
a_{j+1}\left(i-s f(j)-u_{j}(P)+s\right) & <a_{j}\left(i-s f(j)-u_{j}(P)\right) \\
a_{j+1}\left(i-s f(j+1)-u_{j+1}(P)\right) & <a_{j}\left(i-s f(j)-u_{j}(P)\right)
\end{aligned}
$$

and

$$
\begin{gathered}
a_{j}\left(i-s f(j)+d_{j}(P)\right)<a_{j+1}\left(i-s f(j)+d_{j}(P)+s+1\right) \\
a_{j}\left(i-s f(j)+d_{j}(P)\right)<a_{j+1}\left(i-s f(j+1)+d_{j+1}(P)\right) .
\end{gathered}
$$

Combining these inequalities with the inductive hypothesis yields

$$
a_{j+1}\left(i-s f(j+1)-u_{j+1}(P)\right)<a_{0}(i)<a_{j+1}\left(i-s f(j+1)+d_{j+1}(P)\right)
$$

as desired, finishing the proof of the subclaim.
Since $f(k)=u_{k}(P)-d_{k}(P)$, we have
$i-u(s+1)+d s=i-s f(k)-u_{k}(P) \quad$ and $\quad i-u s+d(s+1)=i-s f(k)+d_{k}(P)$.
Therefore, the claim follows immediately from Subclaim 8.

Now suppose for sake of contradiction that G has an odd cycle of length $2 s+1$ or shorter. In other words, there is a positive integer $k \leq s$ and a path $C=$ $\left\langle a_{0}, \ldots, a_{2 k+1}\right\rangle$ with $a_{0}=a_{2 k+1}$. Let $u=u_{k}(C)$ and $d=d_{k}(C)$. Note that $u+d=2 k+1$. Apply Claim 6 to find $i<n$ such that

$$
a_{2 k+1}(i-u(s+1)+d s)<a_{0}(i)<a_{2 k+1}(i-u s+d(s+1))
$$

Since $a_{0}=a_{2 k+1}$, this reduces to

$$
i-u(s+1)+d s<i<i-u s+d(s+1)
$$

Cancelling i from all three terms yields

$$
d s-u(s+1)<0<d(s+1)-u s
$$

Since d and u are both non-negative integers, this implies that they are both nonzero. Therefore, the left inequality gives us

$$
\frac{d}{u}<\frac{s+1}{s}
$$

and the right inequality gives us

$$
\frac{s}{s+1}<\frac{d}{u}
$$

so we have

$$
\frac{s}{s+1}<\frac{d}{u}<\frac{s+1}{s}
$$

In particular, $\frac{d}{u}$ is close to 1 . But we know that $d+u=2 k+1$; the assignments of values to d and u subject to this constraint that put $\frac{d}{u}$ closest to 1 are either $d=k$ and $u=k+1$ or vice versa. But $k \leq s$, so, if $d=k$ and $u=k+1$, then

$$
\frac{d}{u} \leq \frac{s}{s+1}
$$

and, if $d=k+1$ and $u=k$, then

$$
\frac{d}{u} \geq \frac{s+1}{s}
$$

Either possibility gives us a contradiction, so we are done.
We end this note by making a few further observations about these disjoint type graphs. We first point out a minor error in the literature. In [1, Remark 1], the authors write, using slightly different terminology, that, for any positive integer $n \geq 3$, the graph $G\left(\beta, t_{1}^{n}\right)$ has no odd cycles of length less than $2\lceil n / 2\rceil$. This is true for $n=3$ but false for every larger value of $n ; G\left(\beta, t_{1}^{n}\right)$ always has a cycle of length 5 , as long as β is large enough to allow room for the cycle. In fact, we have the following general result, showing that Theorem 5 is sharp in a sense.

Proposition 10. Suppose that $0<s<n<\omega$ and

$$
\beta>(n-1)(2 s+3)+(2 s+1)(2 s+2)
$$

Then the graph $G\left(\beta, t_{s}^{n}\right)$ has a cycle of length $2 s+3$.

Proof. Let $m=2 s+3$. We will define a path $\left\langle a_{0}, a_{1}, \ldots, a_{m}\right\rangle$ in $G\left(\beta, t_{s}^{n}\right)$ with $a_{m}=a_{0}$. First define $a_{0}=a_{m}$ by letting $a_{m}(i)=i m$ for all $i<n$. The definition of each of the remaining elements of the cycle depends on the parity of its index. For j with $0<j \leq s+1$, define $a_{2 j-1}$ by setting

$$
a_{2 j-1}(i)=(i+s+j) m-(2 j-1)
$$

for all $i<n$, and define $a_{2 j}$ by setting

$$
a_{2 j}(i)=(i+j) m-2 j
$$

for all $i<n$. The following facts are easily verified and left to the reader.

- For all $j \leq s, \operatorname{tp}\left(a_{2 j}, a_{2 j+1}\right)=t_{s}^{n}$.
- For all $j \leq s, \operatorname{tp}\left(a_{2 j+1}, a_{2 j+2}\right)=\hat{t}_{s}^{n}$.
- $\operatorname{tp}\left(a_{2 s+2}, a_{m}\right)=\hat{t}_{s}^{n}$.
- The largest element of any of the vertices in the cycle is

$$
a_{2 s+1}(n-1)=(n-1)(2 s+3)+(2 s+1)(2 s+2)
$$

Therefore, $\left\langle a_{0}, a_{1}, \ldots, a_{m}\right\rangle$ forms a cycle of length $2 s+3$ in $G\left(\beta, t_{s}^{n}\right)$.
We conclude by noting the following result, which is one of the primary reasons for interest in disjoint type graphs. The result is due to Erdős and Hajnal [2]; the special case $t=t_{1}^{3}$ is due to Erdős and Rado [4]. A proof of the full result can be found in [1, Theorem 2.1].

Theorem 11. Suppose that n is a positive integer and t is a disjoint type of width n. For every infinite cardinal κ, the graph $G(\kappa, t)$ has chromatic number κ.

References

[1] Christian Avart, Tomasz Łuczak, and Vojtěch Rödl. On generalized shift graphs. Fund. Math., 226(2):173-199, 2014.
[2] P. Erdős and A. Hajnal. On chromatic number of graphs and set-systems. Acta Math. Acad. Sci. Hungar, 17:61-99, 1966.
[3] P. Erdős, A. Hajnal, and E. Szemerédi. On almost bipartite large chromatic graphs. In Theory and practice of combinatorics, volume 60 of North-Holland Math. Stud., pages 117-123. NorthHolland, Amsterdam, 1982.
[4] P. Erdős and R. Rado. A construction of graphs without triangles having pre-assigned order and chromatic number. J. Lond. Math. Soc., s1-35(4):445-448, 1960.
[5] Chris Lambie-Hanson. On the growth rate of chromatic numbers of finite subgraphs. $A d v$. Math., 2020. To appear.

Department of Mathematics and Applied Mathematics, Virginia Commonwealth University, Richmond, VA 23284, United States

Email address: cblambiehanso@vcu.edu

[^0]: Date: April 8, 2020.

