DISJOINT TYPE GRAPHS WITH NO SHORT ODD CYCLES

CHRIS LAMBIE-HANSON

ABSTRACT. In this note, we provide a proof of a technical result of Erdős and Hajnal about the existence of disjoint type graphs with no odd cycles. We also prove that this result is sharp in a certain sense.

The purpose of this note is to provide a proof of a result of Erdös and Hajnal about the existence of disjoint type graphs with no short odd cycles. As far as we know, a proof of this result has never been published, though forms of it are stated in a number of publications (cf. [2, Theorem 7.4] and [3, Lemma 1.1(d)]). If κ is an uncountable cardinal, then graphs of this form provide, again as far as we know, the only known ZFC examples of graphs with size and chromatic number κ and arbitrarily high odd girth.

Before we state and prove the main result, we need some definitions and conventions. First, if n is a positive integer, we will sometimes think of elements of $[\operatorname{Ord}]^n$ as strictly increasing sequences of length n. So, for instance, if $a \in [\operatorname{Ord}]^n$ and i < n, then a(i) is the unique element $\alpha \in a$ such that $|a \cap \alpha| = i$. All graphs considered here will be simple undirected graphs. If G is a graph, then V(G) denotes its vertex set and E(G) denotes its edge set.

Definition 1. Let *n* be a positive integer. A *disjoint type of width n* is a function $t: 2n \rightarrow 2$ such that

$$|t^{-1}(0)| = |t^{-1}(1)| = n.$$

If $a, b \in [\text{Ord}]^n$ are disjoint and $a \cup b$ is enumerated in increasing order as $\{\alpha_i \mid i < 2n\}$, then we say that the *type of a and b* is *t*, denoted $\operatorname{tp}(a, b) = t$, if

$$a = \{ \alpha_i \mid i \in t^{-1}(0) \}$$

and

$$b = \{ \alpha_i \mid i \in t^{-1}(1) \}.$$

Let \hat{t} denote the disjoint type of width n denoted by letting $\hat{t}(i) = 1 - t(i)$ for all i < 2n. It is evident that, if $a, b \in [\text{Ord}]^n$ are disjoint and tp(a, b) = t, then $\text{tp}(b, a) = \hat{t}$.

A type t of width n will sometimes be represented by a binary string of length 2n in the obvious way. We will particularly be interested in the following family of types.

Definition 2. Let $1 \le s < n < \omega$. Then t_s^n is the disjoint type of width n whose binary sequence representation consists of s copies of '0', followed by n - s copies of '01', followed by s copies of '1'. More formally, t_s^n is defined by letting, for all

Date: April 8, 2020.

i < 2n,

$$t_s^n(i) = \begin{cases} 0 & \text{if } i < s \\ 0 & \text{if } s \le i < 2n - s \text{ and } i - s \text{ is even} \\ 1 & \text{if } s \le i < 2n - s \text{ and } i - s \text{ is odd} \\ 1 & \text{if } i \ge 2n - s. \end{cases}$$

For example, $t_2^5 = 0001010111$.

Definition 3. Suppose that *n* is a positive integer, β is an ordinal, and *t* is a disjoint type of width *n*. The graph $G(\beta, t)$ is defined as follows. Its vertex set is $V(G(\beta, t)) = [\beta]^n$. Given $a, b \in [\beta]^n$, we put the edge $\{a, b\}$ into $E(G(\beta, t))$ if and only if *a* and *b* are disjoint and $tp(a, b) \in \{t, \hat{t}\}$.

Before we get to our main result, we need a basic lemma. Given a function f from a natural number to \mathbb{Z} , let $\max(f)$ and $\min(f)$ denote the maximum and minimum values attained by f, respectively.

Lemma 4. Suppose that k is a positive integer and $f : k \to \mathbb{Z}$ is a function such that

• f(0) = 0 and

• |f(i+1) - f(i)| = 1 for all i < k.

Then $\max(f) - \min(f) < k$.

Proof. The proof is by induction on k. If k = 1, then $\max(f) = \min(f) = f(0) = 0$. Suppose that k > 0 and we have proven the lemma for k - 1. Fix $f : k \to \mathbb{Z}$, and let $f^- = f \upharpoonright (k-1)$. If f(k) - f(k-1) = 1, then we have $\max(f) \le \max(f^-) + 1$ and $\min(f) = \min(f^-)$, so, applying the induction hypothesis to f^- , we obtain

$$\max(f) - \min(f) \le 1 + (\max(f^{-}) - \min(f^{-})) < 1 + (k - 1) = k.$$

If f(k)-f(k-1) = -1, then we have $\max(f) = \max(f^-)$ and $\min(f) \ge \min(f^-)-1$, so

$$\max(f) - \min(f) \le (\max(f) - \min(f^{-})) + 1 < (k - 1) + 1 = k.$$

We are now ready for the main result of this note. The proof is rather technical; we recommend that the reader first draw some pictures to convince themselves of the truth of the theorem in the special case s = 1, n = 3 (this pair does not satisfy $n > 2s^2 + 3s + 1$, but the conclusion of the theorem still holds). This will help the reader to get a feel for the problem and motivate the calculations in the proof. We also note that the lower bound of $2s^2 + 3s + 1$ is probably not optimal and can likely be improved with a more careful analysis. Since a precise lower bound for n is not necessary for our desired applications (cf. [5]), the primary interest of the result for us is the fact that such a lower bound exists at all.

Theorem 5. Suppose that s and n are positive integers with $n > 2s^2 + 3s + 1$, and suppose that β is an ordinal. Then the graph $G(\beta, t_s^n)$ has no odd cycles of length 2s + 1 or shorter.

Proof. Let $t = t_s^n$, $V = [\beta]^n$, $E = E(G(\beta, t))$, and $G = G(\beta, t) = (V, E)$. We begin by making some preliminary observations. If $\{a, b\} \in E$, then either $\operatorname{tp}(a, b) = t$ or $\operatorname{tp}(a, b) = \hat{t}$. If $\operatorname{tp}(a, b) = t$, then, for all i with s < i < n, we have

$$b(i-s-1) < a(i) < b(i-s).$$

 $\mathbf{2}$

If $tp(a, b) = \hat{t}$, then, for all i < n - s - 1, we have

$$b(i+s) < a(i) < b(i+s+1)$$

Suppose that k is a positive integer and $P = \langle a_0, \ldots, a_k \rangle$ is a path of length k in G. For $j \leq k$, let

$$U_j(P) = \{ i < j \mid \text{tp}(a_i, a_{i+1}) = t \},\$$

and

 $D_j(P) = \{ i < j \mid tp(a_i, a_{i+1}) = \hat{t} \}.$

Intuitively, $U_j(P)$ is the set of steps "up" in the path among the first j steps, and D(P) is the set of steps "down" among the first j steps. Then set $u_j(P) = |U_j(P)|$ and $d_j(p) = |D_j(P)|$; note that $u_j(P) + d_j(P) = j$ for all $j \leq k$.

Claim 6. Suppose that $1 \le k \le 2s + 1$ and $P = \langle a_0, \ldots, a_k \rangle$ is a path in G. Let $u = u_k(P)$ and $d = d_k(P)$. Then there is i < n such that

$$a_k(i - u(s+1) + ds) < a_0(i) < a_k(i - us + d(s+1)).$$

Remark 7. Implicit in the statement of the claim is the assertion that

 $0 \le i - u(s+1) + ds < i - us + d(s+1) < n,$

the truth of which will follow readily from the proof.

Proof of Claim 6. Define a function $f: k+1 \to \mathbb{Z}$ by letting $f(j) = u_j(P) - d_j(P)$ for every $j \leq k$. Then f satisfies the hypotheses of Lemma 4, so, letting $M = \max(f)$ and $m = \min(f)$, we have $M - m \leq k \leq 2s + 1$.

Let i = M(s+1). Note that

$$M(s+1) \le (2s+1)(s+1) = 2s^2 + 3s + 1,$$

so we certainly have i < n.

Subclaim 8. For every $0 < j \le k$, we have

$$a_j(i-sf(j)-u_j(P)) < a_0(i) < a_j(i-sf(j)+d_j(P))$$

Remark 9. Implicit in the statement of this subclaim is the assertion that, for each $0 < j \le k$, we have

$$0 \le i - sf(j) - u_j(P) < i - sf(j) + d_j(P) < n$$

This will follow readily from the proof.

Proof of Subclaim 8. We proceed by induction on j. We begin by proving the subclaim for j = 1. Suppose first that $tp(a_0, a_1) = t$, so f(1) = 1, $u_1(P) = 1$, and $d_1(P) = 0$. Then $M \ge 1$, so $i \ge s + 1$. Therefore, since $tp(a_0, a_1) = t$, the preliminary observations at the beginning of the proof of the theorem imply that

$$a_1(i-s-1) < a_0(i) < a_1(i-s),$$

as desired.

If, on the other hand, $tp(a_0, a_1) = \hat{t}$, and hence f(1) = -1, $u_1(P) = 0$, and $d_1(P) = 1$, then $m \leq -1$. Therefore, we have $M \leq 2s$, so $i = M(s+1) \leq 2s^2 + 2s < n - s - 1$. Therefore, since $tp(a_0, a_1) = \hat{t}$, the preliminary observations at the beginning of the proof imply that

$$a_1(i+s) < a_0(i) < a_1(i+s+1)$$

as desired.

CHRIS LAMBIE-HANSON

Now suppose that 0 < j < k and we have established that

$$a_j(i - sf(j) - u_j(P)) < a_0(i) < a_j(i - sf(j) + d_j(P)).$$

We will prove the corresponding statement for j + 1. Suppose to begin that $\operatorname{tp}(a_j, a_{j+1}) = t$, so f(j+1) = f(j)+1, $u_{j+1}(P) = u_j(P)+1$, and $d_{j+1}(P) = d_j(P)$. In this case, it follows that $f(j) \leq (M-1)$ and $u_j(P) \leq (M-1)$. In particular, we have

$$i - sf(j) - u_j(P) \ge M(s+1) - s(M-1) - (M-1) = s+1 > s.$$

Therefore, by the preliminary observations, we have

$$a_{j+1}(i - sf(j) - u_j(P) - s - 1) < a_j(i - sf(j) - u_j(P))$$

$$a_{j+1}(i - sf(j + 1) - u_{j+1}(P)) < a_j(i - sf(j) - u_j(P))$$

and

$$a_j(i - sf(j) + d_j(P)) < a_{j+1}(i - sf(j) + d_j(P) - s)$$

$$a_j(i - sf(j) + d_j(P)) < a_{j+1}(i - sf(j+1) + d_{j+1}(P)).$$

Combining these inequalities with the inductive hypothesis yields

$$a_{j+1}(i - sf(j+1) - u_{j+1}(P)) < a_0(i) < a_{j+1}(i - sf(j+1) + d_{j+1}(P)),$$

as desired.

On the other hand, suppose that $tp(a_j, a_{j+1}) = \hat{t}$, so f(j+1) = f(j) - 1, $u_{j+1}(P) = u_j(P)$, and $d_{j+1}(P) = d_j(P) + 1$. In this case, it follows that $f(j) \ge (m+1)$ and $d_j(P) \le -(m+1)$. In particular, we have

$$i - sf(j) + d_j(P) \le i - s(m+1) - (m+1) = i - (m+1)(s+1).$$

We know that $M-m \leq 2s+1$, so $m+1 \geq M-2s$. As a result, the above inequality becomes

$$i - sf(j) + d_j(P) \le M(s+1) - (M-2s)(s+1) = 2s^2 + 2s < n-s-1.$$

Therefore, by the preliminary observations, we have

$$a_{j+1}(i - sf(j) - u_j(P) + s) < a_j(i - sf(j) - u_j(P))$$

$$a_{j+1}(i - sf(j+1) - u_{j+1}(P)) < a_j(i - sf(j) - u_j(P))$$

and

$$a_{j}(i - sf(j) + d_{j}(P)) < a_{j+1}(i - sf(j) + d_{j}(P) + s + 1)$$

$$a_{j}(i - sf(j) + d_{j}(P)) < a_{j+1}(i - sf(j+1) + d_{j+1}(P)).$$

Combining these inequalities with the inductive hypothesis yields

$$a_{j+1}(i - sf(j+1) - u_{j+1}(P)) < a_0(i) < a_{j+1}(i - sf(j+1) + d_{j+1}(P)),$$

as desired, finishing the proof of the subclaim.

Since $f(k) = u_k(P) - d_k(P)$, we have $i - u(s+1) + ds = i - sf(k) - u_k(P)$ and $i - us + d(s+1) = i - sf(k) + d_k(P)$. Therefore, the claim follows immediately from Subclaim 8. Now suppose for sake of contradiction that G has an odd cycle of length 2s + 1 or shorter. In other words, there is a positive integer $k \leq s$ and a path $C = \langle a_0, \ldots, a_{2k+1} \rangle$ with $a_0 = a_{2k+1}$. Let $u = u_k(C)$ and $d = d_k(C)$. Note that u + d = 2k + 1. Apply Claim 6 to find i < n such that

$$a_{2k+1}(i - u(s+1) + ds) < a_0(i) < a_{2k+1}(i - us + d(s+1)).$$

Since $a_0 = a_{2k+1}$, this reduces to

$$i - u(s + 1) + ds < i < i - us + d(s + 1)$$

Cancelling i from all three terms yields

$$ds - u(s+1) < 0 < d(s+1) - us.$$

Since d and u are both non-negative integers, this implies that they are both nonzero. Therefore, the left inequality gives us

$$\frac{d}{u} < \frac{s+1}{s}$$

and the right inequality gives us

$$\frac{s}{s+1} < \frac{d}{u},$$

so we have

$$\frac{s}{s+1} < \frac{d}{u} < \frac{s+1}{s}$$

In particular, $\frac{d}{u}$ is close to 1. But we know that d + u = 2k + 1; the assignments of values to d and u subject to this constraint that put $\frac{d}{u}$ closest to 1 are either d = k and u = k + 1 or vice versa. But $k \leq s$, so, if d = k and u = k + 1, then

$$\frac{d}{u} \le \frac{s}{s+1}$$

and, if d = k + 1 and u = k, then

$$\frac{d}{u} \ge \frac{s+1}{s}.$$

Either possibility gives us a contradiction, so we are done.

We end this note by making a few further observations about these disjoint type graphs. We first point out a minor error in the literature. In [1, Remark 1], the authors write, using slightly different terminology, that, for any positive integer $n \geq 3$, the graph $G(\beta, t_1^n)$ has no odd cycles of length less than $2\lceil n/2 \rceil$. This is true for n = 3 but false for every larger value of n; $G(\beta, t_1^n)$ always has a cycle of length 5, as long as β is large enough to allow room for the cycle. In fact, we have the following general result, showing that Theorem 5 is sharp in a sense.

Proposition 10. Suppose that $0 < s < n < \omega$ and

$$\beta > (n-1)(2s+3) + (2s+1)(2s+2).$$

Then the graph $G(\beta, t_s^n)$ has a cycle of length 2s + 3.

Proof. Let m = 2s + 3. We will define a path $\langle a_0, a_1, \ldots, a_m \rangle$ in $G(\beta, t_s^n)$ with $a_m = a_0$. First define $a_0 = a_m$ by letting $a_m(i) = im$ for all i < n. The definition of each of the remaining elements of the cycle depends on the parity of its index. For j with $0 < j \le s + 1$, define a_{2j-1} by setting

$$a_{2j-1}(i) = (i+s+j)m - (2j-1)$$

for all i < n, and define a_{2j} by setting

$$a_{2j}(i) = (i+j)m - 2j$$

for all i < n. The following facts are easily verified and left to the reader.

- For all $j \leq s$, $tp(a_{2j}, a_{2j+1}) = t_s^n$.
- For all $j \leq s$, $\operatorname{tp}(a_{2j+1}, a_{2j+2}) = \hat{t}_s^n$.
- $\operatorname{tp}(a_{2s+2}, a_m) = \hat{t}_s^n$.
- The largest element of any of the vertices in the cycle is

$$a_{2s+1}(n-1) = (n-1)(2s+3) + (2s+1)(2s+2).$$

Therefore, $\langle a_0, a_1, \ldots, a_m \rangle$ forms a cycle of length 2s + 3 in $G(\beta, t_s^n)$.

We conclude by noting the following result, which is one of the primary reasons for interest in disjoint type graphs. The result is due to Erdős and Hajnal [2]; the special case $t = t_1^3$ is due to Erdős and Rado [4]. A proof of the full result can be found in [1, Theorem 2.1].

Theorem 11. Suppose that n is a positive integer and t is a disjoint type of width n. For every infinite cardinal κ , the graph $G(\kappa, t)$ has chromatic number κ .

References

- Christian Avart, Tomasz Luczak, and Vojtěch Rödl. On generalized shift graphs. Fund. Math., 226(2):173–199, 2014.
- [2] P. Erdős and A. Hajnal. On chromatic number of graphs and set-systems. Acta Math. Acad. Sci. Hungar, 17:61–99, 1966.
- [3] P. Erdős, A. Hajnal, and E. Szemerédi. On almost bipartite large chromatic graphs. In *Theory and practice of combinatorics*, volume 60 of *North-Holland Math. Stud.*, pages 117–123. North-Holland, Amsterdam, 1982.
- [4] P. Erdős and R. Rado. A construction of graphs without triangles having pre-assigned order and chromatic number. J. Lond. Math. Soc., s1-35(4):445-448, 1960.
- [5] Chris Lambie-Hanson. On the growth rate of chromatic numbers of finite subgraphs. Adv. Math., 2020. To appear.

DEPARTMENT OF MATHEMATICS AND APPLIED MATHEMATICS, VIRGINIA COMMONWEALTH UNIVERSITY, RICHMOND, VA 23284, UNITED STATES

Email address: cblambiehanso@vcu.edu