A cohomology theory for A(m)-algebras and applications

Martin Markl

Matematický ústav ČSAV, Žitná 25, 115 67 Praha 1, Czechoslovakia

Communicated by J.D. Stasheff Received 1 June 1990 Revised 20 February 1992

Abstract

Markl, M., A cohomology theory for A(m)-algebras and applications, Journal of Pure and Applied Algebra 83 (1992) 141–175.

For an A(m)-algebra A and an A-bimodule M we define the cohomology $H_{(m)}^*(A;M)$ of A with coefficients in M. If the algebra A is balanced, we define also the balanced cohomology $HB_{(m)}^*(A;M)$. Our main result says that, for such an algebra A, there exists a natural Hodge-type decomposition of $H_{(m)}^*(A;M)$ whose first component can be identified with $HB_{(m)}^*(A;M)$. Some applications are given, especially in rational homotopy theory.

Introduction and main results

A(m)-algebras were introduced in [22, p. 294] in connection with the study of homotopy associative H-spaces. An A(m)-algebra is a graded space A together with a set of multilinear operations $\mu_k: \bigotimes^k A \to A$, $1 \le k \le m$, satisfying certain associativity relations (see 1.4). The category of unitary augmented A(m)-algebras and their strong homomorphisms (see again 1.4 for the definitions) will be denoted by A(m). For an A(m)-algebra A, an A-bimodule is then an object of the category A-biMod:= $(A(m)/A)_{ab}$ of abelian group objects in the category A(m)/A of A(m)-algebras over A; an axiomatic characterization of A-bimodules is given in 1.10. Let Vect be the category of graded vector spaces and $\bigcirc: A$ -biMod \rightarrow Vect be the 'forgetful functor'. By a free A-bimodule is then meant an object of the category A-biMod having the form FV, where $V \in$ Vect and F is a left-adjoint to \bigcirc ; an explicit description of free bimodules is given in 1.14. For simplicity we assume that all objects are defined over a field k of characteristic zero.

Correspondence to: Professor M. Markl, Matematický ústav ČSAV, Žitná 25, 115 67 Praha 1, Czechoslovakia. Email: markl@csearn.bitnet.

0022-4049/92/\$05.00 © 1992 - Elsevier Science Publishers B.V. All rights reserved

Our first goal is to define a cohomology of an A(m)-algebra A with coefficients in an A-bimodule M, denoted by $H^*_{(m)}(A;M)$. The definition is given with the aid of certain free differential A-bimodule $(\mathcal{B}_{(m)}(A), \partial)$ (see 2.1) as

$$H_{(m)}^*(A; M) = H^*(C_{(m)}^*(A; M), \delta)$$
.

where $C^*_{(m)}(A; M) = \operatorname{Hom}_{A-\operatorname{bi}\mathbf{Mod}}^{**+1}(\mathcal{B}_{(m)}(A), M)$ and δ is induced by ∂ , see 3.6 for degree conventions.

Our second aim is to show that there exists a suitable concept of commutativity for A(m)-algebras. The rôle of commutative algebras will be played by A(m)-algebras (A, μ_k) such that the operations μ_k are, for $k \ge 2$, zero on decomposables of the shuffle product (see 1.4). Such algebras will be called balanced. They form a full subcategory of the category A(m), denoted by $A(m)_B$. The following two indications justify the definition of this property.

For an A(m)-algebra A, let $(\tilde{\mathcal{B}}(A), \tilde{\delta})$ denote the homotopy-bar (or tilde) construction (see [22, p. 295], [18, Définition 3.13] or Example 3.3). It is easy to show that the 'shuffle' product on $\tilde{\mathcal{B}}(A)$ is compatible with the differential $\tilde{\delta}$ provided A is balanced in the above sense, similarly as for a commutative algebra D this product induces the structure of a differential Hopf algebra on the bar construction B(D) ([11, Chapter X, Section 12] or [24, 0.6.(1)]). The second indication is the following result of Kadeishvili. He constructed, for a chain algebra (C, δ) , a certain structure $(H(C, \delta), X_k)$ of an $A(\infty)$ -algebra on the graded vector space $H(C, \delta)$, called the homology $A(\infty)$ -algebra of (C, δ) (see [9, Theorem 1] or 1.7). In fact, the operations X_k are constructed as obstructions to the existence of a homomorphism $\phi: (H(C, \delta), 0) \to (C, \delta)$ of differential algebras, inducing an isomorphism on the homology level. In Theorem 1.8 we prove that the algebra C is commutative if and only if the homology $A(\infty)$ -algebra can be constructed to be balanced.

Let $A \in \mathbf{A}(m)_B$ be a balanced $\mathbf{A}(m)$ -algebra. By a balanced A-bimodule we mean an element of the category A-bi $\mathbf{Mod}_B := (\mathbf{A}(m)_B/A)_{ab}$. This category consists of A-bimodules satisfying the additional condition (10). An alternative description of A-bi \mathbf{Mod}_B is given in Proposition 1.13. For a balanced algebra A and an A-bimodule $M \in A$ -bi \mathbf{Mod}_B we define the balanced cohomology of A with coefficients in M, denoted by $HB^*_{(m)}(A; M)$. This objected appears together with a natural transformation

$$H^*(A|M): HB^*_{(m)}(A;M) \to H^*_{(m)}(A;M)$$
.

The main result of this paper (Theorem 2.9) says that there is a natural decomposition $H^*_{(m)}(A;M) = \prod_{j \geq 0} H^{*,j}_{(m)}(A;M)$ with $H^{*,l}_{(m)}(A;M) = HB^*_{(m)}(A;M)$ such that the transformation $H^*(A;M)$ corresponds to the map

$$HB_{(m)}^*(A; M) = H_{(m)}^{*,1}(A; M) \hookrightarrow \prod_{j \geq 0} H_{(m)}^{*,j}(A; M) = H_{(m)}^*(A; M)$$
.

As a consequence we get that the map $\Pi^*(A; M)$ is a naturally splitting monomorphism of graded vector spaces. The decomposition $H^*_{(m)}(A; M) = \prod_{j\geq 0} H^{*,j}_{(m)}(A; M)$ is an analog of the Hodge-type decomposition for the Hochschild cohomology of a commutative algebra as it was constructed for example in [5, pp. 231–234] or [6, pp. 7–8], but our situation is slightly different because the differential δ in the defining complex $C^*_{(m)}(A; M)$ is not homogeneous with respect to the 'simplicial degree'. Our theory covers the following situations.

- 1. Cohomology of algebras. (For details see 3.1.) Let A be a (graded) algebra, M an A-bimodule (in the usual sense) and let $Hoch^{n,p}(A; M)$ denote the Hochschild cohomology of A with coefficients in M, where n is the simplicial and p the total degree, respectively. If we consider A as an $A(\infty)$ -algebra (Example 1.5) and M as an element of A-biMod (Example 1.11), then there exists an isomorphism $\omega^*(A; M): H^*_{(\infty)}(A; M) \xrightarrow{\cong} \prod_{n\geq 0} \operatorname{Hoch}^{n,-*}(A; M)$. If, moreover, the algebra A is commutative and M is a symmetric A-bimodule (i.e. am = ma for all $a \in A$ and $m \in M$), then A can be considered as an element of $A(\infty)_B$ and M as an element of A-biMod_B. In this case we construct an isomorphism $\omega_B^*(A; M) : HB_{(\infty)}^*(A; M) \xrightarrow{\cong} \prod_{n \geq 0} \operatorname{Harr}^{n, -*}(A; M)$, where $\operatorname{Harr}^{*, *}(A; M)$ denotes the Harrison cohomology of the commutative algebra A with coefficients in M (see [2, 25]). Moreover, if $\phi^{*,*}(A; M) : \operatorname{Harr}^{*,*}(A; M) \to \operatorname{Hoch}^{*,*}(A; M)$ is the canonical map [2, p. 314], then $\prod_{n\geq 0} \phi^{n,-*}(A;M) \circ \omega_B^*(A;M) =$ $\omega^*(A; M) \circ \Pi^*(A; M)$ and therefore, by Theorem 2.9, the map $\phi^{*,*}(A; M)$ is a monomorphism. This is a graded version of [2, Theorem 1.1]. Notice that this result has an immediate application in the rational homotopy theory [16, Theorem [1.4.1].
- 2. Cohomology of algebras of derivations. (For details see 3.2.) Let V be a graded vector space of finite type and let (TV, ∂) be a free differential graded algebra, $deg(\partial) = -1$. Let $Der^*(TV)$ be the Lie algebra of derivations of the algebra TV and define a differential Δ on $\operatorname{Der}^*(TV)$ by $\Delta(\theta) = [\partial; \theta]$. Then there exists isomorphism $\tilde{\Omega}^*(A): H_{(\infty)}^*(A; \bar{A}) \stackrel{\cong}{\longrightarrow}$ $A(\infty)$ -algebra A and an $H^{-*+1}(\mathrm{Der}^*(TV), \Delta)$, where \bar{A} denotes the augmentation ideal of A (see 1.4). Let $\widetilde{\operatorname{Der}}^*(LV) = \{\theta \in \operatorname{Der}^*(TV) \mid \theta(V) \subset LV \oplus \mathbf{k}\}$, where LV is the free graded Lie algebra on V. If $\partial(V) \subset LV$, then the $A(\infty)$ -algebra A can be constructed to be balanced and there exists an isomorphism $\mathcal{\tilde{Z}}^*(A): HB_{(x)}^*(A; \bar{A}) \xrightarrow{\cong}$ $H^{-*+1}(\widetilde{\operatorname{Der}}^*(LV), \Delta)$. If we denote $I(A)^*: H^*(\widetilde{\operatorname{Der}}^*(LV), \Delta) \to H^*(\operatorname{Der}(TV), \Delta)$ the map induced by the inclusion $\widetilde{\mathrm{Der}}(LV) \hookrightarrow \mathrm{Der}(TV)$, then, moreover, $\tilde{\Omega}^*(A) \circ \Pi^*(A; \bar{A}) = I^{-*+1}(A) \circ \tilde{\mathcal{L}}^*(A)$ and Theorem 2.9 implies that the map $I^*(A)$ is a monomorphism. We remark that algebras of derivations of this kind play an important rôle in the rational homotopy theory, see [4], [13] and [15].
- **3. Homotopy associative** *H***-spaces.** Let X be a topological space admitting an A_m -form [22, p. 279]. Then the singular chain complex $C_*(X)$ has the structure of

an A(m)-algebra (see [22, p. 295, Theorem 2.3] and Example 1.6) and it easily follows from [22, p. 296, Theorem 2.7] and the computation of 3.3 that

$$H_{(m)}^*(C_*(X);\mathbf{k})\cong H^*(XP(m);\mathbf{k})$$
.

where XP(m) is the X-projective m-space [22, p. 280] and **k** carries the natural structure of a $C_*(X)$ -bimodule as in 1.4.

4. Cohomology of a manifold. Let M be a simply connected smooth manifold having rational cohomology of finite type and let $\mathscr{E}(M)$ be the algebra of DeRham exterior forms on M. Let $\widehat{\mathscr{E}}(M)$ be the 'opposite' algebra given by $\widehat{\mathscr{E}}^p(M) = \mathscr{E}^{-p}(M)$. Since $\widehat{\mathscr{E}}(M)$ is commutative, it can be considered as a balanced $A(\infty)$ -algebra, see Example 1.5. Then there are isomorphisms (see 3.4.) $\phi_H^*(M): H_{(\infty)}^{-*}(\widehat{\mathscr{E}}(M); \mathbb{R}) \xrightarrow{\sim} H_*(\Omega M; \mathbb{R})$ and $\phi_\pi^*(M): HB_{(\infty)}^{-*}(\widehat{\mathscr{E}}(M); \mathbb{R}) \xrightarrow{\sim} \pi_*(\Omega M) \otimes \mathbb{R}$, such that the diagram

$$\begin{array}{ccc} H_{(\infty)}^{-*}(\hat{\mathscr{E}}(M);\mathbb{R}) & \xrightarrow{\phi_H^*(M)} & H_*(\Omega M;\mathbb{R}) \\ & & \xrightarrow{H^{-*}(\hat{\mathscr{E}}(M);\mathbb{R})} & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\$$

where $h_{\Omega M}: \pi_*(\Omega M) \to H_*(\Omega M)$ is the Hurewicz homomorphism, is commutative. Theorem 2.9 then says that $h_{\Omega M} \otimes \mathbb{R}$ is a monomorphism. This is, of course, a consequence of the Milnor-Moore theorem [17]. This computation remains valid if M is replaced by an arbitrary simply connected space having rational cohomology of finite type and $\mathscr{E}(M)$ by the algebra A_{PL} of Sullivan-DeRham polynomial forms [23, Section 7].

5. The canonical map $l: H_{\mathrm{Lie}}(L; L) \to \mathrm{Hoch}(\mathfrak{U}L; \mathfrak{U}L)$. (For details see 3.5.) Let L be a (graded) Lie algebra of finite type with $L_{=0}=0$ and let $\mathfrak{U}L$ denote its universal enveloping algebra. In this situation there exists a map $l^{*,*}: H_{\mathrm{Lie}}^{*,*}(L; L) \to \mathrm{Hoch}^{*,*}(\mathfrak{U}L; \mathfrak{U}L)$ of the Lie algebra cohomology of L with coefficients in L considered in the clear way as an L-module, to the Hochschild cohomology of $\mathfrak{U}L$ with coefficients in $\mathfrak{U}L$ with the evident structure of a bimodule over itself. In 3.5 we, roughly speaking, prove the existence of a balanced $A(\infty)$ -algebra L such that L can be identified with L can be identified with L and that L and that L can be identified with L and L is represented, under this identification, by the map L is result has the following immediate application in rational homotopy theory.

Let S be a simply connected topological space having the rational cohomology of finite type. Let $L_* = \pi_*(\Omega S) \otimes \mathbb{Q}$, then, by the Milnor-Moore theorem [17],

 $\mathscr{U}L_*\cong H_*(\varOmega S;\mathbb{Q})$. The space S is said to be coformal [24, III.4.(6)], if there exists a free differential graded commutative algebra $(\land V, d)$ such that $d(V) \subset V \land V$, and a homomorphism $\phi: (\land V, d) \to A_{PL}(S)$, inducing an isomorphism in the cohomology; here $A_{PL}(S)$ denotes the algebra of Sullivan-DeRham polynomial forms on S [23, Section 7]. Similarly, S is said to be coquadratic [14, Definition 2.7], if there exists a free differential graded algebra (TW, δ) with $\delta(W) \subset W \otimes W$ and a homomorphism $\psi: (TW, \delta) \to C^*(S; \mathbb{Q})$, inducing an isomorphism on the cohomology level; here $C^*(S;\mathbb{Q})$ denotes the differential graded (associative but noncommutative) algebra of rational singular cochains of S. It is well known that the natural obstructions to coformality are elements $\widetilde{\mathscr{P}}_n \in H_{\text{Lic}}(L;L), n \geq 3$, see [4, Annexe 2] and [15, Introduction]. Similarly, the obstructions to coquadraticity are elements $\mathscr{P}_n \in \text{Hoch}(\mathscr{U}L;\mathscr{U}L), n \geq 3$, and, moreover, $l(\widetilde{\mathscr{P}}_n) = \mathscr{P}_n$ [14, Proposition 2.8 and the comments following Theorem 2.9]. We thus have proved the following theorem, as promised in [14].

Theorem. A simply connected topological space is coformal if and only if it is coquadratic. \Box

Indeed, it is easily seen that a coformal space is coquadratic. The opposite implication is an easy consequence of $l(\bar{\mathcal{P}}_n) = \mathcal{P}_n$ and the fact that l is a monomorphism.

1. Shuffles, A(m)-algebras, A(m)-(bi)modules, etc.

1.1. All objects are assumed to be defined over a fixed ground field \mathbf{k} of characteristic zero, although the assumption $\operatorname{char}(\mathbf{k}) = 0$ is not really necessary in all statements and proofs below.

For graded objects we will usually omit the *. If it is necessary to indicate the grading explicitly, the corresponding symbol (star or index) will be sometimes written as a superscript, sometimes as a subscript, in accord with the usual conventions.

Denote by **Vect** the category of graded **k**-vector spaces, by $\operatorname{Hom}_{\operatorname{Vect}}^p(V,W)$ we denote the set of linear homogeneous maps $f:V\to W$ of degree p. For $V\in\operatorname{Vect}$ let $\uparrow V$ (resp. $\downarrow V$) be the suspension (resp. the desuspension) of V, i.e. the graded vector space defined by $(\uparrow V)_p = V_{p-1}$ (resp. $(\downarrow V)_p = V_{p+1}$). By #V we denote the dual of V, i.e. the graded vector space defined by $(\#V)_p = \operatorname{Hom}_{\operatorname{Vect}}^{-p}(V,\mathbf{k})$. Let \hat{V} denote the graded vector space defined by $\hat{V}_p = V_{-p}$. Finally, let $\bigotimes^m V$ stand for \mathbf{k} , if m=0, and for $V\otimes \cdots \otimes V$ (m-times), if m>0; let $\bigotimes^{\leq m} V = \bigoplus_{0\leq i\leq m} \bigotimes^i V$ and $T(V)=\bigoplus_{i\geq 0} \bigotimes^i V$.

As to graded objects in general, we will systematically use the following sign convention (called in [18, pp. 2–3] the Koszul sign convention): commuting two 'things' of degrees p and q, respectively, we multiply the sign by $(-1)^{pq}$. The fact

that an object a is of degree p will be expressed as deg(a) = p or simply |a| - p. The degree and sign conventions used in our definitions of A(m)-algebras, shuffles, resolutions, etc. are commented in 3.6.

1.2. Let X be a graded **k**-module. For $x_1, \ldots, x_n \in X$ and a permutation $\sigma \in S_n$ define the number $\varepsilon(\sigma; x_1, \ldots, x_n)$ (the Koszul sign) by the equality

$$x_1 \wedge \cdots \wedge x_n = \varepsilon(\sigma; x_1, \dots, x_n) \cdot x_{\sigma^{-1}(1)} \wedge \cdots \wedge x_{\sigma^{-1}(n)}$$

which has to be satisfied in the free graded commutative algebra $\wedge(x_1, \dots, x_n)$ on graded indeterminates x_1, \dots, x_n [24, 0.2(11)]. Also, let

$$\chi(\sigma) = \chi(\sigma; x_1, \dots, x_n) = \operatorname{sgn}(\sigma) \cdot \varepsilon(\sigma; x_1, \dots, x_n)$$
.

The shuffle product $s_{i,n-i}$ is, for $0 \le i \le n$, the linear map $s_{i,n-i} : \bigotimes^n X \to \bigotimes^n X$ defined by

$$s_{i,n-i}(x_1,\ldots,x_n) = \sum_{\sigma} \chi(\sigma) x_{\sigma^{-1}(1)} \otimes \cdots \otimes x_{\sigma^{-1}(n)}$$

where the summation is taken over all permutations $\sigma \in S_n$ with $\sigma(1) < \cdots < \sigma(i)$, $\sigma(i+1) < \cdots < \sigma(n)$. Sometimes we will write $s(x_1, \ldots, x_i \mid x_{i+1}, \ldots, x_n)$ instead of $s_{i,n-i}(x_1, \ldots, x_n)$; note that by definition

$$s(x_1,\ldots,x_n)=s_{0,n}(x_1,\ldots,x_n)=s_{n,0}(x_1,\ldots,x_n)=x_1\otimes\cdots\otimes x_n.$$

- **1.3.** Let us sum up some properties of the shuffles. The first two of them are well known [20].
 - (i) Associativity:

$$s(s(a_1,\ldots,a_k\mid b_1,\ldots,b_t)\mid c_1,\ldots,c_m)$$

= $s(a_1,\ldots,a_k\mid s(b_1,\ldots,b_t\mid c_1,\ldots,c_m))$.

Due to this property, we can write the multiple shuffle products without parentheses, i.e. use the notation like $s(a_1, \ldots, a_k \mid b_1, \ldots, b_t \mid c_1, \ldots, c_m)$, etc.

(ii) Commutativity:

$$s(a_1, \dots, a_k \mid b_1, \dots, b_l)$$

$$= (-1)^{(|a_1| + \dots + |a_k|)(|b_1| + \dots + |b_l|) + kl} s(b_1, \dots, b_l \mid a_1, \dots, a_k).$$

The following equalities can also be easily verified.

(iii) Let $(a_1, \ldots, a_m)^{\leftarrow}$ denote (a_m, \ldots, a_1) . Then

$$\{s(a_1,\ldots,a_k \mid b_1,\ldots,b_l)\}^+ = s((b_1,\ldots,b_l)^+ \mid (a_1,\ldots,a_k)^+)$$

(iv) Let $\rho \in S_m$ denote, for each $m \ge 1$, the permutation which reverses the order, i.e. which sends $(1, \ldots, m)$ to $(m, \ldots, 1)$. Then

$$s(x_1, \dots, x_k \mid y_1, \dots, y_l) \otimes w$$

$$= s(x_1, \dots, x_k \mid y_1, \dots, y_l, w)$$

$$+ \sum_{i=2}^k (-1)^{k+i+1} \chi_i \cdot s(x_1, \dots, x_{i-1} \mid y_1, \dots, y_l, w, x_k, \dots, x_i)$$

$$+ (-1)^k \chi_1 \cdot y_1 \otimes \dots \otimes y_l \otimes w \otimes x_k \otimes \dots \otimes x_1,$$

where $\chi_i = (-1)^{(|x_i| + \dots + |x_k|)(|y_1| + \dots + |y_l| + |w|) + (k+i+1)(l+1)} \cdot \chi(\rho; x_i, \dots, x_k).$

Also the following equality will be useful in the sequel:

(v)
$$\sum_{j=0}^{m} (-1)^{m+j} \chi(\rho; a_{j+1}, \dots, a_m) \cdot s(a_{j+1}, \dots, a_m \mid a_j, \dots, a_1) = 0.$$

1.4. Let m be a natural number or ∞ . An A(m)-algebra is defined to be a graded **k**-module A together with a set $\{\mu_k \mid 1 \le k \le m, k < \infty\}$ of linear maps, $\mu_k : \bigotimes^k A \to A$, such that $\mu_k(\{\bigotimes^k A\}_p) \subset A_{p+k-2}$ for each p and

$$\sum_{\lambda=0}^{n-1} \sum_{k=1}^{n-\lambda} (-1)^{k+\lambda+k\lambda+k(|a_1|+\dots+|a_{\lambda}|)} \cdot \mu_{n-k+1}(a_1,\dots,a_{\lambda},\mu_k(a_{\lambda+1},\dots,a_{\lambda+k}),a_{\lambda+k+1},\dots,a_n) = 0$$
(1)

for all homogeneous $a_{\lambda} \in A$, $1 \le \lambda \le n$, and $n \le m$ (see [22, p. 294], [18, Définition 3.2] and [9, p. 231]). By a homomorphism of two A(m)-algebras $A = (A, \mu_k)$ and $A' = (A', \mu'_k)$ we mean a sequence $\{f_r : \bigotimes^r A \to A' \mid r \ge 1\}$ of multilinear maps of degree r-1 such that the following condition is satisfied for each $n \ge 1$:

$$\sum_{k=1}^{\min(m,n)} \sum_{r_1+\dots+r_k=n} (-1)^{\eta} \cdot \mu'_k (f_{r_1}(a_1,\dots,a_{r_1}),\dots,f_{r_k}(a_{n-r_k+1},\dots,a_n))$$

$$= \sum_{k=1}^{\min(m,n)} \sum_{\lambda=0}^{n-k} (-1)^{\xi} \cdot f_{n-k+1}(a_1,\dots,a_{\lambda},\mu_k(a_{\lambda+1},\dots,a_{\lambda+k}),$$

$$a_{\lambda+k+1},\dots,a_n), \qquad (2)$$

where

$$\eta = \sum_{1 \leq \alpha < \beta \leq k} (|a_{r_1 + \dots + r_{\alpha - 1} + 1}| + \dots + |a_{r_1 + \dots + r_{\alpha}}| + r_{\alpha})(r_{\beta} + 1) ,$$

$$\xi = k(|a_1| + \dots + |a_{\lambda}|) + n + k + k\lambda .$$

Such a homomorphism is called *strict* [18, Définition 3.6] if $f_2 = f_3 = \cdots = 0$. In this case the condition (2) for $f = f_1$ has the following simple form:

$$f(\mu_k(a_1,\ldots,a_k)) = \mu'_k(f(a_1),\ldots,f(a_k))$$
.

An A(m)-algebra A is called *unitary*, if there exists a linear homogeneous map $\eta = \eta_A : \mathbf{k} \to A$ of degree zero such that

$$\mu_2(\mathrm{id} \otimes \eta) = \mu_2(\eta \otimes \mathrm{id}) = \mathrm{id},$$

$$\mu_k(\mathrm{id}^{\lambda} \otimes \eta \otimes \mathrm{id}^{k-\lambda-1}) = 0 \quad \text{for } 1 \le k \le m, \ k \ne 2 \text{ and } 0 \le \lambda \le k-1.$$

The element $1_A = \eta(1_k)$ is then called a *unit* of A. We will assume, similarly as in [18], that a unitary algebra A is automatically *augmented*, i.e. that there exists a strict homomorphism $\varepsilon = \varepsilon_A : A \to \mathbf{k}$ such that $\varepsilon \circ \eta = \mathrm{id}$; here we consider \mathbf{k} as an A(m)-algebra with $\mu_2(m, n) = m \cdot n$, $m, n \in \mathbf{k}$, and $\mu_k = 0$ for $k \neq 2$. A morphism $\{f_k \mid k \geq 1\}$ of two unitary A(m)-algebras is then required to satisfy, besides (2), also

$$\begin{split} &f_1 \circ \eta = \eta \;, \qquad \varepsilon \circ f_1 = \varepsilon \;, \\ &\varepsilon \circ f_k = 0 \;, \quad f_k (\mathrm{id}^\lambda \otimes \eta \otimes \mathrm{id}^{k-\lambda-1}) = 0 \qquad \text{for } k \geq 2 \text{ and } 0 \leq \lambda \leq k-1 \;. \end{split}$$

For such a unitary algebra A let $\bar{A} = \operatorname{Ker}(\varepsilon)$. Then \bar{A} can easily be shown to be an (nonunitary) A(m)-algebra which is called the *augmentation ideal* of A. On the other hand, for a nonunitary A(m)-algebra B there exists a natural structure of a unitary A(m)-algebra on $\tilde{B} = B \oplus \mathbf{k}$ such that $\eta(k) = 0 \oplus k$ and $\varepsilon(a \oplus k) = k$; the correspondence $A \mapsto \bar{A}$ and $B \mapsto \tilde{B}$ being one-to-one [18, Lemme 3.10].

Denote by A(m) the category of *unitary* A(m)-algebras and their *strict* homomorphisms. An algebra $(A, \mu_k) \in A(m)$ will be said to be *balanced* if $\mu_k \circ s_{i,k-i} = 0$ for $2 \le k \le m$ and $1 \le i \le k-1$. We denote by $A(m)_B$ the full subcategory of A(m) consisting of balanced algebras.

- **1.5. Example.** Let (C, ∂) be a differential graded algebra, $\deg(\partial) = -1$. Putting $\mu_1 = \partial$, $\mu_2(x, y) = x \cdot y$, $\mu_k = 0$ for $2 < k \le m$, then (C, μ_k) forms an A(m)-algebra for any $m \ge 2$ (compare also [22, p. 294, Proposition 2.2]). As $s(x \mid y) = x \otimes y (-1)^{|x| \cdot |y|} y \otimes x$, the A(m)-algebra (C, μ_k) is balanced if and only if C is commutative (in the graded sense). Clearly $(C, \mu_k) \in A(m)$ if and only if the algebra C is unitary and augmented in the usual sense.
- **1.6. Example.** In [22, p. 294], where A(m)-algebras were introduced for the first time, a slightly different sign convention than that used in formula (1) was introduced. Of course, both conventions are equivalent; if (A, m_k) is an A(m)-

algebra satisfying the sign convention of [22], then (A, μ_k) with $\mu_k = (-1)^{k(k-1)/2}m_k$, $1 \le k \le m$, is an A(m)-algebra satisfying our sign convention. Especially, if a topological space X admits an A_m -form [22, p. 279], then [22, p. 295, Theorem 2.3] shows that there exists a naturally induced structure of an A(m)-algebra (over \mathbb{Z}) on the singular complex $C_*(X)$, denoted by $(C_*(X), m_k)$; therefore $(C_*(X), \mu_k)$ with $\mu_k = (-1)^{k(k-1)/2}m_k$ is an A(m)-algebra in the sense used here.

1.7. Let $C = (C, \partial)$ be a chain algebra. We will consider it, as in Example 1.5, as an A(∞)-algebra with $\mu_1 = \partial$ and μ_2 = the product. Kadeishvili proved in [9, p. 232] the following theorem:

Theorem. Let (C, ∂) be a chain algebra such that H(C) is free (this is always the case over a field). Then there exists an $A(\infty)$ -structure $\{X_k \mid k \ge 1\}$ on the graded space H(C) having $X_1 = 0$ and $X_2(a, b) = a \cdot b$, together with an $A(\infty)$ -homomorphism $f: (H(C), X_k) \to (C, \mu_1, \mu_2, 0, \ldots)$ such that $f_1: H(C) \to C$ is a homology isomorphism. \square

Notice that the map f_1 need not be, in general, an algebra homomorphism. Nevertheless, the condition (2) gives, for n = 1, $\partial f_1 = 0$ which means that f_1 is a homomorphism of differential spaces (H(C), 0) and (C, ∂) . For n = 2 the condition (2) gives

$$f_1(a \cdot b) - f_1(a) \cdot f_1(b) = \partial f_2(a, b)$$

which means that f_1 is a homotopy multiplicative map of chain algebras (H(C), 0) and (C, ∂) , the homotopy being provided by f_2 .

The A(∞)-algebra $(H(C), X_k)$ whose existence is guaranteed by the theorem above, is called the *cohomology* $A(\infty)$ -algebra of C. Note that in the original formulation of [9] $X_2(a, b) = (-1)^{|a|+1}a \cdot b$. This change is due to different sign conventions used here. We prove the following theorem:

1.8. Theorem. Let C be a chain algebra as in 1.7. If it is commutative (in the graded sense), then the operations X_k , $k \ge 1$, can be constructed so that the cohomology $A(\infty)$ -algebra $(H(C), X_k)$ of C is balanced. Moreover, the homomorphism $f: (H(C), X_k) \to (C, \mu_1, \mu_2, 0, \ldots)$ can be constructed so that $f_k \circ s_{i,k-i} = 0$ for $k \ge 2$, $1 \le i \le k-1$.

Proof. Recall briefly the proof of [9]. Put $X_1 = 0$ and let $f_1 : H(C) \to C$ be a cycle-selection homomorphism.

Suppose that X_i and f_i have been already constructed for i < n. Then we can define the function $U_n : \bigotimes^n H(C) \to C$ by the formula $U_n = U_n^1 + U_n^2$, where

.

$$U_{n}^{1}(a_{1},...,a_{n})$$

$$= \sum_{t=1}^{n-1} (-1)^{(|a_{1}|+\cdots+|a_{t}|+t)(n+t+1)} \cdot \mu_{2}(f_{t}(a_{1},...,a_{t}), f_{n+t}(a_{t+1},...,a_{n})),$$

$$U_{n}^{2}(a_{1},...,a_{n})$$

$$= -\sum_{k=2}^{n-1} \sum_{\lambda=0}^{n-k} (-1)^{k(|a_{1}|+\cdots+|a_{\lambda}|)-\lambda+n+k+k\lambda} \cdot f_{n-k+1}(a_{1},...,a_{\lambda}, X_{k}(a_{\lambda+1},...,a_{\lambda+k}), a_{\lambda+k+1},...,a_{n})$$

$$(3)$$

which involves X_i and f_i for i < n only. Then $U_n(a_1, \ldots, a_n)$ can be shown to be a cycle and X_n is defined as $[U_n] \in H(C)$, the homology class of this cycle. Then $f_1 \circ X_n - U_n$ is homologous to zero and f_n is defined to satisfy $\partial f_n = f_1 \circ X_n - U_n$. Let us come back to the proof of our theorem. Suppose that it has been proved that f_i and X_i are zero on decomposables of the shuffle product for all i < n and prove it for i = n. From the construction of f_n and X_n as described above it is clear that it is enough to show that $U_n \circ s_{i,n-i} = 0$ for all $1 \le i \le n-1$. We choose such an i and prove this equality, i.e. prove that

$$U_n(s(a_1,\ldots,a_i \mid a_{i+1},\ldots,a_n)) = 0, \quad a_1,\ldots,a_n \in H(C).$$
 (4)

We prove first that the map U_n^{\perp} of (3) vanishes on $s(a_1, \ldots, a_i \mid a_{i+1}, \ldots, a_n)$. To this end, notice that, for any $0 \le t \le n$,

$$s(a_1,\ldots,a_i \mid a_{i+1},\ldots,a_n) = \sum_{\substack{0 \leq \alpha \leq i \\ 0 \leq \beta \leq n-i \\ \alpha + \beta = i}} (-1)^{|B_\alpha| + |C_\beta| + \beta(\alpha + i)} \cdot s(A_\alpha \mid C_\beta) \otimes s(B_\alpha \mid D_\beta),$$

where we have used the abbreviations $A_{\alpha} = (a_1, \ldots, a_n)$, $B_{\alpha} = (a_{\alpha+1}, \ldots, a_i)$, $C_{\beta} = (a_{i+1}, \ldots, a_{i+\beta})$ and $D_{\beta} = (a_{i+\beta+1}, \ldots, a_n)$, the meaning of the abbreviations like $|B_{\alpha}|$ being clear. Then $U_n^{\dagger}(s(a_1, \ldots, a_i | a_{i+1}, \ldots, a_n))$ is equal to

$$\sum_{i=1}^{n-1} \sum_{\substack{0 \leq \alpha \leq i \\ 0 \leq \beta \leq n-i \\ \alpha + \beta = t}} (-1)^{\{(i,A_{\alpha}) + |C_{\beta}| + t\}(n+t+1) + |B_{\alpha}| \cdot |C_{\beta}| + \beta(\alpha+i)\}} \cdot \mu_{2}(f_{t}(s(A_{\alpha} \mid C_{\beta})), f_{n-t}(s(B_{\alpha} \mid D_{\beta}))).$$
(5)

By our induction assumption on the functions f_i , i < n, the expression $\mu_2(f_i(s(s(A_\alpha \mid C_\beta))), f_{n-i}(s(B_\alpha \mid D_\beta)))$ is zero for $(\alpha, \beta) \neq (0, 0), (i, 0), (0, n-i), (i, n-i)$, therefore (5) reduces to

$$\begin{split} &(-1)^{(|A_i|+i)(n+i+1)} \cdot \mu_2(f_i(A_i), f_{n-i}(D_0)) \\ &+ (-1)^{\{(|C_{n-i}|+n+i)(i+1)+|B_0|\cdot|C_{n-i}|+(n+i)i\}} \cdot \mu_2(f_{n-i}(C_{n-i}), f_i(B_0)) \,, \end{split}$$

which is easily seen to be zero, observing that $B_0 = A_i$, $D_0 = C_{n-i}$ and using the commutativity of μ_2 .

To finish, we must prove also that $U_n^2(s(a_1,\ldots,a_i\mid a_{i+1},\ldots,a_n))=0$. First, let $\alpha, \beta, \gamma, \delta$ be natural numbers with $0 \le \alpha + \beta \le i$, $0 \le \gamma + \delta \le n - i$ and let $A_{\alpha} = (a_1, \ldots, a_{\alpha}), B_{\beta} = (a_{\alpha+1}, \ldots, a_{\alpha+\beta}), C_{\alpha\beta} = (a_{\alpha+\beta+1}, \ldots, a_i), D_{\gamma} = (a_{\alpha+\beta+1}, \ldots, a_i)$ $(a_{i+1},\ldots,a_{i+\gamma}),\ E_{\delta}=(a_{i+\gamma+1},\ldots,a_{i+\gamma+\delta})$ and $F_{\gamma\delta}=(a_{i+\gamma+\delta+1},\ldots,a_n)$. Then, for fixed λ and k with $\lambda + k \le n$, we can easily prove that

$$s(a_{1},\ldots,a_{i}\mid a_{i+1},\ldots,a_{n})$$

$$=\sum_{\substack{0\leq\alpha+\beta\leq i\\0\leq\gamma+\delta\leq n-i\\\alpha+\gamma=\lambda,\beta+\delta=k}} (-1)^{\phi} \cdot s(A_{\alpha}\mid D_{\gamma}) \otimes s(B_{\beta}\mid E_{\delta}) \otimes s(C_{\alpha\beta}\mid F_{\gamma\delta})$$

with

$$\phi = |C_{\alpha\beta}| \cdot (|E_{\delta}| + |D_{\gamma}|) + |D_{\gamma}| \cdot |B_{\beta}| + (\delta + \gamma)(i + \alpha + \beta) + \gamma\beta.$$

Therefore $U_n^2(s(a_1,\ldots,a_i\mid a_{i+1},\ldots,a_n))$ is equal to

$$\sum_{\substack{2 \le k \le n-1 \\ 0 \le \lambda \le n-k}} \sum_{\substack{0 \le \alpha + \beta \le i \\ 0 \le \gamma + \delta \le n-i \\ \alpha + \gamma = \lambda, \beta + \delta = k}} (-1)^{\psi} \cdot f_{n-k+1}(s(A_{\alpha} \mid D_{\gamma}), X_{k}(s(B_{\beta} \mid E_{\delta})),$$

 $s(C_{\alpha\beta} \mid F_{\gamma\delta}))$,

where

$$\psi = k(|A_{\alpha}| + |D_{\gamma}|) + |C_{\alpha\beta}| \cdot (|E_{\delta}| + |D_{\gamma}|) + |D_{\gamma}| \cdot |B_{\beta}|$$
$$+ \lambda + n + k + k\lambda + (\delta + \gamma)(i + \alpha + \beta) + \gamma\beta.$$

By our induction assumption $X_k(s(B_\beta \mid E_\delta)) = 0$ for $\beta \neq 0 \neq \delta$, hence the sum above reduces to

$$\sum_{\substack{2 \le k \le n-1 \\ \gamma+k \le n-i}} \sum_{\substack{0 \le \alpha \le i \\ \gamma+k \le n-i}} (-1)^{\theta} \cdot f_{n-k+1}(s(A_{\alpha} \mid D_{\gamma}), X_{k}(E_{k}), s(C_{\alpha 0} \mid F_{\gamma k})) \\
+ \sum_{\substack{2 \le k \le n-1 \\ 0 \le \gamma \le n-i}} \sum_{\substack{\alpha+k \le i \\ 0 \le \gamma \le n-i}} (-1)^{\pi} \cdot f_{n-k+1}(s(A_{\alpha} \mid D_{\gamma}), X_{k}(B_{k}), s(C_{\alpha k} \mid F_{\gamma 0})), \tag{6}$$

where

$$\theta = k(|A_{\alpha}| + |D_{\alpha}|) + |C_{\alpha \alpha}| \cdot (|E_k| + |D_{\gamma}|)$$
$$+ \alpha + \gamma + n + k + k(\alpha + \gamma) + (k + \gamma)(i + \alpha)$$

and

$$\pi = k(|A_{\alpha}| + |D_{\gamma}|) + |C_{\alpha k}| \cdot |D_{\gamma}| + |D_{\gamma}| \cdot |B_{k}|$$
$$+ n + k + \alpha + \gamma + k(\alpha + \gamma) + \gamma(i + \alpha + k) + \gamma k.$$

On the other hand, for a fixed γ we have

$$s(a_{1},...,a_{i} | D_{\gamma}, X_{k}(E_{k}), F_{\gamma k})$$

$$= \sum_{0 \le \alpha \le i} (-1)^{|C_{\alpha 0} - (|D_{\gamma}| + |E_{k}| + k) + (i + \alpha)(\gamma + 1)} \cdot s(A_{\alpha} | D_{\gamma}) \otimes X_{k}(E_{k}) \otimes s(C_{\alpha 0} | F_{\gamma k}).$$
(7)

The first summation in (6) is of the form

$$\begin{split} \sum_{\substack{\frac{2+k+n-1}{\gamma+n-k+i}}} \sum_{\substack{0 \leq \alpha \leq i}} C \cdot (-1)^{|C_{\alpha 0} \cdot (|D_{\gamma}| + |E_k| + k) + (i+\alpha)(\gamma+1)} \\ \cdot f_{n-k+1}(s(A_{\alpha} \mid D_{\gamma}), X_k(E_k), s(C_{\alpha 0} \mid F_{\gamma k})) \,, \end{split}$$

where the number $C = \pm 1$ does not depend on α ; this shows, by (7) and the induction assumption that it is zero. A similar discussion applies also to the second summation in (6) and this completes our verification of formula (4). \square

1.9. Example. All graded vector spaces in this example will be tacitly assumed of finite type. For the notation see 1.1 and 1.4. For a graded vector space V we have the natural map $\uparrow: V \rightarrow \uparrow V$; let \uparrow denote $\bigotimes^n \uparrow: \bigotimes^n V \rightarrow \bigotimes^n \uparrow V$, the meaning of \downarrow being analogous. Notice that \uparrow $\circ \downarrow$ $\circ \uparrow$ = \downarrow $\circ \uparrow$ $\circ \uparrow$ = $(-1)^{n(n-1)/2} \cdot id$.

Let $A = (A, \mu_k)$ be an A(m)-algebra. Denote $\tilde{\Omega}(A) = (T(\downarrow \# \hat{A}), \vartheta)$, where $\vartheta = \vartheta_1 + \vartheta_2 + \cdots + \vartheta_m$ is the derivation defined by $\vartheta_k|_{\downarrow \# \hat{A}} = \downarrow^k \# \hat{\mu}_k \uparrow$, where $\bar{\mu}_k = \mu_k|_{\bigotimes_k A}$. Then $\deg(\vartheta) = -1$ and (1) easily implies that $\pi_{-m} \circ \vartheta^2 = 0$, where $\pi_{\geq m} : T(\downarrow \# \hat{A}) \to \bigotimes^m (\downarrow \# \hat{A})$ is the natural projection. On the other hand, starting from $(T(V), \vartheta)$, where the derivation $\vartheta = \vartheta_1 + \cdots + \vartheta_m$ of degree -1 satisfies $\pi_{-m} \circ \vartheta^2 = 0$, it is easy to see that the object $(B, \bar{\mu}_k)$, where $B = (\uparrow \# V)^*$ and $\bar{\mu}_k$ is, for $1 \leq k \leq m$, defined by $\hat{\mu}_k = (-1)^{k(k-1)/2} \uparrow \# (\vartheta_k|_V) \downarrow^k$, is an A(m)-algebra. Denoting $B = \tilde{\Omega}^{-1}(TV, \vartheta)$, it is not hard to see that $\tilde{\Omega}$ and $\tilde{\Omega}^{-1}$ are inverse functors. We have obtained an equivalence of the category of unitary A(m)-algebras of finite type and the category whose objects have the form

 $(T(V), \partial)$, where $\partial = \partial_1 + \cdots + \partial_m$ is a derivation of degree -1, $\pi_{\leq m} \circ \partial^2 = 0$, and whose morphisms are algebra homomorphisms, $f: TV \to TW$ with $f(V) \subset W$, which commute with the differentials. For $m = \infty$ this is the category of free differential graded (chain) algebras and their *linear* homomorphisms.

Suppose that the A(m)-algebra A is balanced and let $\Omega(A) = (TV, \partial)$. Then $\partial(LV) \subset LV$, where LV denotes the free graded Lie algebra on V [24, 0.4.(11)]. This is an easy consequence of the fact that the kernel of the natural map $\#J: \#TV \to \#LV$, where $J: LV \to TV$ is the natural inclusion, consists of decomposables of the shuffle product (an easy graded version of [20, Theorem 2.2]). Thus it makes sense to denote $\tilde{\mathcal{L}}(A) = (LV, \partial|_{LV})$. Similarly, it is easily seen that, if $\partial(LV) \subset LV$, then $\tilde{\Omega}^{-1}(TV, \partial) \in \mathbf{A}(m)_{\mathrm{B}}$. We have chosen the notation $\tilde{\Omega}$ and $\tilde{\mathcal{L}}$ to emphasize the analogy with the functors \mathcal{L}_* and Ω defined in [24, 1.1.(7)] and [7, Appendix].

1.10. Let A be a unitary A(m)-algebra and M a graded vector space. Denote

$$J_{A,M}^{k} = \bigoplus_{j=1}^{k} \left[\bigotimes^{j-1} A \otimes M \otimes \bigotimes^{k-j} A \right] \subset T(A, M).$$

Then the space M together with a set $\{\mu_k : J_{A,M}^k \to M \mid 1 \le k \le m\}$ of linear maps, $\deg(\mu_k) = k - 2$, is said to be an A-bimodule, if the equality

$$\sum_{\lambda=0}^{n-1} \sum_{k=1}^{n-\lambda} (-1)^{k+\lambda+k\lambda+k(|a_1|+\dots+|a_{\lambda}|)} \cdot \mu_{n-k+1}(a_1,\dots,a_{\lambda},\mu_k(a_{\lambda+1},\dots,a_{\lambda+k}),a_{\lambda+k+1},\dots,a_n) = 0$$
(8)

(formally the same as (1)) is satisfied for all $n \le m$ and $(a_1, \ldots, a_n) \in J_{A,M}^n$, and if

$$\mu_2(\mathrm{id} \otimes \eta) = \mu_2(\eta \otimes \mathrm{id}) = \mathrm{id} ,$$

$$\mu_k(\mathrm{id}^{\lambda} \otimes \eta \otimes \mathrm{id}^{k-\lambda-1}) = 0 \quad \text{for } 3 \le k \le m \text{ and } 0 \le \lambda \le k-1 .$$
(9)

Notice that for the homogeneity of our notation we denote by the same symbol both the 'multiplication' in A and the operations on M. Let $M = (M, \mu_k)$ and $M' = (M', \mu'_k)$ be two A-bimodules. By a morphism of M and M' of degree p we mean here a linear map $f: M \to M'$ of degree p satisfying for all homogeneous $a_1, \ldots, a_{i-1}, a_{i+1}, \ldots, a_n \in A, m \in M$, with $1 \le j \le n, n \le m$:

$$f(\mu_n(a_1,\ldots,a_{j-1},m,a_{j+1},\ldots,a_n))$$

$$= (-1)^{pn+p(|a_1|+\cdots+|a_{j-1}|)} \cdot \mu'_n(a_1,\ldots,a_{j-1},f(m),a_{j+1},\ldots,a_n).$$

The set of all homomorphisms of degree p will be denoted $\operatorname{Hom}_{A\operatorname{-biMod}}^p(M,M')$.

The category of A-bimodules and their homomorphisms of degree zero will be denoted by A-bi**Mod**. Denote also by A-bi**Mod**_B the full subcategory of A-bi**Mod** of all balanced bimodules, i.e. bimodules (M, μ_k) satisfying

$$\mu_n(s(a_1,\ldots,a_i \mid a_{i+1},\ldots,a_n)) = 0$$
 (10)

for all $1 \le n \le m$, $1 \le j \le n - 1$ and $(a_1, \dots, a_n) \in J_{A/M}^n$.

1.11. Example. Let A be a (graded) algebra. We can relate with A the category \mathbf{Mod}_{A-A} of A-bimodules in the traditional sense [11, V.3]. On the other hand, we can consider our algebra A as an $A(\infty)$ -algebra (Example 1.5) and take the category A-bi**Mod** of A-bimodules in the sense of 1.10. Any element $M \in \mathbf{Mod}_{A-A}$ can be considered as an element $(M, \mu_k) \in A$ -bi**Mod** with $\mu_2(a, m) = am$, $\mu_2(m, b) = mb$ for $a, b \in A$ and $m \in M$, and $\mu_k = 0$ for $k \neq 2$. This correspondence identifies the category \mathbf{Mod}_{A-A} with a full subcategory of A-bi**Mod**, the inclusion being strict in general. We hope that it will be always clear from the context whether, for an algebra A, by an A-bimodule we mean an element of \mathbf{Mod}_{A-A} or an element of A-bi**Mod**.

For a category \mathcal{D} and an object A of \mathcal{D} denote by \mathcal{D}/A the category of objects of \mathcal{D} over A. The following lemma shows that A-bi**Mod** (resp. A-bi**Mod**_B) are appropriate coefficient categories for our cohomology theories.

1.12. Proposition. Let A be an A(m)-algebra. Then the category A-bi**Mod** is equivalent with the category $(\mathbf{A}(m)/A)_{ab}$ of Abelian group objects in the category $\mathbf{A}(m)/A$. Similarly, A-bi**Mod**_B is equivalent with the category $(\mathbf{A}(m)_B/A)_{ab}$.

Proof. Recall first some definitions. Let \mathscr{D} be a category with finite products and a terminal object T (this is the case of A(m)/A). Following the definitions of [12, p. 75], an abelian group object in \mathscr{D} is an object $X \in Ob(\mathscr{D})$ together with three maps $\mu: X \times X \to X$, $\zeta: T \to X$ and $\iota: X \to X$ such that:

- (1) μ has the standard commutativity and associativity properties,
- (2) the diagrams

$$\begin{array}{c|cccc} X\times X & \xrightarrow{\mu} & X & & X\times X & \xrightarrow{\mu} & X \\ & \uparrow_{\mathrm{id}_{\chi}\times\zeta} & & & & & \uparrow_{\zeta\times\mathrm{id}_{X}} & \\ X\times T & \xrightarrow{(\mathrm{id}_{\chi},I_{X})} & X & & & & T\times X & \xrightarrow{(t_{\chi},\mathrm{id}_{\chi})} X \end{array}$$

where $t_X: X \to T$ is the unique map (notice that (id_X, t_X) and (t_X, id_X) are actually isomorphisms), are commutative and also

(3) the diagrams

$$\begin{array}{cccc} X \times X & \xrightarrow{\mu} & X & & X \times X & \xrightarrow{\mu} & X \\ & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & &$$

are commutative.

Let \mathscr{D}_{ab} be the category whose objects are abelian group objects (X, μ, ζ, ι) in \mathscr{D} as above and the hom-set $\operatorname{Hom}_{\mathscr{D}_{ab}}((X, \mu, \zeta, \iota), (X', \mu', \zeta', \iota'))$ is the set of all $f \in \operatorname{Hom}_{\mathscr{D}}(X, X')$ for which $\mu'(f \times f) = f \circ \mu$, $\zeta' = f \circ \zeta$ and $\iota' \circ f = f \circ \iota$. Notice that if \mathscr{D} has a zero object (i.e. an object which is both terminal and initial), the definition of \mathscr{D}_{ab} can be reduced to the form as it is given for example in [8, p. 58]. This is, however, not the case of A(m)/A, this category has both an initial object (given by the augmentation $\varepsilon : \mathbf{k} \to A$) and terminal object (given by the identity $\operatorname{id}_A : A \to A$) but these objects, for $\mathbf{k} \neq A$, do not coincide.

Let us begin our discussion of the case $\mathfrak{D} = \mathbf{A}(m)/A$. As we have already observed, the identity map $\mathrm{id}_A : A \to A$ is the terminal object of this category. Let $X = (B \xrightarrow{\alpha} A)$ be an abelian group object in $\mathbf{A}(m)/A$ and let μ , ζ and ι be as above. The very existence of ζ immediately implies the existence of some $s : A \to B$ (morphism in $\mathbf{A}(m)$) such that the diagram

$$\begin{array}{ccc}
A & \xrightarrow{s} & B \\
\downarrow \operatorname{id}_{A} & & \downarrow \alpha \\
A & & & A
\end{array}$$

is commutative, i.e. $\alpha \circ s = \mathrm{id}_A$. In other words, α is a *spitting epimorphism*, the splitting being a part of the structure.

We show that both μ and ι are entirely determined by the splitting s. First, notice that $X \times X$ is given by the pullback $E \xrightarrow{\bar{\alpha}} A$, with $E = \{(b, b') \in B \oplus B \mid \alpha(b) = \alpha(b')\}$ and $\bar{\alpha}(b, b') = \alpha(b)$. Suppose that $\mu : X \times X \to X$ is represented by a map $M : E \to B$ for which, of course, the diagram

$$E \xrightarrow{M} B$$

$$\downarrow_{\bar{\alpha}} \qquad \qquad \alpha \downarrow$$

$$A \xrightarrow{\mathrm{id}_{A}} A$$

commutes, i.e. $\alpha M(b, b') = \alpha(b)$, for $(b, b') \in E$. In our setting, it is not hard to rewrite the second condition as

$$M(s\alpha(b), b) = M(b, s\alpha(b)) = b.$$
(11)

Let $(b, b') \in E$. Using the vector-space structure of E, we have the following equation in E:

$$(b, b') = (b - s\alpha(b) + s\alpha(b), b' - s\alpha(b') + s\alpha(b'))$$
$$= (s\alpha(b), s\alpha(b)) + (b - s\alpha(b), 0) + (0, b' - s\alpha(b)),$$

consequently

$$M(b,b') = M(s\alpha(b),s\alpha(b)) + M(0,b'-s\alpha(b)) + M(b-s\alpha(b),0).$$

Writing in (11) $s\alpha(b)$ instead of b (and invoking $\alpha s = id$) we get that $M(s\alpha(b), s\alpha(b)) = s\alpha(b)$. Similarly, noticing that $\alpha(b - s\alpha(b)) = 0$, (11) gives, for $b - s\alpha(b)$ in place of b, $M(b - s\alpha(b), 0) = b - s\alpha(b)$ and, similarly, $M(0, b' - s\alpha(b)) = b' - s\alpha(b)$. Thus the identities above give

$$M(b, b') = b + b' - s\alpha(b) \quad (= b + b' - s\alpha(b')).$$
 (12)

By exactly the same method we can prove also that $\iota: X \to X$ is given by $Z: B \to B$ defined as

$$Z(b) = 2s\alpha(b) - b. (13)$$

On the other hand, given a splitting s, it is easy to verify that (12) and (13) define an abelian group structure on $X = (B \xrightarrow{\alpha} A)$. Now it is clear that the category $(\mathbf{A}(m)/A)_{ab}$ can be described as the category whose objects are triples (B, α, s) , where $B \in \mathbf{A}(m)$, $\alpha \in \mathrm{Hom}_{\mathbf{A}(m)}(B, A)$ and $s \in \mathrm{Hom}_{\mathbf{A}(m)}(A, B)$ are maps with $\alpha \circ s = \mathrm{id}_A$. The morphism from (B, α, s) to (B', α', s') is then a map $f \in \mathrm{Hom}_{\mathbf{A}(m)}(B, B')$ such that $\alpha'f = \alpha$ and fs = s'.

Put $F(B, \alpha, s) = \text{Ker}(\alpha)$ and define on $\text{Ker}(\alpha)$ the structure of an A-bimodule by

$$\mu_k(a_1, \dots, a_{j-1}, x, a_{j+1}, \dots, a_k)$$

$$= \nu_k(s(a_1), \dots, s(a_{i-1}), x, s(a_{i+1}), \dots, s(a_k)),$$

where ν_k are, for $1 \le k \le m$, the structure maps of $B, a_1, \ldots, a_{j-1}, a_{j+1}, \ldots, a_k \in A$ and $x \in \text{Ker}(\alpha)$. This clearly defines a functor $F: (\mathbf{A}(m)/A)_{ab} \to A\text{-bi}\mathbf{Mod}$.

On the other hand, let $M \in A$ -bi**Mod** and define on $A \oplus M$ the structure of an A(m)-algebra by

$$\nu_{k}(a_{1} \oplus x_{1}, \dots, a_{k} \oplus x_{k})$$

$$= \mu_{k}(a_{1}, \dots, a_{k}) \oplus \left\{ \sum_{1 \leq i \leq k} \mu_{k}(a_{1}, \dots, a_{j-1}, x_{j}, a_{j+1}, \dots, a_{k}) \right\}$$

for $1 \le k \le m$, $a_1, \ldots, a_k \in A$ and $x_1, \ldots, x_k \in M$. Let $G(M) = (A \oplus M, \pi_A, s_A)$, where $A \oplus M$ has the A(m)-structure as above, $\pi_A(a, x) = a$ and $s_A(a) = (a, 0)$ for $a \in A$ and $x \in M$. This clearly defines a functor G : A-bi $Mod \rightarrow (A(m)/A)_{ab}$.

It is immediate to see that FG is the identity functor. On the other hand, for $(B, \alpha, s) \in (\mathbf{A}(m)/A)_{ab}$ we have $GF(B, \alpha, s) = (A \oplus \mathrm{Ker}(\alpha), \pi_A, s_A)$ and the map $M \to A \oplus \mathrm{Ker}(\alpha)$ given by $b \mapsto (\alpha(b), b - s\alpha(b))$ clearly defines a natural equivalence of GF and the identity functor. This finishes the proof. The argument for balanced categories is the same. \square

Now we give an alternative description of the category A-bi \mathbf{Mod}_B . By a left A-module we mean a graded vector space M together with a set $\{\mu_k: \bigotimes^{k-1} A \otimes M \to M \mid 1 \le k \le m\}$ of linear maps, $\deg(\mu_k) = k-2$, satisfying (8) for all $(a_1, \ldots, a_n) \in \bigotimes^{n-1} A \otimes M$, $1 \le n \le m$, and satisfying also the evident version of (9). By a morphism of degree p of two left A-modules (M, μ_k) and (M', μ'_k) we mean a homogeneous linear map $f: M \to M'$ of degree p satisfying

$$f(\mu_n(a_1,\ldots,a_{n-1},m))=(-1)^{pn+p(|a_1|+\cdots+|a_{n-1}|)}\mu'_n(a_1,\ldots,a_{n-1},f(m))$$

for all homogeneous $a_1 \otimes \cdots \otimes a_{n-1} \otimes m \in \bigotimes^{n-1} A \otimes M$, $1 \leq n \leq m$. The category of left A-modules and their homomorphisms of degree zero will be denoted A-left**Mod.**

1.13 Proposition. Suppose that the A(m)-algebra A is balanced. Then the categories A-bi \mathbf{Mod}_{B} and A-left \mathbf{Mod} are equivalent.

Proof. We will construct inverse functors $G: A\text{-biMod}_B \to A\text{-leftMod}$ and $F: A\text{-leftMod} \to A\text{-biMod}_B$. For $(M, \mu_k) \in A\text{-biMod}_B$, let $G(M, \mu_k) = (M, \nu_k)$, where ν_k is simply the restriction $\mu_k \big|_{\bigotimes_{k=1} A \otimes M}$, $1 \le k \le m$. This clearly defines a functor $G: A\text{-biMod}_B \to A\text{-leftMod}$.

On the other hand, let $(M, \nu_k) \in A$ -left**Mod**. For $1 \le k \le m$, $1 \le j \le k$, $a_1, \ldots, a_{j-1}, a_{j+1}, \ldots, a_k \in A$ and $m \in M$ define

$$\mu_{k}(a_{1}, \dots, a_{j-1}, m, a_{j+1}, \dots, a_{k})$$

$$= \chi(\rho; a_{j+1}, \dots, a_{k}) \cdot (-1)^{|m| \cdot (|a_{j+1}| + \dots + |a_{k}|)}$$

$$\cdot \nu_{k}(s(a_{1}, \dots, a_{j-1} | a_{k}, a_{k-1}, \dots, a_{j+1}), m)$$
(14)

(for the notation see 1.3). It can be easily verified that the above formula defines a functor $F: A\text{-left}\mathbf{Mod} \to A\text{-bi}\mathbf{Mod}_B$. The fact that $G \circ F = \text{id}$ is clear. Using 1.3(iv) and the commutativity 1.3(ii) of the shuffles, we see immediately that in the balanced bimodule (M, μ_k) the following condition is always satisfied:

$$\mu_{k}(a_{1}, \dots, a_{j-1}, m, a_{j+1}, \dots, a_{k})$$

$$= \chi(\rho; a_{j+1}, \dots, a_{k}) \cdot (-1)^{(|a_{j+1}| + \dots + |a_{k}|)(|a_{1}| + \dots + |a_{j-1}| + |m|) + (j+k)(j+1)} \cdot \mu_{k}(s(a_{k}, \dots, a_{j+1} | a_{1}, \dots, a_{j-1}), m)$$

$$= \chi(\rho; a_{j+1}, \dots, a_{k}) \cdot (-1)^{|m| \cdot (|a_{j+1}| + \dots + |a_{k}|)} \cdot \mu_{k}(s(a_{1}, \dots, a_{j-1} | a_{k}, a_{k-1}, \dots, a_{j+1}), m).$$
(15)

Comparing it with the equation (14) defining the functor F we see also that $F \circ G = \mathrm{id}$. \square

The above theorem clearly generalizes the following well-known simple observation. Let A be a graded commutative algebra. Then the category of left (graded) A-modules is equivalent with the full subcategory of the category of A-bimodules consisting of bimodules satisfying $a \cdot m = (-1)^{|a| \cdot |m|} m \cdot a$ for each $a \in A$ and $m \in M$.

1.14. Let now \bigcirc : A-bi**Mod** \rightarrow **Vect** to the 'underlying' functor. It has, as does every algebraic functor by [10, p. 870], a left adjoint $F: \mathbf{Vect} \rightarrow A$ -bi**Mod**. For a graded vector space V it is then natural to call F(V) the *free* A-bimodule on V. It comes together with an adjunction unit $\varepsilon: V \rightarrow FV$ and it is characterized by an obvious universal property. An explicit description of FV can be obtained as follows. Take $\tilde{F}_0V = V$ and let

$$\widetilde{F}_{i+1}V = \bigoplus_{\substack{1 \leq k \leq m \\ 1 \leq i \leq k}} \bigotimes^{j-1} A \otimes \widetilde{F}_{i}V \otimes \bigotimes^{k-j-1} A.$$

For $a_1, \ldots, a_{j-1}, a_{j+1}, \ldots, a_k \in A$ and $m \in \tilde{F}_i V$ write $\mu_k(a_1, \ldots, a_{j-1}, m, a_{j+1}, \ldots, a_k) = a_1 \otimes \cdots \otimes a_{j-1} \otimes m \otimes a_{j+1} \otimes \cdots \otimes a_k \in \tilde{F}_{i+1} V$. Then FV is $\tilde{F}V = \bigoplus_{i \geq 0} \tilde{F}_i V$ factored subject to the relations (8) and (9) and ε is defined as the composition $V = \tilde{F}_0 V \hookrightarrow \bigoplus_{i \geq 0} \tilde{F}_i V \xrightarrow{\text{projection}} FV$. The map ε can be easily shown to be an injection and we will identify elements of V and their images under the map ε .

1.15. Lemma. Let V be a graded space and let $M = (M, \mu_k) \in A$ -bi**Mod**. Then for any homogeneous linear map $f: V \to M$ of graded vector spaces of degree p there exists a unique $\phi \in \operatorname{Hom}_{A-\operatorname{biMod}}^p(FV, M)$ with $\phi \circ \varepsilon = f$.

Proof. Put $\tilde{\phi}|_{V} = f$ and suppose we have already defined $\tilde{\phi}$ on $\tilde{F}_{i}V$ for $i \leq q$. The formula

$$\widetilde{\phi}(\mu_k(a_1,\ldots,a_{j-1},m,a_{j+1},\ldots,a_k))
= (-1)^{p(|a_1|+\cdots+|a_{j-1}|)+pk} \cdot \mu_k(a_1,\ldots,a_{j+1},\widetilde{\phi}(m),a_{j+1},\ldots,a_k)$$

then defines $\tilde{\phi}$ on $\tilde{F}_{q+1}V$ and this process gives rise to a map $\tilde{\phi}: \tilde{F}V \to M$. This map clearly factors through the projection $\tilde{F}V \to FV$ to give the requisite ϕ . The uniqueness is a consequence of the clear fact that FV is generated by V as an A(m)-bimodule. \square

Similarly, we define the notion of the free balanced A-bimodule on a graded vector space V, denoted by F_BV . The adjunction unit $\varepsilon_B: V \to F_BV$ determines a canonical epimorphism $\pi: FV \to F_BV$. Clearly F_BV can be thought of as FV factored by the relations (10). This has the following consequence:

1.16 Lemma. Let $f: FV \to FV$ be a homomorphism of degree p. Then there exists a unique homomorphism $f_B: F_BV \to F_BV$ such that $f_B \circ \pi = \pi \circ f$.

The next statement is merely an observation.

1.17. Observation. For a graded space V and $M \in A$ -bi \mathbf{Mod}_{B} the map $\pi : FV \rightarrow F_{B}V$ induces, for any p, an isomorphism

$$\pi^p : \operatorname{Hom}_{A-\operatorname{biMod}_{\mathbf{p}}}^p(F_{\mathbf{B}}V, M) \cong \operatorname{Hom}_{A-\operatorname{biMod}}^p(FV, M)$$
.

2. Cohomology theory of A(m)-algebras

From now on, all A(m)-algebras will be tacitly assumed to be unitary and augmented (see 1.4). For such an algebra $A = (A, \mu_k)$, the augmentation ideal will be denoted $\bar{A} = (\bar{A}, \bar{\mu}_k)$.

2.1. For an A(m)-algebra A let $\mathcal{B}^n(A)$ be, for $n \ge 0$, the free A-bimodule (see 1.14) on the space $\bar{A} \otimes \cdots \otimes \bar{A}$ (n-times) graded by $\deg([a_1, \ldots, a_n]) = \sum_{i=1}^n \deg(a_i) + n - 1$, here we denote as usually in this context, $a_1 \otimes \cdots \otimes a_n$ by $[a_1, \ldots, a_n]$. For $1 \le k \le n + 1$ define the linear map $\partial_E^k : \bigotimes^n \bar{A} \to \mathcal{B}^{n-k+1}(A)$ of degree -1 by

$$\hat{\sigma}_{E}^{k}([a_{1},\ldots,a_{n}]) \\
= -\sum_{\lambda=0}^{k-1} (-1)^{(n+k)(|a_{1}|+\cdots+|a_{\lambda}|+\lambda)} \\
\cdot \mu_{k}(a_{1},\ldots,a_{\lambda},[a_{\lambda+1},\ldots,a_{\lambda+n-k+1}],a_{\lambda+n-k+2},\ldots,a_{n}),$$

for k > n+1 put $\partial_E^k = 0$. For $1 \le k \le n$ define also the linear map $\partial_I^k : \bigotimes^n \bar{A} \to \mathcal{B}^{n-k+1}(A)$ of degree -1 by

160 M. Markt

$$\partial_{I}^{k}([a_{1}, \dots, a_{n}])
= \sum_{\lambda=0}^{n-k} (-1)^{k(|a_{1}|+\dots+|a_{\lambda}|+\lambda)+\lambda+n+k}
\cdot [a_{1}, \dots, a_{\lambda}, \mu_{k}(a_{\lambda+1}, \dots, a_{\lambda+k}), a_{\lambda+k+1}, \dots, a_{n}],$$

for k > n put $\partial_I^k = 0$. Notice that $\partial_E^{n+1}([a_1, \dots, a_n])$ may be nonzero while $\partial_I^{n+1}([a_1, \dots, a_n])$ is always trivial be definition. By Lemma 1.15 these maps induce unique homomorphisms (denoted by the same symbol), $\partial_E^k, \partial_I^k : \mathcal{B}^n(A) \to \mathcal{B}^{n-k+1}(A)$ of A-bimodules of degree -1. Finally, let $\partial_E = \sum_{k=1}^m \partial_E^k, \partial_I = \sum_{k=1}^m \partial_I^k$ and $\partial_I = \partial_I + \partial_I$. Then ∂_I is an endomorphism of the A-bimodule $\mathcal{B}_{(m)}(A) := \bigoplus_{0 \le n \le m} \mathcal{B}^n(A)$ of degree -1. It can be easily verified, using the 'associativity' relation (1) that $\partial \circ \partial_I = 0$.

2.2. For an A-bimodule M define

$$C_{(m)}^p(A; M) = \operatorname{Hom}_{A-\operatorname{biMod}}^{-p+1}(\mathscr{B}_{(m)}(A), M)$$
.

The formula $\delta = -\operatorname{Hom}_{A=\operatorname{biMod}}(\partial, M)$ then defines a differential of degree +1 on $C^*_{(m)}(A, M)$ (one has $\delta f = (-1)^p f \partial$ for $f \in C^p_{(m)}(A, M)$) and the cohomology of A with coefficients in M is defined as

$$H_{(m)}^*(A; M) = H(C_{(m)}^*(A; M), \delta)$$

(for our degree and sign conventions see 3.6). Properties of free bimodules give rise to the natural identification

$$C_{(m)}^*(A; M) = \operatorname{Hom}_{\operatorname{Vect}}^{-*} \left(\bigoplus_{0 \le k \le m} \bigotimes^k \uparrow \bar{A}, M \right).$$

Under this identification, the differential δ takes the form

$$\delta f(a_{1}, \dots, a_{n}) = \sum_{k=1}^{n} \sum_{\lambda=0}^{n-k} (-1)^{k(|a_{l}| + \dots + |a_{\lambda}| + \lambda) \cdot p + \lambda + n + k} \\
\cdot f(a_{1}, \dots, a_{\lambda}, \mu_{k}(a_{\lambda+1}, \dots, a_{\lambda+k}), a_{\lambda+k+1}, \dots, a_{n}) \\
- \sum_{k=1}^{n+1} \sum_{\lambda=0}^{k-1} (-1)^{(n+k+p)(|a_{1}| + \dots + |a_{\lambda}|) + p(k+1) + (n+k)\lambda} \\
\cdot \mu_{k}(a_{1}, \dots, a_{\lambda}, f(a_{\lambda+1}, \dots, a_{\lambda+n+k+1}), \\
a_{\lambda+n-k+2}, \dots, a_{n}) \tag{16}$$

for $f \in C_{(m)}^p(A; M)$ and $a_1, \ldots, a_n \in \uparrow \bar{A}, 1 \le n \le m$.

2.3. Let $\mathcal{B}B^n(A)$ be, for $n \ge 0$, the *balanced* free A-bimodule on $\bigotimes^n \bar{A}$ with the same degree convention as in 2.1. By Lemma 1.16 the differential ∂ defines a differential ∂ on $\mathcal{B}B_{(m)}(A) = \bigoplus_{0 \le n \le m} \mathcal{B}B^n(A)$. Notice that, by Observation 1.17, for a *balanced* A-bimodule M,

$$C_{(m)}^*(A; M) \cong \operatorname{Hom}_{A \cdot \operatorname{biMod}_{\mathbf{R}}}^{-*+1}(\mathscr{B}B_{(m)}(A), M)$$

and the differential $-\operatorname{Hom}_{A\operatorname{-biMod}_B}({}_B\partial,M)$ clearly coincides with δ defined above. Therefore, for such a bimodule the cohomology $H_{(m)}(A;M)$ can be computed with the aid of the complex $(\mathcal{B}B_{(m)}(A),{}_B\partial)$. This complex will play an important rôle in our cohomology theory for balanced algebras.

The shuffles $s_{i,n-i}: \bigotimes^n \bar{A} \to \bigotimes^n \bar{A}$ induce, for $0 \le i \le n$, n > 0, the linear maps (denoted by the same symbol) $s_{i,n-i}: \mathcal{B}^n(A) \to \mathcal{B}^n(A)$ and $s_{i,n-i}: \mathcal{B}B^n(A) \to \mathcal{B}B^n(A)$.

2.4. Lemma. Let
$$s_n = \sum_{i=0}^n s_{i,n-i}$$
 and $s = \bigoplus_{1 \le n \le m} s_n$. Then, for any k , $1 \le k \le m$, $s \circ_B \partial_I^k = {}_B \partial_I^k \circ s$ and $s \circ \partial_I^k = \partial_I^k \circ s$

provided A is balanced.

Proof. Clearly, it is enough to verify the equality only on 'generators' $[a_1, \ldots, a_n], 1 \le n \le m$. As s maps a generator into a linear combination of generators and as ∂_I and ∂_I agree on these generators, it is enough to verify our equality only for ∂_I . Using elementary combinatorial arguments we get

$$\begin{split} \partial_{I}^{k} s([a_{1}, \dots, a_{n}]) \\ &= \sum_{0 \leq i \leq n} \partial_{I}^{k} s_{i,n-i}([a_{1}, \dots, a_{n}]) \\ &= \sum_{0 \leq i \leq n, 0 \leq \alpha \leq \beta \leq i} (-1)^{\theta} [s(a_{1}, \dots, a_{\alpha} \mid a_{i+1}, \dots, a_{\delta}), \\ &\stackrel{i \leq \delta}{\sim} \leq \phi \leq n \\ & \alpha - \beta + \phi - \delta = k \end{split}$$

$$\mu_{k}(s(a_{\alpha+1}, \dots, a_{\beta} \mid a_{\delta+1}, \dots, a_{\phi})), \\ s(a_{\beta+1}, \dots, a_{i} \mid a_{\phi+1}, \dots, a_{n})], \end{split}$$

where

$$\theta = (|a_{i+1}| + \dots + |a_{\delta}|)(|a_{\alpha+1}| + \dots + |a_{i}|) + (|a_{\beta+1}| + \dots + |a_{i}|)(|a_{\delta+1}| + \dots + |a_{\phi}|) + k(|a_{1}| + \dots + |a_{\alpha}| + |a_{i+1}| + \dots + |a_{\delta}| + \alpha + i + \delta) + \alpha + i + \delta + n + k + (i + \delta)(\alpha + i).$$

As our algebra A is supposed to be balanced, the term $\mu_k(s(a_{\alpha+1},\ldots,a_{\beta}\mid a_{\delta+1},\ldots,a_{\phi}))$ and hence all the summation can be nonzero only if $\alpha=\beta$ or $\delta=\phi$. Therefore our sum can be reduced to

$$\sum_{\substack{0 \leq i \leq n-k, 0 \leq \alpha \leq i \\ i \leq \delta \leq n-k}} (-1)^{\xi} [s(a_1, \dots, a_{\alpha} \mid a_{i+1}, \dots, a_{\delta}), \mu_k(a_{\delta+1}, \dots, a_{\delta+k}),$$

$$s(a_{\alpha+1}, \dots, a_i \mid a_{\delta+k+1}, \dots, a_n)]$$

$$+ \sum_{\substack{k \leq i \leq n, 0 \leq \alpha \leq i \\ i \leq \delta \leq n}} (-1)^{\eta} [s(a_1, \dots, a_{\alpha} \mid a_{i+1}, \dots, a_{\delta}),$$

$$\mu_k(a_{\alpha+1}, \dots, a_{\alpha+k}),$$

$$s(a_{\alpha+k+1}, \dots, a_i \mid a_{\delta+1}, \dots, a_n)],$$

where

$$\xi = (|a_{i+1}| + \dots + |a_{\delta+k}|)(|a_{\alpha+1}| + \dots + |a_i|) + k(|a_1| + \dots + |a_{\alpha}| + |a_{i+1}| + \dots + |a_{\delta}| + \alpha + i + \delta) + \alpha + i + \delta + n + k + (i + \delta + k)(\alpha + i)$$

and

$$\eta = (|a_{i+1}| + \dots + |a_{\delta}|)(|a_{\alpha+1}| + \dots + |a_{i}|)
+ k(|a_{1}| + \dots + |a_{\alpha}| + |a_{i+1}| + \dots + |a_{\delta}| + \alpha + i + \delta)
+ \alpha + i + \delta + n + k + (i + \delta)(a + i).$$

On the other hand, it is easily seen that

$$s \, \hat{\sigma}_{i}^{k}[a_{1}, \dots, a_{n}] = \sum_{\substack{0 \leq i \leq n-k \\ 0 \leq k \leq n-k}} (-1)^{k(\lceil a_{1} \rceil + \dots + \lceil a_{k} \rceil + k) + k + n + k} \\ \cdot s_{i,n+k-i}[a_{i}, \dots, a_{k}, \mu_{k}(a_{k+1}, \dots, a_{k+k}), a_{k+k+1}, \dots, a_{n}] = \sum_{\substack{0 \leq k \leq n-k \\ 0 \leq i \leq k \\ 0 \leq j \leq i}} (-1)^{\pi}[s(a_{1}, \dots, a_{i} \mid a_{i+1}, \dots, a_{k}), \mu_{k}(a_{k+1}, \dots, a_{k+k}), \\ s(a_{i+1}, \dots, a_{i} \mid a_{k+k+1}, \dots, a_{n})] + \sum_{\substack{0 \leq k \leq n-k \\ k \leq k \leq i \leq n}} (-1)^{\phi}[s(a_{1}, \dots, a_{k} \mid a_{i+1}, \dots, a_{i}), \mu_{k}(a_{k+1}, \dots, a_{k+k}), \\ s(a_{k+k+1}, \dots, a_{i} \mid a_{i+1}, \dots, a_{n})],$$

where

$$\pi = (|a_{j+1}| + \dots + |a_i|)(|a_{i+1}| + \dots + |a_{\lambda+k}| + k)$$

+ $k(|a_1| + \dots + |a_{\lambda}| + \lambda) + (j+i)(\lambda+i+1) + \lambda + n + k$

and

$$\phi = (|a_{i+1}| + \dots + |a_j|)(|a_{\lambda+1}| + \dots + |a_i| + k) + k(|a_1| + \dots + |a_{\lambda}| + \lambda) + (j+i)(\lambda + k + i + 1) + \lambda + n + k.$$

Using the substitution $j = \alpha$, $\lambda = \delta$ in the first summand and the substitution $j = \delta$, $\lambda = \alpha$ in the second summand, one can easily verify that the last formula coincides with the formula for $\partial_I^k \circ s$ above. \square

2.5. Lemma. For any $k, 1 \le k \le m$,

$$_{B}\partial_{E}^{k}\circ s=s\circ _{B}\partial_{E}^{k}$$
.

Proof. We have

$$B^{\partial_{E}^{k}}s([a_{1},\ldots,a_{n}])$$

$$= {}_{B}\partial_{E}^{k}\sum_{0\leq i\leq n}s_{i,n-i}([a_{1},\ldots,a_{n}])$$

$$= \sum_{\substack{0\leq i\leq n\\p+q+r+s=k-1}}(-1)^{I}\cdot\mu_{k}(s(C_{p}\mid E_{iq}),[s(F_{ipr}\mid G_{iqs})],s(H_{ir}\mid D_{s})),$$
(17)

where

$$\Gamma = (n+k)(|C_p| + |E_{iq}| + p + q) + (|F_{ipr}| + |H_{ir}|) \cdot |E_{iq}| + |G_{ias}| \cdot |H_{ir}| + (i+p)q + (i+q+n+s)r$$

and where we, as in the proof of Theorem 1.8, simplify our notation by putting $C_p = (a_1, \ldots, a_p)$, $E_{iq} = (a_{i+1}, \ldots, a_{i+q})$, $F_{ipr} = (a_{p+1}, \ldots, a_{i-r})$, $G_{iqs} = (a_{i+q+1}, \ldots, a_{n-s})$, $H_{ir} = (a_{i-r+1}, \ldots, a_i)$ and $D_s = (a_{n-s+1}, \ldots, a_n)$. The substitution $\alpha = p$, $\gamma = s$, $\delta + j = i$, j = r and $\beta - j = q$ gives

$${}_{B} \partial_{E}^{k} s([a_{1}, \dots, a_{n}])$$

$$= \sum_{\substack{\alpha+\beta+\gamma=k-1\\0\leq j\leq\beta, \alpha\leq\delta\leq n-\gamma-\beta}} (-1)^{\Delta}$$

$$\cdot \mu_{k}(s(A_{\alpha} \mid W_{j\beta\delta}), [s(X_{\alpha\delta} \mid Y_{\alpha\beta\gamma})], s(Z_{j\delta} \mid B_{\gamma})),$$
(18)

where

$$\Delta = (n+k)(|A_{\alpha}| + |W_{j\beta\delta}| + \alpha + \beta + j) + (|X_{\alpha\delta}| + |Z_{j\delta}|) \cdot |W_{j\beta\delta}| + |Y_{\alpha\beta\gamma}| \cdot |Z_{j\delta}| + (\delta + j + \alpha)(\beta + j) + (\delta + \beta + \gamma + n)j,$$

and where $A_{\alpha}=(a_1,\ldots,a_{\alpha}),\ W_{j\beta\delta}=(a_{\delta+j+1},\ldots,a_{\delta+\beta}),\ X_{\alpha\delta}=(a_{\alpha+1},\ldots,a_{\delta}),\ Y_{\alpha\beta\gamma}=(a_{\delta+\beta+1},\ldots,a_{n-\gamma}),\ Z_{j\delta}=(a_{\delta+1},\ldots,a_{\delta+j})$ and $B_{\gamma}=(a_{n-\gamma+1},\ldots,a_{n}).$ We will show that the terms with $\beta>0$ give no contribution to the sum in (18). Suppose for a moment that we have proved it. Then (18) gives

$$B \partial_{E}^{k} s([a_{1}, \dots, a_{n}])$$

$$= \sum_{\substack{\alpha+\gamma=k-1\\\alpha \le \delta : n-\gamma}} (-1)^{(n+k)(|A_{\alpha}|+\alpha)} \cdot \mu_{k}(A_{\alpha}, [s(X_{\alpha\delta} \mid Y_{\alpha 0\gamma})], B_{\gamma})$$

$$= \sum_{\substack{\alpha+\gamma=k-1\\\alpha \le \delta \le n-\gamma}} (-1)^{(n+k)(|a_{1}|+\cdots+|a_{\alpha}|+\alpha)}$$

$$\cdot \mu_{k}(a_{1}, \dots, a_{\alpha}, [s(a_{\alpha+1}, \dots, a_{\delta} \mid a_{\delta+1}, \dots, a_{n-\gamma})],$$

$$a_{n-\gamma+1}, \dots, a_{n}), \qquad (19)$$

which is exactly the formula for $s \circ_B \partial_E^k([a_1, \ldots, a_n])$. The lemma is thus proved. It remains to show that, having fixed α , γ , δ and $\beta > 0$, the sum

$$\sum_{0 \le i \le B} (-1)^{\Delta} \cdot \mu_k(s(A \mid W_j), [s(X \mid Y)], s(Z_j \mid B)), \qquad (20)$$

where we write $A = A_{\alpha}$, $W_j = W_{j\beta\delta}$, $X = X_{\alpha\delta}$, $Y = Y_{\alpha\beta\gamma}$, $Z_j = Z_{j\delta}$ and $B = B_{\gamma}$, is zero. Note that $\chi(\rho; x_1, \ldots, x_n) = \chi(\rho; x_{\sigma(1)}, \ldots, x_{\sigma(n)})$ for any permutation σ . Notice also that $\chi(\rho; Z_j, B) = (-1)^{|Z_j| \cdot |B| + \gamma j} \cdot \chi(\rho; Z_j) \cdot \chi(\rho; B)$. Let $B = (a_n, \ldots, a_{n-\gamma+1})$ and $Z_j = (a_{\delta+j}, \ldots, a_{\delta+1})$. These remarks together with 1.3(i), 1.3(iii) and (15) give

$$\mu_{k}(s(A \mid W_{j}), [s(X \mid Y)], s(Z_{j} \mid B))$$

$$= (-1)^{(|B| + |Z_{j}|) \cdot (|X| + |Y| + \alpha + \beta + \gamma + n + 1) + |Z_{j}| \cdot |B| + j\gamma}$$

$$\cdot \chi(\rho; Z_{j}) \cdot \chi(\rho; B) \cdot \mu_{k}(s(A \mid W_{j} \mid B \mid Z_{j}), [s(X \mid Y)]),$$

while

$$\mu_{k}(s(A \mid W_{j} \mid \overleftarrow{B} \mid \overleftarrow{Z_{j}}), [s(X \mid Y)])$$

$$= (-1)^{|Z_{j}| \cdot |B| + j\gamma} \cdot \mu_{k}(s(A \mid W_{i} \mid \overleftarrow{Z_{i}} \mid \overleftarrow{B}), [s(X \mid Y)])$$

due to the commutativity of the shuffle 1.3(ii). Using these equalities, the sum in (20) is equal to

$$\sum_{0 \leq j \leq \beta} C \cdot \chi(\rho; Z_j) \cdot (-1)^{|Z_j| \cdot |W_j| + j\beta} \cdot \mu_k(s(A \mid W_j \mid \overleftarrow{Z_j} \mid \overleftarrow{B}), [s(X \mid Y)]),$$

where $C = \pm 1$ and this value does not depend on j. On the other hand, the equality 1.3(v) says that, for $\beta > 0$,

$$\sum_{0 \le j \le \beta} \chi(\rho; W_j) \cdot (-1)^{\beta+j} \cdot s(W_j \mid Z_j) = 0.$$

Clearly $\chi(\rho; W_j) = (-1)^{|W_j| \cdot |Z_j| + j + \beta j} \cdot \chi(\rho; W_j, Z_j) \cdot \chi(\rho; Z_j)$, where $\chi(\rho; W_j, Z_j)$ does not depend on j. The last equality then gives

$$\sum_{0 \le j \le \beta} C' \cdot \chi(\rho; Z_j) \cdot (-1)^{|W_j| \cdot |Z_j| + \beta j} \cdot s(W_j \mid \overleftarrow{Z_j}) = 0,$$

where $C' = \pm 1$ again does not depend on j. We see that the sum in (20) is zero for $\beta > 0$ which completes our proof. \square

For a graded k-module X the formula

$$\sigma(x_1 \otimes \cdots \otimes x_n) = \chi(\sigma) x_{\sigma^{-1}(1)} \otimes \cdots \otimes x_{\sigma^{-1}(n)}, \quad \sigma \in S_n ,$$

where the sign $\chi(\sigma)$ was introduced in 1.2, defines an action of the symmetric group S_n on $\bigotimes^n X$. This observation enables us to consider $s_n := \sum_{i=0}^n s_{i,n-i}$ as an element of $\mathbb{Q}(S_n)$ and we may try to construct a Hodge-type decomposition similarly as it was done in [5, Section 1] for Hochschild cohomology of commutative algebras. We have, for $n \ge 1$, the elements $e_n(1), \ldots, e_n(n) \in \mathbb{Q}(S_n)$ which are polynomials in s_n (given by [5, formula (2), p. 233]) such that

$$e_n(1) + \dots + e_n(n) = id,$$

$$e_n(j)^2 = e_n(j), \quad 1 \le j \le n,$$

$$e_n(i)e_n(j) = 0, \quad i \ne j.$$

For an A(m)-algebra A we get (putting X = A) an action of $\mathbb{Q}(S_n)$ on $\bigotimes^n A$ which in turn gives the actions of $\mathbb{Q}(S_n)$ on $\mathscr{B}^n(A)$ and $\mathscr{B}B^n(A)$. For any $j \ge 1$ define the endomorphism e(j) of $\mathscr{B}B_{(m)}(A) = \bigoplus_{0 \le n \le m} \mathscr{B}B^n(A)$ by

$$e(j)(x) = \begin{cases} e_n(j)(x) & \text{for } x \in \mathcal{B}B^n(A) \text{ and } j \le n, \\ 0 & \text{otherwise,} \end{cases}$$

and put

$$e(0)(x) = \begin{cases} x & \text{for } x \in \mathcal{B}B^{0}(A) ,\\ 0 & \text{otherwise} . \end{cases}$$

We clearly have $e(j)^2 = e(j)$, $e(i) \circ e(j) = 0$ for $i \neq j$ and $e(0)(x) + e(1)(x) + \cdots = x$ (finite sum) for any $x \in \mathcal{B}B_{(m)}(A)$. In the following corollary $s = \bigoplus_{1 \leq n \leq m} s_n$.

2.6. Corollary. For a balanced A(m)-algebra A

$$_{B}\partial \circ s = s \circ _{B}\partial \quad and \quad _{B}\partial \circ e(j) = e(j) \circ _{B}\partial .$$

Proof. The first equation follows immediately from Lemmas 2.4 and 2.5. For ${}_B\partial^k = {}_B\partial^k_E + {}_B\partial^k_I$ we have (again from Lemmas 2.4 and 2.5) ${}_B\partial^k \circ s_n(x) = s_{n-k+1} \circ {}_B\partial^k(x)$ for $x \in \mathcal{B}B^m(A)$ which enables us to prove by exactly the same method as in the proof of [5, Theorem 1.3(ii)] that ${}_B\partial^k \circ e_n(j)(x) = e_{n-k+1}(j) \circ {}_B\partial^k(x)$. This easily gives the second equation of our corollary. \square

2.7. Proposition. Let M be a balanced bimodule over a balanced A(m)-algebra A. Define the endomorphisms $\mathfrak S$ and $\mathfrak C(j)$ of $C_{(m)}(A;M) = \operatorname{Hom}_{A-\operatorname{biMod}}^{-\mathfrak s+1}(\mathfrak B B_{(m)}(A),M)$ to be the duals to the maps s and $\mathfrak C(j)$ defined above. Then $\delta \circ \mathfrak S = \mathfrak S \circ \delta$, $\delta \circ \mathfrak C(j) = \mathfrak C(j) \circ \delta$, $\mathfrak C(j)^2 = \mathfrak C(j)$ and $\mathfrak C(i) \circ \mathfrak C(j) = 0$ for $i \neq j$. Moreover, $C_{(m)}(A;M) = \varprojlim_n C_{(m)}(A;M)/G_n(A;M)$ with $G_n(A;M) := \{f \in C_{(m)}(A;M) \mid \mathfrak C(i)(f) = 0 \text{ for } i \leq n\}$, and $\mathfrak C(0)(f) + \cdots + \mathfrak C(n)(f) = f \text{ modulo } G_n(A;M) \text{ for all } n \geq 0 \text{ and } f \in C_{(m)}(A;M).$

Proof. All statements of the proposition easily follows from the definitions, properties of $e_n(j)$'s and Corollary 2.6. \square

2.8. We can now introduce an analog of a Hodge-type decomposition for our cohomology of A(m)-algebras. Put

$$C_{(m)}^{*,i}(A;M) = \mathfrak{c}(j)(C_{(m)}^*(A;M)), \quad j \ge 0.$$

It immediately follows from Proposition 2.7 that $C_{(m)}^{*,j}(A;M)$ is, for each $j \ge 0$, a δ -stable subspace of $C_{(m)}^*(A;M)$ and that the maps $e(j): C_{(m)}^*(A;M) \to C_{(m)}^{*,j}(A;M)$ induce an identification

$$C^*_{(m)}(A;M) \cong \prod_{j \geq 0} C^{*,j}_{(m)}(A;M)$$
.

Here $C_{(m)}^{*,1}(A;M)$ will be of a special importance for us and we introduce the notation $CB_{(m)}^*(A;M) := C_{(m)}^{*,1}(A;M)$ (again B from balanced).

Having in mind future applications, we give the following alternative descrip-

tion of $CB_{(m)}^*(A; M)$. First, define, for each $q \ge 2$, the graded subspace $\operatorname{Sh}^q(A) \subset \mathcal{B}B^q(A)$ by $\operatorname{Sh}^q(A) = \bigoplus_{1 \le i \le q-1} \operatorname{Im}(s_{i,q-i})$ and let $\operatorname{Sh}(A) = \bigoplus_{2 \le q \le m} \operatorname{Sh}^q(A) \subset \mathcal{B}B_{(m)}(A)$. It is not hard to show that ${}_B\partial(\operatorname{Sh}(A)) \subset \operatorname{Sh}(A)$, which implies that ${}_B\partial$ induces on $\mathcal{B}B_{(m)}(A)/\operatorname{Sh}(A)$ a differential (denoted again by ${}_B\partial$). It easily follows from the general properties on the projections $\mathfrak{c}(j)$ (similarly as in the case of commutative algebras discussed in [5,6]) that

$$CB_{(m)}^p(A; M) = \operatorname{Hom}_{A-\operatorname{biMod}}^{-p+1}(\mathcal{B}B_{(m)}(A)/\operatorname{Sh}(A), M)$$

and that the restriction of δ on $CB^*_{(m)}(A;M) \subset C^*_{(m)}(A;M)$ coincide with the differential δ_B induced by $_B \delta$. Moreover, the inclusion $CB^*_{(m)}(A;M) \hookrightarrow C^*_{(m)}(A;M)$ is dual to the canonical projection $\mathcal{B}B_{(m)}(A) \to \mathcal{B}B_{(m)}(A)/\mathrm{Sh}(A)$. Put

$$H_{(m)}^{*,j}(A; M) = H^*(C_{(m)}^{*,j}(A; M), \delta^{(j)}), \quad j \ge 0,$$

where $\delta^{(j)}$ denotes the restriction of the differential δ on $C^{*,j}_{(m)}(A;M)$. Again, $H^{*,l}_{(m)}(A;M)$ will play an important rôle and we denote it by

$$HB_{(m)}^*(A; M) = H^*(CB_{(m)}^*(A; M), \delta_B)$$

and call it the *balanced cohomology* of A with coefficients in M. Denote also by $H^*(A; M): HB^*_{(m)}(A; M) \to H^*_{(m)}(A; M)$ the map induced by the inclusion $CB^*_{(m)}(A; M) \hookrightarrow C^*_{(m)}(A; M)$. Summing up the results above, we may formulate the central result of the paper.

2.9. Theorem. Suppose that A is a balanced A(m)-algebra and M a balanced A-bimodule. Then there exists a natural decomposition

$$H_{(m)}^*(A; M) = \prod_{j\geq 0} H_{(m)}^{*,j}(A; M)$$

such that the natural transformation $\Pi^*(A; M)$ coincides with the map

$$HB^*_{(m)}(A; M) = H^{*,1}_{(m)}(A; M) \hookrightarrow \prod_{j \ge 0} H^{*,j}_{(m)}(A; M) = H^*_{(m)}(A; M).$$

Consequently, the map $\Pi^*(A; M)$ is a monomorphism. \square

2.10. Since the differential ∂ is not homogeneous with respect to the 'simplicial' degree q in $\mathcal{B}_{(m)}(A) = \bigoplus_{0 \le q \le m} \mathcal{B}^q(A)$, the simplicial degree does not induce a grading of the cohomology. Nevertheless, we can use it to define a filtration.

Put
$$F_iC_{(m)}(A; M) = \{ f \in C_{(m)}(A; M) \mid f|_{A^{q}(A)} = 0 \text{ for } q \le i \}$$
. Then plainly $\delta F_iC_{(m)}(A; M) \subset F_iC_{(m)}(A; M), F_{-1}C_{(m)}(A; M) = C_{(m)}(A; M), \bigcap_i F_iC_{(m)}(A; M)$

=0 and $F_iC_{(m)}(A;M)=0$ for $i \ge m$. In a similar way we can obtain also a filtration $F_iCB_{(m)}(A;M)$ of $CB_{(m)}(A;M)$ having the analogous properties. It is also easy to show, using (16), that the map $p:C_{(m)}(A;M) \to F_0C_{(m)}(A;M)$, given by $p(f)|_{\mathscr{B}^q(A)}=f|_{\mathscr{B}^q(A)}$ for $1 \le q \le m$ and $p(f)|_{\mathscr{B}^0(A)}=0$, commutes with the differential and splits the inclusion $F_0C_{(m)}(A;M) \hookrightarrow C_{(m)}(A;M)$, provided M is balanced. The similar result holds also for $CB_{(m)}(A;M)$.

$$IIF_i: H(F_iCB_{(m)}(A; M), \delta_B) \rightarrow H(F_iC_{(m)}(A; M), \delta)$$
.

3. Examples and applications

3.1. Cohomology of algebras. Let A be an (augmented) algebra and M a (graded) bimodule over A. Then A can be considered as an $A(\infty)$ -algebra (Example 1.5) and also M can be converted into an element of A-biMod taking $\mu_k = 0$, $k \neq 2$, and $\mu_2(a,m) = a \cdot m$, $\mu_2(m,b) = m \cdot b$ for $a,b \in A$ and $m \in M$ (Example 1.11). Denote $C_{(\infty)}^{n,p}(A;M) = \operatorname{Hom}_{A-\operatorname{biMod}}^{-p+1}(\mathscr{B}^n(A),M)$. Then $C_{(\infty)}^{n,p}(A;M)$ can be naturally identified with a subspace of $C_{(\infty)}^p(A;M)$; under this identification $C_{(\infty)}^p(A;M) = \coprod_{n\geq 0} C_{(\infty)}^{n,p}(A;M)$ and $\delta C_{(\infty)}^{n,p}(A;M) \subset C_{(\infty)}^{n+1,p+1}(A;M)$, the last inclusion being a consequence of (16).

Let us recall briefly the notion of (two-sided, normalized) bar-resolution $\mathcal{B}(A,A)$ of the algebra A; we use the sign and degree conventions of [11, Chapter X. Section 10]. For $n \ge 0$, let $\mathcal{B}^n(A,A)$ be the free graded A-bimodule on $\bigotimes^n \bar{A}$ (in the usual sense, see the discussion in Example 1.11); the element $a_1 \otimes \cdots \otimes a_n \in \bigotimes^n \bar{A}$ being graded by $\deg(a_1 \otimes \cdots \otimes a_n) = |a_1| + \cdots + |a_n| + n$. The differential ∂_{A-A} is then a map of A-bimodules defined by

$$\hat{\sigma}_{A-A}[a_1,\ldots,a_n] = a_1[a_2,\ldots,a_n] + (-1)^{e_n}[a_1,\ldots,a_{n+1}]a_n$$
$$+ \sum_{i=1}^{n-1} (-1)^{e_i}[a_1,\ldots,a_i a_{i+1},\ldots,a_n],$$

where $e_i = |a_1| + \cdots + |a_i| + i$ and $[a_1, \ldots, a_n]$ is an abbreviation for $a_1 \otimes \cdots \otimes a_n \in \bigotimes^n \bar{A}$. Let $C^{n,p}_{\operatorname{Hoch}}(A;M) = \operatorname{Hom}^p_{\operatorname{Mod}_{A-A}}(\mathscr{B}^n(A,A),M)$ and $\delta_{\operatorname{Hoch}} = \operatorname{Hom}_{\operatorname{Mod}_{A-A}}(\vartheta_{A-A},M)$. The Hochschild cohomology of A with coefficients in M is then defined as $\operatorname{Hoch}^{n,p}(A;M) = H^{n,p}(C^{*,*}_{\operatorname{Hoch}}(A;M),\delta_{\operatorname{Hoch}})$. For any p and $n \geq 0$ define the linear map $\omega: C^{n,-p}_{\operatorname{Hoch}}(A;M) \to C^{n,+p}_{(2)}(A;M)$ by

$$(\omega f)([a_1,\ldots,a_n])$$

$$= (-1)^{n|a_1|+(n-1)|a_2|+\cdots+|a_n|+n(n-1)/2} \cdot f([a_1,\ldots,a_n]).$$

It is easy to verify that the map ω commutes with the differentials, hence it induces the isomorphisms

$$\omega^{*,*}(A; M): H^{*,*}(C^{*,*}_{(\alpha)}(A; M), \delta) \xrightarrow{\cong} \operatorname{Hoch}^{*,-*}(A; M)$$

and

$$\omega^*(A; M): H^*_{(\alpha)}(A; M) \xrightarrow{\cong} \prod_{n \geq 0} \operatorname{Hoch}^{n, -*}(A; M).$$

Suppose that the algebra A is commutative (i.e. balanced as an $A(\infty)$ -algebra; see Example 1.5) and let M be a left A-module. Then there exists on M a natural structure of an A-bimodule with $m \cdot a = (-1)^{|a| \cdot |m|} \cdot a \cdot m$ for $a \in A$ and $m \in M$ (compare Proposition 1.13 and the remark following it). It makes sense to denote $CB_{(\infty)}^{n,p}(A;M) = \operatorname{Hom}_{A-\operatorname{biMod}_B}^{-p+1}(\mathcal{B}B^n(A)/\operatorname{Sh}^n(A), M) \subset CB_{(\infty)}^p(A;M)$. Again δ_B restricts to a differential (denoted by the same symbol) $\delta_B: CB_{(\infty)}^{n,p}(A;M) \to CB_{(\infty)}^{n+1,p+1}(A;M)$. If we denote by $\operatorname{Harr}^{i,j}(A;M)$ the Harrison cohomology of A with coefficients in M [2, 25], where i is the simplicial degree and j is the total degree, respectively, it can be easily verified that the map ω constructed above gives rise to the identifications

$$\omega_B^{*,*}(A; M): H^{*,*}(CB_{(\infty)}^{*,*}(A; M), \delta_B) \xrightarrow{\cong} \operatorname{Harr}^{*,-*}(A; M),$$

$$\omega_B^{*}(A; M): HB_{(\infty)}^{*}(A; M) \xrightarrow{\cong} \prod_{n \geq 0} \operatorname{Harr}^{n,-*}(A; M),$$

these identifications being compatible with the natural maps $\phi^{*,*}(A; M)$: Harr*** $(A; M) \rightarrow$ Hoch***(A; M) [2, p. 314] and $\Pi^*(A; M) : HB^*_{(x)}(A; M) \rightarrow$ $H^*_{(x)}(A; M)$ (Theorem 2.9).

3.2. Cohomology of algebras of derivations. In this paragraph we refer to the notation introduced in Example 1.9. So, let $V = V_*$ be a (graded) vector space of finite type and $m \ge 1$ a natural number, the case $m = \infty$ being especially important. Consider an object (TV, ∂) , where $\partial = \partial_1 + \partial_2 + \cdots + \partial_m$ is a derivation of degree -1 and $\pi_{\le m} \circ \partial^2 = 0$. Let $\operatorname{Der}^*(TV)$ denote the graded Lie algebra of derivations of the algebra TV (see [24, 0.2.(4)]) and let $\operatorname{Der}^*_{(m)}(TV) = \operatorname{Der}^*(T)/\sim$, where $\theta' \sim \theta''$ if and only if $\pi_{\le m} \circ \theta' = \pi_{\le m} \circ \theta''$. For $\theta \in \operatorname{Der}^*(TV)$ let $\{\theta\}$ denote the corresponding class in $\operatorname{Der}^*_{(m)}(TV)$. The formula $\Delta(\{\theta\}) = \{[\partial; \theta]\}$ then defines on $\operatorname{Der}^*_{(m)}(TV) \mid \theta(V) \subset L(V) \oplus \mathbf{k}\}$. If $\partial(V) \subset L(V)$, then Δ restricts to a differential (denoted again by Δ) on $\operatorname{Der}^*_{(m)}(LV)$.

Let A be the A(m)-algebra $\tilde{\Omega}^{-1}(TV, \delta)$; recall that $V = \downarrow \# \hat{A}$. Then \bar{A} can be considered in the clear sense as a bimodule over itself and we define a linear isomorphism $\tilde{\Omega}: C^*_{(m)}(A; \bar{A}) \to \operatorname{Der}_{(m)}^{*+1}(TV)$ in the following manner.

Every $f \in C^p_{(m)}(A; \bar{A})$ can be expressed as $\prod_{m=0}^m f_n$ with $f_n \in \operatorname{Hom}_{A \text{-} \operatorname{biMod}}^{-p+1}(\mathcal{B}^n(A), \bar{A})$, the last object being naturally isomorphic with $\operatorname{Hom}_{\operatorname{vect}}^{-p+n}(\bigotimes^n \bar{A}, \bar{A})$. Then we put $\tilde{\Omega}(f) = (-1)^p \{\theta_0 + \dots + \theta_m\}$, where $\theta_m|_V = \downarrow^n \# \hat{f}_n \uparrow$ for $0 \le n \le m$. It can be verified immediately that $\tilde{\Omega}$ is an isomorphism of differential spaces, hence it induces an isomorphism $\tilde{\Omega}^*(A) : H^*_{(m)}(A; \bar{A}) \cong H^{*+1}(\operatorname{Der}^*_{(m)}(TV), \Delta)$. If $\tilde{\sigma}(V) \subset L(V)$, the algebra A is balanced (see Example 1.9) and it is not hard to verify that $\tilde{\Omega}$ restricts to an isomorphism $\tilde{\mathcal{F}}: CB^*_{(m)}(A; \bar{A}) \to \widetilde{\operatorname{Der}}^*_{(m)}(LV)$. So, denoting by $I: \widetilde{\operatorname{Der}}^*_{(m)}(LV) \hookrightarrow \operatorname{Der}^*_{(m)}(TV)$ the canonical inclusion, we have the commutative diagram

$$H^*_{(m)}(A; \bar{A}) \xrightarrow{\tilde{H}^*(A)} H^{-*+1}(\operatorname{Der}^*_{(m)}(TV), \Delta)$$

$$H^*(A; \bar{A}) \uparrow \qquad \qquad \uparrow^{T^{*+1}(A)} \\ HB^*_{(m)}(A; \bar{A}) \xrightarrow{\tilde{B}^*(A)} H^{-*+1}(\widetilde{\operatorname{Der}}_{(m)}(LV), \Delta)$$

where $\tilde{\mathcal{F}}^*(A)$ is the map induced by $\tilde{\mathcal{F}}$ and $I^*(A)$ is induced by the inclusion I. This diagram, together with Theorem 2.9, imply that the map $I^*(A)$ is a monomorphism.

3.3. The homotopy-bar construction. Let A be an A(m)-algebra and let $\widetilde{\mathscr{B}}(A) = \bigoplus_{n=m}^{\infty} \bigotimes^{n} \uparrow \overline{A}$. Define on $\widetilde{\mathscr{B}}(A)$ the differential $\widetilde{\delta} = \widetilde{\delta}_{1} + \cdots + \widetilde{\delta}_{m}$, where

$$\tilde{\delta}_{k}([a_{1},\ldots,a_{n}]) = \sum_{\lambda=0}^{n-k} (-1)^{k(|a_{1}|+\cdots+|a_{\lambda}|+\lambda)+\lambda+n+k} \\
\cdot [a_{1},\ldots,a_{\lambda},\mu_{k}(a_{\lambda+1},\ldots,a_{\lambda+k}),a_{\lambda+k+1},\ldots,a_{n}].$$

Then $(\tilde{\mathcal{B}}(A), \tilde{\delta})$ is the *homotopy-bar* (or *tilde*) *construction* on the A(m)-algebra A, introduced in [22, p. 295] (but we use the sign convention of [18, Définition 3.13]).

As in 1.4 consider the ground field ${\bf k}$ as an A-bimodule. Then the natural isomorphism

$$\operatorname{Hom}_{A\operatorname{-biMod}}^*(\mathscr{B}_{(m)}(A),\mathbf{k})\cong\operatorname{Hom}_{\operatorname{Vect}}^{*-1}\left(\bigoplus_{0\leq n\leq m}\bigotimes^{n}\uparrow\bar{A},\mathbf{k}\right),$$

coming from the universal property of the free A-bimodule $\mathcal{B}_{(m)}(A)$, induces the identification $C^*_{(m)}(A; \mathbf{k}) \cong \operatorname{Hom}_{\operatorname{vect}}^*(\tilde{\mathcal{B}}(A), \mathbf{k}) \cong (\#\tilde{\mathcal{B}}(A))^*$, compatible with the differentials δ and $\#\tilde{\delta}$, respectively, and we have an isomorphism

$$H_{tm}^*(A; \mathbf{k}) \cong H^*(\# \widetilde{\mathcal{B}}(A), \# \widetilde{\partial})$$
.

3.4. Cohomology of the DeRham complex. Recall briefly the notion of the cobar construction over a coalgebra as it is given for example in [1] or [24, 0.6.(2)]. Let $C = (C, \Delta, d)$ be a differential graded (coaugmented) coalgebra, $\deg(d) = +1$ and let $\bar{C} = C/\mathbf{k}$ be the coaugmentation ideal. Denote $F(C) = T(\downarrow \bar{C})$ and equip F(C) with the differential d_F by the formula

$$d_{F}([c_{1}, \ldots, c_{n}])$$

$$= -\sum_{i=1}^{n} (-1)^{e_{i-1}} \cdot [c_{1}, \ldots, dc_{i}, \ldots, c_{n}]$$

$$+ \sum_{i=1}^{n-1} \sum_{\mu} (-1)^{e_{i-1}+|c'_{i\mu}|+1} \cdot [c_{1}, \ldots, c_{i-1}, c'_{i\mu}, c''_{i\mu}, c_{i+1}, \ldots, c_{n}],$$

where we abbreviate $\downarrow c_1 \otimes \cdots \otimes \downarrow c_n$ by $[c_1, \ldots, c_n]$, $e_i = |c_1| + \cdots + |c_i| + i$ and $\bar{\Delta}(c_i) = \sum_{\mu} c'_{i\mu} \otimes c''_{i\mu}$ for $1 \leq i \leq n$. Then $(F(C), d_F)$ is called the *cobar construction* on the coalgebra C.

Let A be a graded differential chain algebra, augmented and of finite type. Then the dual #A is in the evident sense of coaugmented coalgebra, and we can apply the cobar construction to it. Consider the following composite of maps:

$$C_{(\infty)}^{-p}(\hat{A}; \mathbf{k}) = \operatorname{Hom}_{\hat{A} - \operatorname{biMod}}^{p+1}(\mathcal{B}_{(\infty)}(\hat{A}), \mathbf{k}) \xleftarrow{\omega} \operatorname{Hom}_{\operatorname{Vect}}^{p}(T \uparrow \hat{\bar{A}}, \mathbf{k})$$
$$= (\#T \uparrow \hat{\bar{A}})^{-p} \xleftarrow{\chi} (T \uparrow \#\hat{\bar{A}})^{-p} = T (\downarrow \#\bar{A})^{p},$$

where ω is an isomorphism defined by

$$\omega(f)([a_1,\ldots,a_n])=(-1)^{n|a_1|+\cdots+|a_n|+n(n-1)/n}f(\uparrow a_1\otimes\cdots\otimes\uparrow a_n)$$

(a similar map is used also in 3.1), χ is the canonical injection (as A is supposed to be of finite type, it is also an isomorphism), the other identifications being clear. It is not hard to verify that the isomorphism $\Xi = \omega \circ \chi : T(\downarrow \# \bar{A})^* \to C_{(\infty)}^{-*}(\hat{A}; \mathbf{k})$ commutes with the differentials d_F and δ , respectively, therefore

$$H_{(\infty)}^{-*}(\hat{A};\mathbf{k})\cong H^*(F(\#A),d_F)$$
.

Supposing that the algebra A is commutative, i.e. balanced as an $A(\infty)$ -algebra, it can be shown, using the characterization [20, Theorem 2.2], that Ξ restricts to an isomorphism $(\mathcal{L}_*(A), \partial_{\mathcal{L}}) \cong CB^{-*}_{(\infty)}(\hat{A}; \mathbf{k})$, where the \mathcal{L}_* -functor is defined in [24, I.1.(7)], therefore

$$HB_{(\infty)}^{-*}(\hat{A};\mathbf{k}) \cong H^*(\mathscr{L}_*(A),\partial_{\mathscr{S}})$$
.

Let now S be a simply connected topological space having the rational cohomology of finite type. Let \mathcal{M} be Sullivan minimal model of S (see [24,

III.2.(1)]). Then \mathcal{M} is of finite type and it is well known that $H^*(F(\#\mathcal{M}), d_F) \cong H_*(\Omega S; \mathbf{k})$ and that $H^*(\mathcal{L}_*(\mathcal{M}), \partial_{\mathcal{I}}) \cong \pi_*(\Omega S) \otimes \mathbf{k}$ (see [1] and [24, III.3.(7)]). The isomorphisms constructed above then give

$$H_{(x)}^*(\hat{\mathcal{M}}; \mathbf{k}) \cong H_*(\Omega S; \mathbf{k})$$
 and $HB_{(x)}^{-*}(\hat{\mathcal{M}}; \mathbf{k}) \cong \pi_*(\Omega S) \otimes \mathbf{k}$.

Finally, notice that the functors $H^*_{(\infty)}(*;\mathbf{k})$ and $HB^*_{(\infty)}(*;\mathbf{k})$ map weakly isomorphic algebras into isomorphic objects (use the spectral sequence induced by the filtration of 2.10). We see that in the last formula we can replace the minimal model \mathcal{M} by the algebra $A_{PL}(S)$ of Sullivan–DeRham forms [23, Section 7] or even by the algebra $\mathscr{E}(S)$ of DeRham differential forms in the case when S is a smooth manifold and the field \mathbf{k} contains the field of real numbers \mathbb{R} .

3.5. The canonical map $l: H_{\text{Lie}}(L; L) \rightarrow \text{Hoch}(\mathcal{U}L, \mathcal{U}L)$. In the classical (nongraded) case the existence of such a map l easily follows from the 'inverse process' as it is described in [3, X.6]. To be more precise, let $_E\mathcal{U}L$ denote the universal enveloping algebra $\mathcal{U}L$ considered as a left L-module with the action given by $(\lambda, u) \mapsto \lambda \cdot u - u \cdot \lambda$ for $\lambda \in L$ and $u \in \mathcal{U}L$. Then we have, by [3, p. 277, Theorem 5.1], the identification $H_{\text{Lie}}(L;_E\mathcal{U}L) \cong \text{Hoch}(\mathcal{U}L;_{\mathcal{U}}L)$ and we can define l to be the composition $H_{\text{Lie}}(L;_L) \rightarrow H_{\text{Lie}}(L;_E\mathcal{U}L) \cong \text{Hoch}(\mathcal{U}L;_{\mathcal{U}}L)$, where the first map is induced by the inclusion $L \hookrightarrow_E \mathcal{U}L$ of left L-modules. The same construction would perhaps work also in the graded case, but we prefer to give a more transparent explicit definition.

To this end, recall briefly the definition of the Lie algebra cohomology as it is used here. For a (graded) Lie algebra L let, for $n \ge 0$, $D^n(L)$ denote the free L-module on $\wedge^n \uparrow L$; the element $\uparrow \lambda_1 \wedge \cdots \wedge \uparrow \lambda_n \in \wedge^n \uparrow L \subset D^n(L)$ will be abbreviated by $\langle \lambda_1, \ldots, \lambda_n \rangle$. The differential ∂_{Lie} of degree -1 is then defined by the formula

$$\begin{split} \partial_{\mathrm{Lie}}(\langle \lambda_1, \dots, \lambda_n \rangle) \\ &= \sum_{i=1}^n (-1)^{f_{i-1}(|\lambda_i|+1)} \cdot \lambda_i \langle \lambda_1, \dots, \hat{\lambda}_i, \dots, \lambda_n \rangle \\ &+ \sum_{1 \leq i \leq j \leq n} (-1)^{f_{i-1}(|\lambda_i|+1) + f_{i-1}(|\lambda_i|+1) + (|\lambda_i|+1) \cdot |\lambda_j|} \\ &\cdot \langle [\lambda_i; \lambda_j], \lambda_1, \dots, \hat{\lambda}_i, \dots, \hat{\lambda}_j, \dots, \lambda_n \rangle \,, \end{split}$$

where $f_i = |\lambda_1| + \cdots + |\lambda_i| = i$, $1 \le i \le n$, and $\hat{}$ denotes, as usual, omission. For an L-module $M \in L$ -Mod let $C_{\mathrm{Lie}}^{n,p}(L;M) = \mathrm{Hom}_{L-\mathrm{Mod}}^p(D^n(L),M)$ and $\delta_{\mathrm{Lie}} = \mathrm{Hom}_{L-\mathrm{Mod}}(\hat{\sigma}_{\mathrm{Lie}},M)$. The cohomology of L with coefficients in M is then defined as

$$H_{\mathrm{Lie}}^{n,p}(L;M)=H^{n,p}(C_{\mathrm{Lie}}^{*,*}(L;M),\delta_{\mathrm{Lie}})\,.$$

Let $U = \mathcal{U}L$ be the universal enveloping algebra of L. It comes together with a morphism $\iota: L \to \mathcal{U}L$ which is, in fact, a monomorphism by the Poincaré-Birkhoff-Witt theorem [19, p. 281]; we will identify L with a graded subspace of $\mathcal{U}L$ via ι .

Consider the Hochschild cochains $C^{*,*}_{Hoch}(U; U)$ as they are introduced in 3.1 and let

$$\begin{split} \tilde{C}_{\text{Hoch}}^{n,p}(U;U) \\ &= \left\{ f \in C_{\text{Hoch}}^{n,p}(U;U) \, \middle| \right. \\ &\left. \sum_{\sigma \in \mathcal{S}_n} \varepsilon(\sigma) f([\lambda_{\sigma(1)}, \dots, \lambda_{\sigma(n)}]) \subset L, \, \lambda_1, \dots, \, \lambda_n \in L \right\}, \end{split}$$

where S_n denotes the *n*th permutation group and the Koszul sign $\varepsilon(\sigma)$ is defined by the equality

$$\langle \lambda_1, \ldots, \lambda_n \rangle = \varepsilon(\sigma) \langle \lambda_{\sigma(1)}, \ldots, \lambda_{\sigma(n)} \rangle$$

which has to be satisfied in $\wedge^n \uparrow L$. It can be verified that $\tilde{C}^{*,*}_{\operatorname{Hoch}}(U;U)$ is a $\delta_{\operatorname{Hoch}}$ -stable subspace of $C^{*,*}_{\operatorname{Hoch}}(U;U)$; denote by J the inclusion. Define also the map $\kappa: \tilde{C}^{*,*}_{\operatorname{Hoch}}(U;U) \to C^{*,*}_{\operatorname{Lie}}(L;L)$ by

$$\kappa(f)(\langle \lambda_1,\ldots,\lambda_n\rangle) = \sum_{\sigma\in S_n} \varepsilon(\sigma) \cdot f([\lambda_{\sigma(1)},\ldots,\lambda_{\sigma(n)}])$$

for $f \in \tilde{C}_{\mathrm{Hoch}}^{n,*}(U;U)$ and $\lambda_1,\ldots,\lambda_n \in L$. It can be verified by a direct computational argument that κ commutes with the differentials.

Supposing that L is of finite type and $L_{\leq 0} = 0$, it is possible to prove (it was done, in fact, in [14, Lemma 2.1], using an equivalent description in terms of algebras of derivations) that κ induces an isomorphism in cohomology and we can define the canonical map $l^{***}: H^{*,**}_{\text{Lie}}(L; L) \to \text{Hoch}^{***}(U; U)$ as $l = H(J) \circ H(\kappa)^{-1}$.

We aim to show the existence of a balanced $A(\infty)$ -algebra A such that there are isomorphisms

$$K_B^*: H_{\mathrm{Lic}}^{\geq 1,*}(L;L) \xrightarrow{\cong} F_0 H B_{(\infty)}^{-*+2}(A;\bar{A})$$

and

$$K^*: \operatorname{Hoch}^{\geq 1,*}(U; U) \xrightarrow{\cong} F_0 H_{(x)}^{-*+2}(A; \bar{A})$$

where F_0 refers to the filtration introduced in 2.10, $H_{\text{Lie}}^{\geq 1,*}(L;L) = \prod_{n\geq 1} H_{\text{Lie}}^{n,*}(L;L)$ and $\text{Hoch}^{\geq 1,*}(U;U) = \prod_{n\geq 1} \text{Hoch}^{n,*}(U;U)$. Moreover, these

isomorphism satisfy $K^* \circ l^{*1,*} = \Pi^*(A; \bar{A}) \circ K_B^*$. It is easy to see that Theorem 2.9 implies that l^{***} is a monomorphism.

The construction of A is based on various properties of algebras of derivations as they are studied for example in [4], [13], [15] and [21]. Since this paper is not meant as an exposition of methods of the rational homotopy theory, our arguments will be merely sketchy.

First, let $(\land V, d_2) = \mathscr{C}^*(L, \theta = 0)$, where the functor \mathscr{C}^* is introduced in [24, I.1.(1)]; recall that $V = \uparrow \# L$. Let $\mathrm{Der}^*(\land V)$ denote the Lie algebra of derivations of $\land V$, the differential $d_{\land V}$ of degree +1 is defined by $d_{\land V}(\theta) = [d_2; \theta]$. Then $\mathrm{Der}^*_{-1}(\land V) = \{\theta \in \mathrm{Der}^*(\land V) \mid \theta(V) \subset \bigoplus_{i=1}^{l} \land^i V\}$ is clearly a $d_{\land V}$ -stable subspace of $\mathrm{Der}^*(\land V)$. It can be shown, using a similar method as in 3.2, that there exists a canonical isomorphisms of differential modules $(C_{\mathrm{Lie}}^{<1.*}(L; L), \delta_{\mathrm{Lie}})$ and $(\mathrm{Der}^{-*+1}(\land V), d_{\land V})$, hence

$$H_{\mathrm{Lie}}^{\pm 1,*}(L;L) \cong H^{-*+1}(\mathrm{Der}_{-1}^*(\wedge V,d_{\wedge V})).$$

Notice that the existence of isomorphisms of this type is well known (see [15, Introduction) and that $(\wedge V, d_2)$ is the Sullivan minimal model of the coformal space S with $\pi_*(\Omega S) \otimes \mathbf{k} \cong L_*$. Let $(L(W), \partial_1 + \partial_2) = \mathcal{L}_*(\wedge V, d_2)$, where \mathcal{L}_* is the functor defined in [24, I.1.(7)]; recall that $W = \downarrow \# \overline{\wedge V}$. We can define a map $\chi^* : \operatorname{Der}_{-1}^*(\wedge V) \to \operatorname{Der}^{-*}(LV)$ by $\chi(\theta)|_W = \downarrow \#\bar{\theta} \uparrow$. It is easy to verify that χ commutes with the differentials $d_{\wedge V}$ and $\partial_{TW} = [*; \partial_1 + \partial_2]$, respectively. It is also possible to show, using various properties of the functors \mathcal{F}_* and \mathcal{C}^* ([24, Chapitre I] and [21, Section 3]), that χ induces an isomorphism in cohomology. The differential $\hat{\theta}_1 + \hat{\theta}_2$ induces on TW a differential (denoted by the same symbol) and let $A = \tilde{\Omega}^{-1}(TW, \hat{\sigma}_1 + \hat{\sigma}_2)$, where the functor $\tilde{\Omega}^{-1}$ is introduced in Example 1.9. The constructions in 3.2 give rise to an isomorphism $\operatorname{Der}^*(LW), \partial_{LW}) \cong (F_0 CB_{(\infty)}^{**+1}(A; \bar{A}), \delta_B). \text{ Note also that } H^*(F_0 CB_{(\infty)}^*(A; \bar{A}),$ $\delta_B \cong F_0 H^*(CB_{\infty}^*(A; \bar{A}), \delta_B)$, see 2.10. Composing all the identifications above, we obtain the desired isomorphism K_B^* . The isomorphism K^* is constructed by the same method, only replacing the functors \mathscr{L}_* and \mathscr{C}^* by the 'dual bar construction Ω of [7, Appendix].

3.6. Note on the sign and degree conventions. Our definition of an A(m)-algebra relies upon the sign convention explained in 1.1. Having chosen the definition of an A(m)-algebra, we get automatically the signs in the formulas for the differentials on $\mathcal{B}_{(m)}(A)$ and $\mathcal{B}B_{(m)}(A)$, respectively, and, in the light of Theorem 1.8, also in the definition of the shuffle product.

As for the degree conventions of 2.1, the homogeneity of the differential $\hat{\sigma}$ requires that $\deg([a_1,\ldots,a_q])=|a_1|+\cdots+|a_q|+q+\text{const.}$, the choice const. $\equiv 1 \pmod{2}$ is necessary for the validity of the formulas in the proof of Lemma 2.5. The remaining conventions are chosen so that the gradings on $H^*_{(m)}(A;\mathbf{k})$ and $H^*(\#\widetilde{\mathcal{B}}(A),\widetilde{\delta})$ (see 3.3) agree.

Acknowledgment

I would like to express my thanks to the referee for carefully reading the manuscript and many helpful remarks. The idea to prove the injectivity of $H^*(A; M)$ using an analog of a Hodge-type decomposition is entirely due to him. I benefitted also from numerous conversations with J. Stasheff.

References

- [1] J.F. Adams, On the cobar construction, Proc. Nat. Acad. Sci. U.S.A. 42 (1956) 409-412.
- [2] M. Barr, Harrison homology, Hochschild homology and triples, J. Algebra 8 (1968) 314-323.
- [3] H. Cartan and S. Eilenberg, Homological algebra (Princeton University Press, Princeton, NJ, 1956).
- [4] Y. Félix, Dénombrement des types de K-homotopie, Théorie de la déformation, Bull. Soc. Math. France 108 (3) (1980), Supplément.
- [5] M. Gerstenhaber and S.D. Schack, A Hodge-type decomposition for commutative algebra cohomology, J. Pure Appl. Algebra 48 (1987) 229–247.
- [6] M. Gerstenhaber and S.D. Schack, Algebras, bialgebras, quantum groups and algebraic deformations, Preprint, 1991.
- [7] S. Halperin and J.-M. Lemaire, Notions of category in differential algebra, Lecture Notes in Mathematics, Vol. 1318 (Springer, Berlin, 1988) 138–154.
- [8] P.J. Hilton and U. Stammbach, A Course in Homological Algebra (Springer, Berlin, 1971).
- [9] T.V. Kadeishvili, On the homology theory of fibre spaces, Russian Math. Surveys 35 (1980) 231–238.
- [10] F.W. Lawvere, Functorial semantics of algebraic theories, Proc. Nat. Acad. Sci. U.S.A. 50 (1963) 869–872.
- [11] S. Mac Lane, Homology (Springer, Berlin, 1963).
- [12] S. Mac Lane, Categories for the Working Mathematician (Springer, Berlin, 1971).
- [13] M. Markl, On the formality of products and wedges, Rend. Circ. Mat. Palermo, (2) 16 (1987) 199–206.
- [14] M. Markl, Free and commutative models of a space, Publ. I.R.M.A., Lille, Numéro Spécial: Géometrie et Topologie 1988–1989, pp. 117–127.
- [15] M. Markl, Ş. Papadima, Geometric decompositions, algebraic models and rigidity theorems, J. Pure Appl. Algebra 71 (1991) 53–73.
- [16] P. Merle, Formal spaces and Adams-Hilton models, to appear.
- [17] J. Milnor and J.C. Moore, On the structure of Hopf algebras, Ann. of Math. 81 (1965) 211–264.
- [18] A. Prouté, Algèbres différentielles fortement homotopiquement associatives, Thèse, Université Paris VII.
- [19] D. Quillen, Rational homotopy theory, Ann. of Math. 90 (1969) 205-295.
- [20] R. Ree, Lie elements and an algebra associated with shuffles, Ann. of Math. 68 (1958) 210-220.
- [21] M. Schlessinger and J.D. Stasheff, Deformation theory and rational homotopy type, Publ. 1.H.E.S., to appear.
- [22] J.D. Stasheff, Homotopy associativity of *H*-spaces I, II, Trans. Amer. Math. Soc. 108 (1963) 275–312.
- [23] D. Sullivan, Infinitesimal computations in topology, Publ. I.H.E.S. 47 (1977) 269-331.
- [24] D. Tanré, Homotopie Rationnelle: Modèles de Chen, Quillen, Sullivan, Lecture Notes in Mathematics, Vol. 1025 (Springer, Berlin, 1983).
- [25] D. Tanré, Cohomologie de Harrison et type d'homotopie rationnelle, Lecture Notes in Mathematics, Vol. 1183 (Springer, Berlin, 1986) 361–370.