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Introduction.

The aim of this paper is to describe a deformation theory for varieties
of structure constants which is well applicable nemely to the study of
the set of rational homotopy types with given homotopy or cohomology.

Our theory, based on the approach of A. Nijenhuis and J. Richerdson [NR],
is mtivated by the notion of "filtered cohomology" introduced by Y. Félix
in [F] or [F1].

Similarly as in NR we consider the variety of structure constants
as the set of solutions of a deformation equation in suitably defined
graded Lie algebra, We show that our theory has all the features of
other theories of deformations fNR],[G]. We o9 also some results on
morphisms of such objects., Our results are valid over an arbitrary field
of characteristic geros,

We apply our results to the set of all ratiocnal homotopy types with
given cohomology or homotopy. We shall see that the related cohomology
theories are the Harrison cohomology, studied inm the connection with
the rational homotopy theory by D, Tanré [T], or the Félix filteped
cohomology [F], or the anslogical theories in the dual situation.

From the general theory we get immediately the famous results on intrin-
sical formality of Y. Félix and D. Tanré, end also some results on the
number of ratienal homotopy types.

As the application of our mapping theorems we shall study the beha-
viour of the number of rationsl homotopy types under products, wedges,
attaching of cells and pullbacks.

Our paper is divided into three sections:

I. Bigraded Lie algebras
II. Derivations of a bigraded algebra
III. Applications: Rational homotopy types
Appendix: Homotopy types with given homotopy
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I, Bigreded Lie algebras.

I.1l. Basic definitions. All objects are considered over a field k of
characteristic zero.

Definition l.l. By a bigraded Lie algebra we mean & (positively) graded
Lie algebra = P EL such that for each i) 0 a second greding
Ei = &P Ej ig g?égn and [E;,Eg] CE*P for each 1,3,p,q) 0. The symbol -(T

320 e %
will allways denote the projection frem E ¥ onto E 3°

J
Definition I.2. Let G be a group. A G-structure ( or a G-action ) on

a bigraded Lie algebra E is an object [ of the form | = (G, §,E,m) where:
(1) S):GéAut(E) is a left action satisfying S(g)(E;‘)CEi'J for each

i,J 30, we shall write for simplicity g(e) or ge instead of g(g)(e),

(11) mEEi‘ is a point satisfying [m,m] = O and UTO(g(m)) =m for
each g€ G,

(1i1) there exists a map ¥ :Egl-—> G such that the element 4« (e) for
each x€ ES", eeEg, J20, k21, ;atisfies:

My(R(e)(x)) = x, (T,(K(e)(x)) =0 for j<i< j+k and (T4, (K(e)(x)) =
= [e,x],

(iv) the action of the group G is complete in the following sense:

For each sequence 0< n;<{ny{ «oo ( finite or infinite ) of integers

and for each choice of elements e, € Egi y 1=1,2,... the sequence {hd_} =
= {-’K(ed)«(ej_l)...'}((el)} converges to a point of G, more precisely,

there exists g€ @ with mp*(g(e)) = mp+k(ﬁ‘j(e)) for each e€ E;k,
k<ny,, § 1 and p)O.

Note that if the sequence Dy ,,ee0 1s finite then (iv) I8 allways
satisflied, Indeed, 1f ny is the last element of this sequence then g = hY
has the requisite properties by (iii). The object E = (G, Q,E,m) of the
previous definition will be called sometimes also simply the bigraded
Lie algebra. The algebras of derivations of a bigraded algebra are natural

examples of such objects, see the following part,



1.3
Definition I,3. Let [F= (G,Q,E,m) be a bigraded Lie algebra. Denote
by Mm the set
Mm {m"'ml'.mz ...E T_]EJ; m EEl [m""ml"'m +ooo,m+ml+m2 ..t = O}

Because our Lie algebra is supposed to satisfy I.2(ii), the sction of
the group G defines the ( left ) action of G on the set M+ We denote

by #(Mm/G) the pumber ( possibly infinite ) of elements of the orbit
space Mm/G. The equation {m+ml+m2+...,m+m1+m2+...] = 0 plays here the
role of the deformation equation in the sense of [NR].

Writting, for xe;l;[)EJ, X = X, +X;%es0 We allways mean that x EEl, i)o,
are the homogeneous components of the point x.

I.4. Let again [ = (G, Q,E,n). The map D :E—>E defined by D_(e) = [m,e]
is clearly a homogeneous differential of bidegree (1,0). Thus the
cohomology of the complex (E,Dm) is a bigraded space and we denote it
by Hi(E D, )e

Definition I.5. Let IE (G, § ,E,m) be another bigraded Lie algebra.
A morphism from H':= G, Em) to E = (G,9,E,m) is a couple P- ((P ,P)
where P:E—>E is a morphism of bigraded Lie algebras, homogeneous of
bidegree (0,0), (t):@-—ﬂ} is a homomorphism of groups, P(m) = m and
P(g(e)) = (Z)P(8) for €T and e€E. The objects, related by the algebra
lE we indicate by ",

Note that the map P clearly induces the map from T—‘E to T—‘EJ, we

abbreviate this map again by P. Clearly P(ME) CM . A 920

The map P also induces the morphisms of the cohomology. The kernel
of P is a bigraded subspace, stable under the differential D=,

Theorem I.6. Let [P = (¢ ,P) be a morphism of bigraded Lie algebras,
P E"" £, such that the map P:E—E is epic. Let K;f = Ker(Pt-ﬁi—-B'E;)
end denote by ¢ the differential induced an K by D=,

If B (K,8) =0, then P(N7) = M, hence ¥ (Hg/G)) i /0).

Proof. Let x = m+m1+m2+... be a point in Mm Because P is epic, there
exists a point x = m+ml+m2 ces ET_]EJ such that P(X) = x, Computing

explicitely the projection (le( [’:JE ,X]) we see that xEMrn if and only if
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the equation el
o[m,m,] = -(1/2);'1_’,[51,5.:]:_1] (def,)

is satisfied for each k) 1.
Suppose that there exists p) 1 such that (defk) holds for all k¢ p-l,
We claim that the poimt (1 ([¥,%]) belongs to Ker(§). By the Jacobi
identity [%,[%,X]] = 0, hence also @ ([%,[%,%]]) = 0. But @, ([%,3]) =
for k<p-1, hence (1,([%,[%,x1]) = [&, M([%,2D] = Jca@ « [z,E]).
By our assumptien, HS(K,S ) =0, hgnce there exists yeK;' with -8 (y)

= -[Eals Oy(fead = elaia] +3

= E+1-n'1+...+n_1p_l+(ﬁp+y)+... satisfies clearly (def)) for all k{p. Because

t
O

(my ym_; I+ Then the point X’ =
=1

y €Ker(P), P(x) = P(X") = x. Using this argument inductively, we modify
the point X to some X'€ ﬁﬁ with P(x") = x.

Definition I,7. A G-structure [ = (G,Q,E,n) is said to be pegular,
if for each k} 1l and g€ G with UTi(gm) = 0 for 0{1< k, there exists
some eeEg such that (ﬂi(gm) = GTi(’K(e)m) foj' OSigk.

Definition I.8, A bigraded Lie algebra [F = (3,§ ,E,m) is a gubalgebra
or E-= (6,9 ,E,m) if G 1s a subgroup of the group G, E is a bigraded

-~

subalgebre of theelgebra E,  =9/T and & = m.

Note that the differential D induces on J¥= Ez/ﬁra differential
of bidegree (1,0). The inclusion Fla G M, clearly induces the natural map
Vs —>M /G, _

Theorem 1,9. Suppose that IE = (3,5 ,E,@) is & bigreded subalgebra
of E = (e,9,E,m). Denote by W the differential induced by D_ on the
bigraded space J;‘: = E:}:/E'j: :

a) If Hgl(J,w) = 0, then the natural mep © :Bx/F -1 /G is epic,
consequently ¥ (71175/5) > # (M_/G).

b) Suppose that the G-structure on [ is regular. If there exists k5o
with Hék(ﬁ,ﬁﬁ) = 0, HL(E,D) # O and H3 (E,D ) = O, then the map 4, 1s
not an epimorphisme. -

Applying the previous theorem to the case [E trivial, we obtain the
following "rigidity" theorem.
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Theorem I.10, If Hll(E D, ) =0, then #(M /G) = 1. If the G=structure
on E is regular, H>2(E D) =0 and *(M /G) = 1, then H,l(E D) =0,
Proof of Theorem I.9.8): Let x = MM, HMste e EMm and suppose that

x & Foﬁlj. Then there exists k, > 1 such that ml,m2,...,mkl_1 €E but
J7

m, & E. We cleim that D (mk ) €E, hence mkl represents a cyele in Jll.
1l
Indeed, since x Elfy we haye Ex ,X] = 0 and also (ﬂk ({x,x]) = 0. But

lk ([x, x]) 2[m mk] +:[mi,mk _i]» hence D (mk ) =
0

Because Hk (J, w) 0, there exists a point eleEkl with -fel,m] =

N — i =
= mkl+z for some z EEkl. Then 'K(e 1) (m4my +e,0,) = m+ml+...+mk1_l+
+(m. 1+[el,m])+... = m+ml+...+mkl l+'z'+... » If we write %(e;)(x) =

= metm. H +e e thenm ‘€ E for 1<kl

178,
If 4 (e )(x)%‘ﬂE then there exists k.> k. with m’.....m’ -€5
kl 30 3 ¢ exists k) ky Troeeerli -1
b\lt mk ﬁE saee
2

Repeating the process above sufficiently meny times we get a (possibly
finite) sequence k, < k2< eeo 0f integers and a sequence eieEii of
elements such that G(J((k(en)k(en_l)...'\((el)(x))e E whenever j<k
Then I.2(iv) gives g€ G with g(x)€ E.

Proof of Theorem I,9,b): Let m, € Ker(Dm:Ei'——)’Ei) . At first, we show
that there are By 4] 98 409 e 0o Such that My 0y gt oFeee GMm Suppose

n+l*

that we have finden M ygsees si, such that O'Ti( [mmk+...+mp,m+mk+...+m 1 =

= 0 for 0§ i§ p. The Jacobi identity gives, for each a €E [a,[a,a]] = 0,
and also p+l([a,[a,a]]) = 0, Writting a = whm oo tm and using the
assumption (T,([a,a]) = 0 for 0¢ i€ p we get that (] +l([m+m teostm
mHmy . . o0 ])G Ker (D Eg l——aEB_,_l) exactly as in the proof of Theorem I.6.

2

Because H +1(E D,) = 0, there exists mp+l€ p+l with -2Dm(mk+l) = -Z[m,mkﬂ]
= mp+1([m+mk ...+%,m+mk+...+mp]) and we see that the point x = m+m +...
oo emptm, ) satisfies 07,([x,x]) = O for all i, O¢ i p+l. We proceed using
the clear induction,
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Because HIJECE’Dm) # O there exists x = m+mk+mk+l+... eMm such that
m, represents a nontrivial element [mk] of the group Hi(E,Dm). Using the
similar arguments as in the proof of Theorem I.6 we see that the condition
H%k(’s',l')n—f%mpnes that each point x € M= % G-equivalent with a point ¥
e\f the form y = Eﬁk +l+ak 4pTeee o We conclude that if the point x is G-
equivalent with some X €Ik, it must be equivalent also with some y of

the form y = E*ﬁk +1+Ek 4o+ees This meens that there exists g€ G with

SR,  HD yoteee) = m+m, +. .., hence @, (em) = ﬂi(mmk) for 0¢ i k.
By the regularity there exists eeEg with [e,m] =m, =D (e) and [mk] =0
in H;(E,Dm)-a contradiftion.

Theorem I.11. Let [F = (G','Si ,E,m) be a subalgebra of [ = (6,9 ,E,m),
Suppose that the G-structure on E is regular and that the inclusion
EGE induces a mono morphism H;l(ﬁ,ﬁﬁ)—anél(s,nm). Then (M /G) = 1
implies that #(M/G) = 1.

Proof. Suppose that # (TN%/CT) > 1. By the arguments using in the proofs
of the previous theorems we see that there exists x€ M=y X = Eﬁkﬁk 41 teee
with [Ek] #0 in Hi('ﬁ,'ﬁﬁ). By our assumption, [ Ek] considering as an
element of Hﬁ(E,Dm) is nonzero, too. Because #(%/G) = 1 there exists
g€ G with gn = MM, HDy S tee e o The regularity now guarantees the
existence of e GEg with [e,n] = m,, hence [m ] =0 in Hi(E,Dm)-a contra-
diction.
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1l, Derivations of & bigraded algebrg.

Il.1. Let Aai @ A 3 be a bigraeded algebra ( i.e. Ai .Ap CAi+g for

i,j,p,q¢ ) which %s'j:?fther graded commutative or graded gie algebra
with respect to the upper grading. Suppose that the following condition
is satisfied:

(bound) The set (i€ ¥; a; # {0} 1s finite for eachnc¢k .

I1.2. Denote by Deri(A) the vector space of all derivations of the
greded algebra A% of degree i and let Der?j'(A) = {DeDer’(a); BayC
Cly,y for each k¢ k]. Let a€Der(4) be a derivation satisfying [d,d] =
= a2 = 0. Define the bigraded vector space Ef = E*(A ,d) by:
= Derj+k(A) for k> 0,J20 or k=0 and j> O,

0 = |0eDerd(a); [4,0] = o},
= {01 otherwise,

.y
i

=
- O Ot
i

E
This vector sgace with the productrdefined by the commutator of derivations
clearly forms a bigraded Lie algebra in the senss of Definition I.l.

I1,5. For g€ Aut(A) and k € Y% denote by Fk(g) the linear endomorphism
of A defined by F,(&)(y) =P . (g(y)) for y€A,. Finally, define G =
a(a,a) =1g€aut(a); g(Ag.') CA;j and F,(g)ed = d°Fy(g)}. It is possible
to show that G is really a subgroup of the group Aut(A), this need not
be true if the condition (bound) is not satisfied.,

Remark., If we denote Deri(A) = {eé Deri(A), e(Ai")C Ai.j thenthere are
the natural inclusions @Der (A)CS Der) (A)CS _r]Der (A) ( i arbitrary
fixed, ). On the other hggd if the condition (bg%md) is satisfied then
each element of nDer (A) defines a derivation, therefore also the points
of the set Md deg‘ined by the bigraded algebra E*(A d) as in Definition I.3
can be considered as derivations of the algebra A,

II.4. Let 1)1 and let O € EY = Der(4). The condition (bound) guarren-
tees that, for each x€ A, ©®R(x) = 0 for n sufficiently large. Hence the sum

exp(0 ) (x) =§(l/nl) 0" (x)
nj
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is finite and clearly defines an element of the group G which we denote
by exp(0 ). Finally, define the left action Q of the group @ on E by
8(A) = go Aog.l. It can be verified directly that, if we put 4 (e) =
= exp(e), the object lE = [E(A,d) = (G,S yE,d) satisfies (i)=(iii) of
Definition I.2.

II.5. We show that the action just defined is complete, If el,ez,...
are elements of Egl,Egz,... &8 in I.2(iv) and h* = ’k(ei)K(ei_l)...‘K(el),
then clearly for each x €A, h®(x) = h™(x) for m and n sufficiently large

because of (bound) and it makes sense to speak about lim hn(x). It is
N -»od
not hard to verify that the equation g(x) = lim h™(x) defines an element

n-veo
of G which satisfies the condition (comp).
Before proving that the action is also regular we prove the following

Sublemma II,6. Let g = Fe(g)+Fl(g)+F2(g)+...€G ( because of (bound)

this sum makes sense althrough it may be infinite ). Then
a) Fo(g)i G,

b) if F (g) =14, F,(g) = Fp(g) = oy = F

p-1(8) =0, then F,(g)€ DerO(A).

Ihe preof is trivial.

Recall that, under the abbreviation of I.2, GTJ( g(d))eE}' denotes the
"J-th homogeneous part" of the derivation g(d) = godog-l. '

Sublemms II.7. If >0 and O ¢ Eg . Derg(A), then

01, 5(exp(~0)odoexp(0)) = (1/m1)[([ees[a,0],...,0101, ny1,
(T (exp(~ D)odoexp( D)) = 0 for ks* ¢ mod j.° times

Especially, if [d4,0] = D4(B®) = 0, then exp(-0)odoexp(@) = 4,

The proof is again a direct computation and we emit it.

II.8. Let us prove the regularity. Let g& G be such that, for some k,
Gri(g(d)) =0, 0<i<ke We write again g = Fo(g)+Fl(g)+.... « By Sub-

lemma II.6, F (g)&G and FS'(g)(d) = d by the definition of the group G.

If we denote g° = gF7"(g) then clearly g’(d) = g(d) and F (g") = id.
Hence we may suppose that Fo(g) = id,
In this cese g = id+F)(g)+... and F;(g) € EY by Sublemma II.6. Clearly
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UTl(g‘(d)) = [d,Fl(g)], henece [d,F (g)] = 0, If we write g' = g.exp(-Fl(g))
then g(d) = g’(d) by sublemma II.7 end clearly Fy(g”) = O. Repeating this
process sufficiently many times we find h€ G with h(d) = g(d) and F (h) =
=1d, Fy(h) = «e0 = F,_;(n) = 0. By Sublemma IL6, F,(h)€EO and clearly
GTk(h(d)) = [Fk(h) ,aj = (ﬂk(/K(Fk(h))(d)). The regularity is proved.

11.,9. The free-algebre case., For & %-graded vector space Z* we denote

L]

by F*(Z) either the free commutetive graded slgebra or the free graded

Lie algebra on 2., If Z¥ has another "lower" grading Z @Zi for ie ¥ ,
then there is the natural "lower" grading on F(Z); suppose that the grading
on Z is such that FI (2) satisfies the condition (bound) of II.l1.

We denote by 'F(Z) the linear subspace of F(Z) spanned by all elements

of positive lenght. Note that there is one-to-one correspondence between
elements of Der(F(Z)) and the linear maps from Z to F(Z).

II.10., Suppose that Zi‘; = X’i@ Y:t as bigraded spaces. Then there are
the canonical injections F(X)CxF(Z) and F(Y)CSF(2Z) and we shall con-
sider F(X) and F(Y) as subspaces of F(Z). Define the map
D: Deri(F(X)) @Der*(F(Y))%Der*(F(Z)) by (£1,0)>0®0 , where
(L@0 is the derivation of F(2) defined by (0.®8)(x) = (L(x) for X € F(X)
and (Q®0)(y) = Oy) for ye F(Y). The map X : Aut(F(X))X Aut(F(Y))—>
Aut(F(Z)) can be defined similarly .

11.11. If a4’ € Derl (F(X)) end d” EDerl(F(I)) satiefy a"% = 0 and
d""“= 0, then clearly d = d®@d’ ‘e Derl(F(Z)) satisfles d2 = 0, In the
algebra £ = [E(F(2)),d) = (6,9 ,E,d) the subspace of all derivations O
with O(X)CF(X) and D(Y) CF(Y) can be shown to form & bigraded sub-
algebra E of the Lie algebra E. We also denote G = {geG g(X) C F(X)
and g(Y)CF(Y)} Then d€El and the object L = (G, 8 E,d), where we
write 3 [E and d = d formsa bigraded subalgebra of the algebra [
in the sense of Definition I.S8.

Proposition II.12. Thers exists a linear map TI-E*—->E;“ which is
& homogeneous morphism of differential spaces (E, Dgq) and (E,ﬁa-) of bidegree
(0,0) such that T1o0 = id, where 1:ECSE is the inclusion.
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Corrolery II.13. The inclusion induces a monomorphiem Hi(E,’ﬁa»——)
>—>H’¥‘:(E,Dd).

Proof of the proposition. Let P,:F(Z)—>F(X) and P,:F(Z)—>F(Y) be
the canonical projectionse. For O € Der(F(Z ) define the linear endomorphism
ﬂl<9> of F(X) by Tll(e)(x) = Pl(e(x)) for x € F(X); the endomorphism
TL(O) of F(Y) 1s defined similarly.

We show that ﬂlc ©) 1s a derivation of F(X). For each a € F(Z) we can
decompose O (a) uniquely in the form Pl(@(a))+ Q,_(a) where 9+(a) belongs
to the ideal tj generated by +F(X) in F(Z). Let a,b G‘F(X) and compute
T1.(BXa.b). By the definition, T1,(0)(asb) = P (0 (a.b)) =
= P1<9 (a).b I a, _E)(b)) = Py ((P4( 0 (a))+ 9+(a))b s a(Pl(e(b) )+ 9+(b))) =
= Pl(ﬂl(e)(a).bi'a.nl(e)(b)+an element of 3J) = ﬂl(@)m Dbt
g a.ﬂl(e )(b). The endomorphism nz( D) is, of course, a derivation by
the same argument.

We can now define the map [E—E by [[(B) = ﬂl(e) @ ﬂ2( 0);
the map is clearly a linear endomorphism of bidegree (0,0). Note that
it need not be a homomorphism.,

We show that our map Il commutes with the differentials, i.e. that,
for each eEDer(F(Z)), [E,T‘k@)]= ﬂ[d,@]. For x€ F(X) we have
M[a,0] (x) = P (a0 0(x) £ Qoa(x)) = P ((a’® a"") (P (O(x))+ O, (x)) ¥
2 (P (0(a’@) @ B (a"(x))) = Pi(a"(Py(O (x))+en element 02 ) *

. (Pl( B(a’(x)) ® B,(a"(x)) =[3,T1(0)](x). The same equation is
clearly valid also on F(Y) and therefore it is valid on F(Z) as well.

IT.14. In I.8 we related to a subalgebra [E of a bigraded Lie algebra
[E & aifferentisl space (J,W). We give an explicit description of this
space in the situation of the previous parsgraphs.

For two bigraded spaces P:"‘E and ka we denote by Homg(P,Q) the space
of all homogeneous linear maps from P to Q of bidegree (p,q).

The map T1 constructed in Proposition II.1l2 splits the sequence
0—>E -{-L-)E —>J =0, hence J can be identified with Im((id ~7°Tl):E—>E).
Under this identification, the differential W is induced by the differen-
tial Dy, Denote by J the ideal generated by "F(X) in F(Z) and by K
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the ideal generated by +F(Y) in F(Z). The last space clearly consists of
all derivstions O € E with Qx)c K and B¢ j  Hence J§ can be
3(}{,3’6) + Homi(i,i'f).

"= B(F(X),d") (¢’,9',8",d") and

"= E@®m,a) = @”,¢"E"a")

(see II.4 for the notation ). We can define by the evident way the
direct sum “:_’69 |E" of the algebras IE' and lE”,

4 (2
Fok” = (a'xdlg'+9"e" @ ,a" @a”)

naturally identified with the space Hom
II.15, Let us denote IE

and the map Tp = (X,®), where X and ® are the maps defined in II.10, is
’ Y/ =
clearly an isomorphism of E o E" ena E o It is not hard to verify

H N -

that Mg-/G'Xuy//G" = Wy/G, consequently ¥ (/). # (g /a") = ¥ (Tig/T).
Theorem I.9.8) gives:

: l 4 1}
Theorem II.16. If Hy;(J,w) =0, then # (Mg-/G") .4 (M /G")) JIOR
Combining Theorem I.1ll, Corrolary II.1l3 and the notes above we obtain
the following:

Theorem II.17. If *(Md/G) = 1, then #(Mdf/G') = 1 and #(Mdn/G”) = 1,
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III, Application: Rational homotopy types.

III.1. From now on all objects are considered over the rationals
( of course, that algebraic part of our statements remains valid over
an srbitrery fisld of characteristic zero ). The symbols H¥, g ¥,..
allways denote ( positively ) graded commutative algebras of finitie type
with HO ¥ U} end HY = {Q}. We denote by H*KX) the singular cohomology
of X with rational coefficients. By jﬂ=(H) we denote the number of all
rational homotopy types with the cohomology isomorphic to H, For a topo-
logical space X let F(X) = #(H(X)).

II1.,2, Deformatiens of the Quillen model. Being H;k an algebra as above,
denote  &y((H,a=0)) = (L(W),D,) ( hence W 1s the dual to s™L(H) ).
The bigraded space ka is defined by

7 =y, zj = {0} for 1,je3z, § # 1.

Then clearly [ (2) satlsfy the condition (bound) of II.l. and 32
determines on [ (Z) a differential dGEDeri( (Z)). The object
E - [E¢ (L(Z),d) = (G, 8 »E,d) constructed as in II.4 we call the Quillen

deformation algebra of H*. In this case, the set Md is the set of all

Quillen minimal algebras with the quadratic part (lL(W),z)z) and
¥ ay/6) = fH) ( see [sL] ).

Proposition III,3, There is the natursl isomorphism
H%‘(E,Dd) = Barr™9* N i(g ), 1,9y 0,
where Harr™ ¥ denotes the Harrison cohomology as in [TaZ, p.363] or fTa}]
( the notation in[Tal] is slightly different ).

The fact stated in the previous theorem is not surprising. The Harrison
cohomélogy appear in the connection with the study of Felix~Helperin-
~Stasheff model [Tal] and there is one-to=-one correspondence between
deformations of FHS-models and deformations of Quillen models.,

The isomorphism above can be proved directly by some long, but
straightforward computation and we omit it. The only nontrivial fact
used in the proof is the description of the kernel of the canonical map

(X (W))*—>- (L (w) )* as the subspace of reducible elements of the mixed
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product, From Proposition III.,3 and Theorem I.,10 we obtain the following
famous result [Taz, p.368] .

Theorem III.4.( D, Tanré ).

a) If Harr*2'L(8,H) = O then H is intrinsically formel.

b) If Harr %223 m)
if Harr’ 221 (,H) = 0,

We shall write simply Ha;(H) instead of Hij(E(IL(Z),d),Dd) =
¥ Harri+'j+l’i(H,H) .

I1I.5. Deformetions of the Halperin-Stasheff filtered model. Being H*
as gbove, let (AX,d 1) be the Halperin-Stasheff bigreded model of the

algebre H, X = @ X « Define the bigraded space Zi by
1,330 9 _

Z.i:i = xI, for 1,30, zi; = {0} otherwise,
and denote by d the differential defined by d-l on \Z. Then the object
E = FExz,a) = (6,9 ,E,4) constructed as in II.4 we call the Halperin-

Stasheff (HS) deformation algebra of H . Then the set M; is the set of

O then H is intrinsically formsl if and only

all deformations of the bifiltered model (AX,d_;) and agein #(M./G) =
—-ﬂ= (H) . The cohomology of the complex (E;t, d) ds naturally isomorphic
with the "filtered cohomology" introduced vy Y. Félix [Fl,FZ] and we
denote FH‘:;(H) = H?j'(E(/\Z,d),Dd). Theorem 1,10 gives the following result
[F1,F2]:
Theorem IIIl.6.( Y. Félix ).
a) If gy, (H)
b) If FH§2(H)
l(H) = 0.

7

Exemple III,7. Consider the space X = 5vsgv.‘:‘.l"‘vs 3vs‘23 28

w = [s*,s14] + [s2%,57 ] + [s2%,52] studted by Y. Félix in [Fl]
For this space

O then H is intrinsically formal.

O then H is intrinsically formsl if and only if

. — 1 ; _
The fact that the filtered cohomology is nonzero is proved in [Fl] ’
there is also shown that this space is intrinsically formal. Compute

the Harrison cohomology.
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Clearly &y((HX(X),a=0)) = (L(c,d,x,a,b,2),d), deg(c)=deg(d)=4,
deg(x)=13, deg(a)=deg(b)=22, deg(z)=27, 0(c)= Aa)= O(x)= A(a)= 0(b)=0
and 9 (z)=fx,x]+[c,a] +[b,d]. The space Eil consists of all derivations Q
of the form O(e)= B(d)= B(x)= B(z)=0,

D(a) = olx,[e ,d]]+ g[x,[x,c]]+AA[d,tx,d]]*—S{c,[x,d]],

B(b) = (P[x,[c,d]]+([)[x,(x,c]]+cu[d,[x,d]]+\)[c,[x,d]],
where oC,P ,X‘,g ,43»,\}—’,0“,”6 Q , hence Eg,'l s (Qs. On the other hand,
computing explicitely the basis of the Lie algebra, it is possible teo

verify that the differentisl D hi'

1 ,.% _

Exgmple III.8. Let n,,ese,n, be natural numbers ) 2 and denote

1> Eal is a monomorphism, hence

X = Snlv...VSnk. If u),eee,u, are indeterminates, deg(u'j) = nJ-l, 1€k
then X is intrinsicelly formal if and only if Der;;(l\__(ul,...,uk)) = {O}.
The last condition can be rewrited in the following form ( we suppose

n, ...(nk): m-1

There is no m, 1{ m§ k, such that n, -2 =ziljad(nd-l) where a; are
integers )0, - ad>,3 and aj?'o for at least twé indices Jj, 1 ( j¢ m-1.

For k=3 we obtain the result of [F1, Exemple 9 b)].

Let us prove our statement. The algebra ({_ (ul,...,uk) ,0=0) is the
Quillen model for the space X, hence Dergli(ﬂ_(ul,...,uk)) ={O} implies
Hail(H*(X)) = 0 and X is intrinsically formal by Theorem I.10.

On the other hand, if there exists a nonzero derivation
9€Der;§(lL(ul,...,uk)) with ©° = 0, then X is not be intrinsically
cally formal ( because 0 = O ). Suppose Der;;(u_(ul,...,uk)) # 0 and let
w, be an element of the minimal degree in the set {uJ; there exists
1 GDer;%( |L(ul,...,uk)) with .Q.(uj)ifO}, denote p = deg(um). Then there
exists z¢& fo;l(ul,...,uk), s ¥ 0, and define O by 9(%) = z and e(uj) =
= 0, j#m. Since’deg(z) =p=l, O(z) =0 anda B°-= 0.

Example 111.,9. The graded spaée V* of finite type haes the property that
each algebra H* having V*as its underlying vector space is intrinsically

formal if and only if Derys(L(s™ (v))) ={d
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The rest of the paper is devoted to the study of the behaviour of

the number # (%) under some canonical operations.

II1,10, Wedges. Suppose that the algebre H™ is the "connected" direct
P N ) P
sum of H *and H”*, u* = g’ VH”)‘6 ( 1.e. HO 2 Q ang w1 = gl o1t

with the product defined by the clear way ). Denote by [ = |E(lL(Z),d),
= F(L(x),a") and E'= [ L.(Y),d”) the Quillen deformation algebras
of H*, H'*and H//*respectively ( see III.2 ). Because the Quillen model
of the algebra (H,d=0) is of the form (L (s~%(u’ @H//)),’c)'@a"), we can
suppose that z;f = x;‘i@th and that d = 4 @ d”, This situation was studied
in II.10-II.17 and Theorem II.l7 gives:
Theorem III,11, If the algebra H¥ = H

then both H'¥ and H/,* are intrinsically formal, too.

*y H”* is intrinsically formal,

The previous theorem clearly generalizes to the case of n factors.
Becguse H*(XVY) TH (X)\/H*(Y) we get immediately

Theorem III,1l2, Let Xl,...,}(ﬂ be simply connected spaces having the
cohomology of finite type and suppose that le ...VXn is intrinsically
formal. Then each xl,...,xn is intrinsically formal, too.

The cohomology of the differential space ( *,w) introduced in I.8
and studied in II.1l4 clearly depends only on the algebras H'* and H’*
and we denote it by Ha:t(H ,H "*) The explicit calculation related
with this object can be done using II.,14. Theorem II.16 glves immediately:

Theorem III.13. If Hay, (W&uAu"™) = 0, then ¥ bu"). b ).

Example IIT.14. It can be shown that there are precisely two
rational homotopy types with the cohomology isomorphic to H*(SZV 82VS5 ),
#(s?Vs2vs?) = 2. For k) 2, #(s2VsPvsPvsH) )y 2 and the equality
holds if and only if k=3 or 4.

Indeed, writting H = H(s°VS?VS%) and H” = H(SY) we obtain the
following description of the space J;,Ll:

Let x,y,2,a be indeterminetes, deg(x)=deg(y)=l, deg(z)=4 and
deg(a)=k-1. Then Jy; consists of all derivations D € Dery5( L (x,7,2,8))
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with O (x), B(y)€ ”.23(a), 9(:5)&'3;3 and 9(&)6‘3«1;;2, where J is the
ideal generated by +|L(a) in L(x,y,z,a) and W is the ideal generated by
+lL(x,y,z) in "_(x,y,z,a). We see that for k=3 or 4 ( and only in this
case ) such derivations are zero, hence JJ)'l = 0 and #(SzVSZVS5VSk) =2
by Theorem III.13 ( our space is not, by Exasmple III.8, intrinsically
formal ). The fact that #) 2 in other cases can be proved similarly as
in Example III.8.

Example IIL15. (s0Vs?vs®v (sTx s)) = 2.
put B’ = H(S?VSOVs20) and H” = H(S'XS'). Then K’ ,a=0) =
- (L(x,y,2),9'=0), &u"a=0) = (L(a,b,e),d(a)=0(p)=0, 3 (c) = [a,b),
deg(x)=deg(y)=8, deg(z)=25, deg(a)=deg(b)=6 and deg(c)=13. Then the space
J%l consists of all derivations O of the form B(a)=B(v)= B(x)= B(y)=
=0(c)=0, O(z) = of[a,[a,[a,bll]+ Blb,[a,(a,bll]l+ X[b,[b,[a,b]]],
oL,f 0 € 0. 1f we define {1 by .Q(a)=.Q(b)=.Q(x)=.Q(y)=Q(c)=?, “
S.(2) = of [a,[a,e]]+ plo,La,cl]+ \[b,[b,e]], then clearly [a,0001-=0,

hence H}l(H;H',H”) = 0 and our statement follows frem Theorem III,13.

111,16, Attaching of cells. Let H*

finite type and suppose that there exists n> O with Hi = ioi for 1> n+l,

be again l-connected algebra of

=¥
Let H be another graded algebra and suppose that there exists a graded
vector space N* with N = {O} for i€ n such that

. 'ﬁ*‘;’ H*@ ¥ as graded vector spaces,

. whenever a,b€H C H are such that deg(a)+deg(b)< n,
then the product of a and b in H is the same as this pro-
duct in H,.
[L 9 L (w 5 X 4= Tk d=0
The Quillen models ( L.(W),d,) end (L (W),d,) of (H",d=0) end (H",d=0)
cen be choosen such that W = W@V ( V = (s-lN)* ) and 521W = 92. If
X

X is a formal homotopy type with H (X) = H*‘ then the formal homotopy type

corresponding to E’k can be obtained attaching to X cells by suitably
choosen attaching maps.

et E= E(L®),0 = (@,9,5,d and E=EWL@,D = @G35
be the Quillen deformation algebras for #¥ and H*respective]y .
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By definition, 7l = ‘[0‘3 for i¢ -n, -Z-*= Z*@ Y* where Yi = f_O for

1) -n+1 and allL(z) = d, We define the maps P:E—E and $:G—>G as
follows: If D € E is a derivation, then P(Q) = OlL(2z). Similarly, let
$(e) = g|L(2). It follows from our assertions that O (I (2))C IL(2)
for each derivation O € E. This fact guarrantees that P is a morphism
of bigraded Lie algebras. The map tf> is & homomorphism of groups by the
similar argument, Note that the map P is epic. We can easily verify that
the couple TP = (¢ yP) is e morphism of bigreded Lie algebras in the sense
of Definition I.5,

III.17. The bigraded space Ker(P:E-—>E) consists of all derivations
O€eE with ©(lL(z)) = O, The cohomology of the complex (Ki,g') introdu-~
ced in Theorem I.6 clearly depends only on the algebras H* and ﬁ* and
we denote it by Ha*(H H*). Applying Theorem I.6 we get the following:

Theorem IIT,18, IfHa (H* H*) 0 then #(H)) & (1),

Example III,19. There are infinitely many rational homotopy types with
% .
the cohomology isomerphic to H (s°Vs°Vs9) #(svsivsi®-w [su],
W = (a\/ a1l 13 _[3.131
e show that the space X = (S;VS Vs ™)U, e, w=1s7,877], is intrin-
sically formsl. Let E = (G,Q ,B,d) be the Quillen deformation algebra
for H*(X). The Quillen model for X is (ll_(x,y,z,a),'c)la =[x,z]), deg(x)=

deg(y)=2, deg(z)=9 and deg(a) = 12; we see that Ei‘l consists of all
derivations O with O(x)= Q(y)= Q(a)=0, B(z) = of [=,[x,[x,y]1]+
+ b [X,[%[X,.Y]]]* X\[y,[y,[x.y]]] ’ D(',? ,316 Q o For such a derivation
[6,0,1@) = 0 if and omiy 12 &, ,J = 0, hence Hal. (#¥(x)) = 0 and
$(X) = 1 by Theorem I.10. Note that dim(Hail(H*(X),H*(S3V s’vst9)) =6,
Example III.20, It can be shown that # (52VS’Vs'®)z00 , Consider
the space X = (s2V8?Vsl®)( Pvs?®, w = [s2,5*°]. The dimension of
the space J>1 is in this case egual ta 8. But the differential on J)l
*sPvsPvsl®)) = 0 ana

can be shown to be monic, hence H>1(H (X),H
#(X) =00 by Theorem III.18.

I1T.21. Products. Suppose that the algebra H*is the tensor product

of H’*and H”*, gk ¥ H'*@)H”*. If A{,’:(AU,d_’l)—)»(H',d',ro) and

H):(AV,a7)) = (57,a=0) are Halperin-Stosheff bigraded models then clearly
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Y RN (AU BY),d ®a’) - (H'®H”,d=0) ¥ (§,d=0) 1s a bigraded
model. If now IE = [E(AZ,d) is the Halperin-Stasheff deformation
algebra then we can see similerly as in IIT,10 that (AZ,d) is of the
form (A(X ® ¥),d° @ d”) and we obtain snalogically;

Theorem IIT.22, If H* ¥ 5”%® u* i intrinsicelly formel, then beth
*are intrinsicelly formal, too.

Because H(XXY) ¥ H(X)®H(Y) we get

Theorem III,23, Let Xl,...,Xh be simply connected spaces with the
cohomology of finite type. If the space X = X1>(...>(Xn is intrinsically

%

H™ and H”

formal, then each Xl”"’Xn is intrinsically formal, too.
We can define, similarly as in IIT.12, the cohomology group
FHi(H* ;H'*,Hﬁs and prove

Theorem III,24, If FHil(H*";H’*“,H""‘) = 0 then #(H) { ¥(H"). k@),

We have listed some typical applications of our method to the study
of the number of rgtional homotopy types with a given cohomology group.
The behaviour of this number under wedges and attaching of cells was
studied using the Quillen deformation algebra, because the Quillen model
behaves well under these operations, Analogically, the behaviour under
products was studied using the Helperin-Stasheff deformation algebre.

It is possible to deduce the statement analogical to Theorem III.18
for pull-backs of the path fibretions over Eilenberg-MacLene spaces.
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Appendix: Homotopy types with given homotopy.

Here we give an outline of application of our method to the set

of rational homotopy types with a given homotopy Lie algebra. The

symbol (lxwill denote a ( positively ) graded Lie algebra of finite type.
A.1, We call the bigraded algebra E = E(AZ,d), where (AZ,d) =

= A@*( ﬂ* ,3=O), the Sullivan deformation algebra of Uy and we denote
the associsted cohomology by Ha;‘:( ﬂ*). This cohomology was introduced

by Y., Félix in ['Fl, Annexe 2] and denoted there by FH' Our notation
which differs from that used by Y. Felix, is based on the duality with
the objects studied in the previous part,

A.2, Let (L(X),B_l) be the Lie Halperin-Stasheff bigraded model of Tl
denote by Z} the bigraded space defined by zg = xj ard by d the diffe-
rential induced by 3-1 on | (Z2). Then E = E(L.(2),d) can be called
the Lie Halperin-Stasheff deformetion algebra for ﬂg and we denote the
associated cohomology by FH:'{:( ﬂ*). Proposition III.3 and Theorem I,10
then gives:

Theorem A,3. ( ¥, Félix )

a) If Hail( ﬂ*) O then ﬂ* is intrinsically coformal.

b) If Ha§2( ﬂ*) O then ﬂ* is intrinsically coformal if and only if
Hai‘l( Ty = o.

Theorem A.4. The previous theorem is valid also with FI:l;z( ﬂ*) instead
of Hai(n*).

The cohomology just defined can be used for the study of the behaviour

]

of the number of rational homotopy types with fixed homotopy aimilarly as
in Part III. For example, we can prove

Theorem A,5. Let Xl""’Xn be simply connected spaces of finite H-type.
If Xlx Xxn is intrinsically coformal, then each Xl,...,Xn is intrin-

sically coformal, too.
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